Course “Algorithmic Foundations of Sensor
Networks”

Lecture 8: Geographic routing and obstacle
avoidance

Sotiris Nikoletseas

Department of Computer Engineering and Informatics
University of Patras, Greece

Spring Semester 2020-2021

1/86

@ GPSR: A geographic routing protocol combining greedy
forwarding and a rescue mode (to bypass obstacles).

@ GRIC: An improved greedy forwarding component with
obstacle avoidance properties.

@ TRUST: A "trust" based protocol that gradually "learns" the
obstacle presence and converges to optimal routing paths
avoiding obstacles.

2/86

Geographic Routing

@ when location information is available to sensors (if not
directly, then through a network localization algorithm)

@ to provide location-stamped data

@ to satisfy location-based queries
then

making forwarding decisions using geographical information of
sensor and destination positions is a natural choice.

3/86

Greedy geographic routing/advantages

"make forwarding decisions using only information about the
sensors’ intermediate neighbors in the network topology"

Advantages:

@ keeping state only about the local topology, greedy routing
scales better (wrt per intermediate router state eg
memory) than shortest path and ad-hoc routing protocols.

@ scales better as the number of routing destinations
increases

@ scales better under frequent topology changes (finds
correct new routes quickly)

4/86

GPSR’s modeling assumptions

@ all routers (sensors) know their positions

@ packet sources can mark packets they originate with their
destination’s locations

@ bidirectional radio reachability (to allow link-level
acknowledgements for packets)

@ sensors lie on a plane (2D)

5/86

The GPSR algorithm

The algorithm consists of two methods for forwarding packets:
@ greedy forwarding, which is used whenever possible

@ perimeter forwarding, used in regions where greedy
forwarding fails

6/86

GPSR’s greedy forwarding

@ a forwarding node makes a locally optimal, greedy choice
by selecting the neighbor geographically closest to the
packet’s destination

@ forwarding in this regime follows successively closer
geographic hops until the destination is reached

7/86

An example of greedy forwarding

@ X received a packet destined for D
@ Xx’s radio range is denoted by the dotted circle

@ the dashed arc has radius equal to the distance between y
and D

= since y is the closest node to D, x forwards the packet to y.

8/86

An attendant drawback of greedy forwarding

There are topologies where the only route to a destination
requires a packet move temporarily farther in geometric
distance from the destination.

@ X is a local maximum in its proximity to D (w and y are
farther from D).

@ although 2 paths (xyzD, xwvD) exist to D, x will not use
them when running greedy forwarding.

9/86

The "void" notion

@ a void arises when the intersection region of x’s radio circle
and the circle about D of radius |xD| is empty of sensors:

@ x must seek a path around the void

10/86

The Right Hand Rule

"when arriving at a node x from node y, the next edge traversed
is the next one sequentially counterclockwise around x from
edge (x,y)"

@ X receives a packet fromy
@ then, it forwards it to z
@ z then forwards to y

11/86

The cycle-traversing property

The right-hand rule is known to traverse the interior of a closed
polygonal region (a face) in clockwise edge order (in our
example, it traverses the triangle as follows: y — x — z — y)

12/86

The Perimeter notion

@ GPSR exploits the cycle-traversing properties to route
around voids

@ the rule would traverse as follows:
X—>W—=>Vv—->D—>2z—-y—x
i.e. it navigates around the void

@ We call the sequence of edges traversed by the right-hand

rule a perimeter.

13/86

The complication of crossing links

@ the application of the right-hand rule obviously requires that
the network graph has no crossing edges i.e. it is planar

@ there are several methods to "planarize" a graph

@ the "no-crossing" heuristic: it blindly removes whichever
edge it encounters second in a pair of crossing edges

@ serious weakness: the edge it removes may partition the
network. If it does, the algorithm will not find routes that
cross this partition, i.e. it does not always find routes when
they exist.

14/86

Planarized Graphs

@ A graph representation: A set of nodes with circular radio
ranges r can be seen as a graph in which each node is a
vertex and an edge (n,m) exists between nodes n and m if
their distance is d(n,m)<r (such graphs, whose edges are
dictated by a threshold distance between vertices, are
termed unit graphs).

@ A graph in which no edges cross is called planar.

@ Two well-known planar-graphs:
o the Relative Neighborhood Graph (RNG)
o the Gabriel Graph (GG)

15/86

The Relative Neighborhood Graph (RNG)

@ definition: "an edge (u,v) exists between vertices u and v if
their distance d(u,v) is less than or equal to the distance
between every other vertex w",

i.e. Vw # u,v : d(u,v) < max[d(u,w),d(v, w)]

Note: for (u,v) to be included in the RNG, the shaded region
(the intersection of the transmission areas) must be empty.

16/86

Desired properties for planarization algorithms

@ the algorithms should be run in a distributed fashion by
each node in the network

@ a node should need only local topology information

@ removing edges must not disconnect the network

17/86

How to get a connected RNG

@ we start from a connected unit graph
@ we remove edges not part of the RNG

i.e. if u and v are connected by an edge, node u can remove
non-RNG links as follows (N is the full list of neighbors of u):

forall ve Ndo
forall w € Ndo
if w==v then
continue
else if d(u,v)>max[d(u,w),d(v,w)] then
eliminate edge (u,v)
break
end if
end for
end for

18/86

Properties of this procedure

@ It is distributed.

@ It uses only local information (knowledge of immediate
neighbors).

@ When removing non-RNG edges
we cannot disconnect the graph since an edge (u,v) is
eliminated from the graph only when there exists another
vertex w within range of both u and v, thus an alternate
path through a witness exists.

19/86

The Gabriel Graph (GG)

@ definition: "an edge (u,v) exists between vertices u and v if
no other vertex w is present within the circle whose
diameter is uv", i.e.

Yw #£ u, v d?(u,v) < d?(u, w) + d?(v, w)

Note: for edge (u,v) to be included in the GG, the shaded
region must be empty

20/86

How to get a connected GG graph

Since the midpoint of uv is the center of the circle with the
diameter uv, a node u can remove its non-GG links from a full
neighbor list N as follows:

forall v e Ndo
m = midpoint of uv
forall w e Ndo
if w ==v then
continue
else if d(w,m)<d(v,m) then
eliminate edge (u,v)
break
end if
end for
end for

Note: Similarly to the RNG case, this procedure is distributed, local and
cannot disconnect the graph.

21/86

The complexity of the planarization algorithms

@ Clearly, both algorithms for rendering the graph planar take
O(d?) time at each node, where d is the node’s degree.

@ It can be shown that RNG is a subset of the GG. This is
intuitively consistent with the smaller shaded region (for
removing links) in the GG graph compared to the RNG
graph. An example follows (left:full graph, center:GG

oy

@ using fewer links may improve efficiency (wrt MAC
considerations) through spatial diversity.

22/86

The full GPSR algorithm (1)

@ GPSR combines greedy forwarding on the full network
graph with perimeter forwarding on the planarized network
graph (when greedy forwarding is not possible).

@ When a packet enters perimeter mode at node x bound for
destination D, GPSR forwards it on progressively closer
faces of the planar graph, each of which is crossed by line
xD.

23/86

The full GPSR algorithm (II)

@ On each face, the traversal uses the right-hand rule to
reach an edge that crosses line xD.

@ At that edge, the traversal moves to the adjacent face
crossed by xD.

@ when a next hop sensor is found lying closer to D than the
current one, GPSR resumes to the greedy forwarding
mode (this is only one of the possible variations).

24/86

Evaluation of GPSR

The original paper compares GPSR to DSR, using 3 metrics:
packet delivery success rate, protocol overhead and path
optimality.
@ more than 97% of data packets are successfully delivered
(slightly greater success ratio than DSR).

@ GPSR achieves threefold (and even fourfold) overhead
reduction, especially when mobility increases.

@ they measure the percentage of delivered packets in terms
of the number of hops beyond the ideal shortest path
length: In a dense network, GPSR delivers 97% of its
packets along optimal-length paths (vs 85% for DSR).
GPSR delivers 3% of packets using one hop more than the
optimal length (vs 10% for DSR) while DSR delivers the
rest 5% of packets using two hops more than optimality.

25/86

The GRIC algorithm - Compared Protocols

Comparison of three algorithms

@ Greedy algorithms
© FACE algorithms (like GPSR)

© The GRIC algorithm
GRIC: geographic routing with contour and inertia

26/86

This algorithm is very simple:

@ Always send a message to the neighbour which is the
closest to the destination.

27/86

Greedy
problem

@ Unless the network is very dense, messages get trapped
inside of routing holes.

Routing holes

Routing holes follow from the local minimum phenomenon, and
occur in regions of the network with low density.

@ Even in dense nets of uniformly distributed sensors, there
is high probability for routing holes to appear.

Greedy also fails when there are obstacles

28/86

FACE

The FACE family of algorithms (like GPSR) guarantee delivery.

@ Extract a planar subgraph of the communication graph.

@ Using the right-hand rule, route messages to the
destination.

v

Weaknesses

@ The need to run on a planar graph ~ extra topology
maintenance.

29/86

Comparison

| Greedy Face GRIC
lightweight yes extra topology maintenance yes
success rate low Guaranteed high
path length good many hops good
robustness yes no yes

"because extracting planar subgraphs is not robust
30/86

Normal mode.

Recovery mode.
Randomness can be added to improve performance.

Normal mode is a bit like GREEDY, but inertia is
introduced.

Recovery mode is a bit like FACE, but it runs on the
complete communication graph.

31/86

Inertia

32/86

Inertia

Drswctian RETdegRE ahiad
E

Direction bo the destination

33/86

Inertia

Drswctian RETdegRE ahiad
E

Direction bo the destination

34/86

Inertia

DiEdtindn Straght ahied
£l

+ Computed ideal diection

Direction to the destination

35/86

Inertia

DiEdtindn Straght ahied
£l

e ideal direction

Direction to the destination

36/86

Inertia

DiEdtindn Straght ahied
£l

e ideal direction

Direction to the destination

37/86

Inertia

DiEdtindn Straght ahied
£l

jdeal direction

Direction to the destination

38/86

Experimental finding

@ Inertia is good at getting out of routing holes.
@ It can even route messages around obstacles.

39/86

An example where inertia succeeds

InertiaMsg

15 20 25

y positon
10

5

5 0 5 10 15 20 25
d&R9R10%,

40/86

An example where inertia fails

InertiaMsg

15 20 25

y positon
10

5

-5 0 5 10 15 20 25
d&R9R10%,

41/86

Recovery (contour) mode

In order to manage to route messages around obstacles, the
recovery mode, or contour mode, is introduced.

When to use it

@ When a message goes backward, switch to the recovery
mode.

@ When a message goes fowards destination, switch back to
normal mode.

v

What is does

@ Force turning left (or right) to imitate the lefthand rule.
@ Keep the idea of inertia routing at the same time.

\

42/86

Graphical explanation

- ™

43/86

Graphical explanation

- ™

44 /86

Graphical explanation

- ™

45/86

Graphical explanation

- ™

46/86

Graphical explanation

- ™

47/86

Graphical explanation

- ™

48/86

Graphical explanation

- ™

49/86

Graphical explanation

- ™

50/86

Graphical explanation

- ™

51/86

Graphical explanation

- ™

52/86

Graphical explanation

- ™

53/86

Graphical explanation

- ™

54/86

Graphical explanation

- ™

55/86

Graphical explanation

- ™

56/86

Graphical explanation

- ™

.

@ Raise the flag ~~ use recovery mode.

57/86

Graphical explanation

- ™

.

@ Raise the flag ~~ use recovery mode.

58/86

Graphical explanation

- ™

.

@ Raise the flag ~~ use recovery mode.

59/86

Graphical explanation

- ™

.

@ Raise the flag ~~ use recovery mode.

60/86

Graphical explanation

- ™

. J

@ Raise the flag ~~ use recovery mode.

61/86

Graphical explanation

- ™

. J

@ Raise the flag ~~ use recovery mode.

62/86

Graphical explanation

- ™

. J

@ Force turning left.

63/86

Graphical explanation

- ™

. J

@ The flag stays up.

64/86

Graphical explanation

- ™

. J

@ The flag stays up.

65/86

Graphical explanation

- ™

. J

@ The flag stays up.

66/86

Graphical explanation

- ™

. J

@ Put the flag down.

67/86

Graphical explanation

- ™

68/86

Graphical explanation

- ™

69/86

Graphical explanation

- ™

70/86

Graphical explanation

- ™

71/86

Graphical explanation

- ™

72/86

An example where GRIC succeeds

y position

15 20 25

10

5

GRIC I\/f(sg?éié

Nelty = 15

73/86

Statistical evaluation of the protocol:Void obstacle

Success rates — VoidObst hops - VoidObst
S § - o FACE2Msg
& GRIC_random(0.95)|
+ GRIPMsg
X GreedyMsg
@ s | InertiaMsg
= < v LTP5Msg
3
s 2 o FACE2Msg S 4
3 4 GRIC_random(0.95)
2 + GRIPMsg I3
§ X GreedyMsg 2
s o InertiaMsg o
S v LTP5Msg S
o 3
S 7 El
o
S 7 ° 4
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
density density

Performance of successful routings

74/86

Statistical evaluation of the protocol:Stripe

InertiaMsg

10 15 20 25

y positon
5

0

5 0 5 10 15 20 25
d&R881e,

75/86

Statistical evaluation of the protocol:Stripe

Success rates - Stripe hops - Stripe
S 8 - o FACE2Msg
& GRIC_random(0.95)|
+ GRIPMsg
* InertiaMsg
@ 3
S 7 g7
\
3
e S &7 \
s o FACE2Msg
2 4 GRIC_random(0.95) I3 \
2 + GRIPMsg 2 a
E X InertiaMsg
3 < 3
S &1
I
I
o
o 3
S 7 El
* *
o
S 7 ° 4
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
density density

Performance of successful routings

76/86

Statistical evaluation of the protocol:Ushape

U shape

15 20 25

y positon
5 10

0

-5 5 10 15 20 25

GRIPMSBOSy = 15

77/86

Statistical evaluation of the protocol:Ushape

Success rates - Ushape hops - Ushape
s § - © FACE2Msg
A GRIC_random(0.95)
+ GRIPMs
i 9
@ 3
S 7 g7
3
s 37 8
g FACE2Msg .,,
2 4 GRIC_random(0.95)| 13
8 + GRIPMsg =
z2 < | s | °
S |
o 3
S 7 8
'S
o
S °
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
density density

Performance of successful routings

78/86

Conclusions

@ GRIC is lightweight (no extra topology maintenance).
© GRIC has a high success rate:

@ almost as good as FACE for routing holes.
@ routes around hard obstacles.
© however, it will not get a message out of a maze!!!

© GRIC is robust, because not relying on the UDG.

79/86

The trust based algorithm - Void avoidance

Perimeter routing
@ Uses greedy routing
@ Uses a planar graph traversal algorithm when greedy fails
@ Turns back to greedy when the void is bypassed

80/86

Nodes’ trust evaluation

Bayesian interference

@ outcome observation (p, n) (p:positive, n:negative)
@ trust evaluation

__p
ot—p+n

@ decision making when t > threshold

81/86

Interaction evaluation

@ greedy routing — > p+ +
@ perimeter routing — > n+ +
@ t > threshold— > optimal path

v

Perimeter routing with interaction evaluation

@ Uses greedy routing on selected neighbors
e Neighbors are filtered by optimal path

@ Uses a planar graph traversal algorithm when greedy fails
@ Turns back to greedy when the void is bypassed

82/86

Object shapes

83/86

Path length

Average path length for convex shape after convergence

0 T T T T
e EpliteHistoryEvaluation ——
e ", LastS -
58 i GreedyTapologyA: R
e BayesianWithPrj
56 oy B
54

Average path length

6000 7000 8000 9000 10000 11000 12000
Network size

Average path length for concave shape after convergence
75 T T T

"EntreHistoryEvaluation ——
LastStepTrust wweeees
GreedyTopologyAware -

BayesianWithPropagation

Average path length

35 L L L L
6000 7000 8000 2000 10000 11000 12000
Network size

Comment: significant reduction in path length, which is near

84/86

Conclusions

Optimization

@ Path length is close to optimal
@ Little or no overhead

4

Possible extensions

@ Mobile and multiple base station

@ Mobile obstacles

\

85/86

Back to greedy

@ We note that the likelihood of local maxima/dead-ends
decreases with density.

@ It has been shown (Guibas et al) that if the graph is dense
enough that each interior node has a neighbor in every
27/3 angular sector, then greedy forwarding will always
succeed.

86/86

