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ABSTRACT: In wireless data networks each transmitter’s power needs to
be high enough to reach the intended receivers, while generating minimum
interference on other receivers sharing the same channel. In particular, if
the nodes in the network are assumed to cooperate in routing each oth-
ers’ packets, as is the case in ad hoc wireless networks, each node should
transmit with just enough power to guarantee connectivity in the network.
Towards this end, we derive the critical power a node in the network needs
to transmit in order to ensure that the network is connected with probabil-
ity one as the number of nodes in the network goes to infinity. It is shown
that if n nodes are placed in a disc of unit area in ®? and each node trans-
mits at a power level so as to cover an area of 7r® = (logn + ¢(nr))/n, then
the resulting network is asymptotically connected with probability one if
and only if ¢(n) — +oo.

1 Introduction

Wireless communication systems consist of nodes which share a common
communication medium: namely, radio. Signals intended for a receiver
cause interference at other receiver nodes. This results in reduced signal
to noise ratio at the latter receivers, and thus, in the lowering of their
information-processing capacity. Hence, it becomes essential to control the
transmitter power such that the information signals reach their intended
receivers, while causing minimal interference for other receivers sharing the
same channel. To achieve this objective, many iterative power control al-
gorithms have been developed (Bambos, Chen and Pottie (1995), Ulukus
and Yates (1996) and the references therein).

In this paper we look at the problem from a different perspective. We
assume that nodes in the network cooperate in routing each others’ data
packets. Examples of such networks are mobile ad hoc networks (Gupta and
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Kumar (1996) and Johnson and Maltz (1996)). They are networks formed
by a group of mobile nodes which communicate with each other over a
wireless channel and without any centralized control. In such networks, a
critical requirement is that each node in the network has a path to every
other node in the network, i.e., the network is connected. With this in mind,
we consider the problem of determining the critical power at which each
node needs to transmit so as to guarantee asymptotic connectivity of the
network.

More precisely, we consider the following problem: Let D be a disc in %2
having unit area. Let G(n,r(n)) be the network (graph) formed when n
nodes are placed uniformly and independently in D, and two nodes ¢ and
j can communicate with each other if the distance between them is less
than r(n). That is, if 3 is the location of node k, nodes i and j can
communicate if ||z; — z;|| < r(n), where the norm used is the Euclidean
norm (i.e., L%-norm). The radius r(n) is usually referred to as the range of a
node in G(n, r(n)). Then the problem is to determine 7(n) which guarantees
that G(n,r(n)) is asymptotically connected with probability one, i.e., the
probability that G(n,r(n)) is connected, denoted by Pc(n,r(n)), goes to
one as n — oo. For this problem, we show that if 7r?(n) = log"ni(n), then
Pc(n,r(n)) — 1 if and only if ¢(n) — +0.

A related problem that has been considered in the literature is connectivity
in Bernoulli graphs: Let B(n,p(n)) be a graph consisting of n nodes, in
which edges are chosen independently and with probability p(n). Then, it
has been shown that if p(n) = M, the probability that B(n,p(n)) is
connected goes to one if and only if ¢(n) — 400 (Theorem VII.3 in Bollobds
(1985)). Even though the asymptotic expression is the same, connectivity in
G(n,r(n)) is quite different from connectivity in B(n, p(n)). The event that
there are links between ¢ and j, and between j and £, is not independent
of the event that there is a link between i and k (as, fixing z;, the former
is true given the latter only if j lies in the intersection of two discs of
radius 7(n) and centered at ¢ and k, with ||z; — 21| < r(n). This has lower
probability than the probability (7r%(n))? of the event that there are links
between ¢ and j, and j and k ). As it turns out, an entirely different proof
technique was needed to prove asymptotic connectivity in G(n, r(n)).
Another closely related problem considered in the literature is the coverage
problem: Disks of radius @ are placed in a unit-area disc D € R? at a
Poisson intensity of A, i.e., number of discs having their centers in a set
A C D of area |A| is Poisson distributed with mean A|A|. Let V(X a)
denote the vacancy within D, i.e., V(A, a) is the region of D not covered by
the disks. Then it has been shown in Hall (1988) (Theorem 3.11) that

1 : 212\ —7maA
%mm{l,(l—i—ﬂ'a A)em M < PV, a)] > 0)

<  min {1, 3(1+ 7ra2/\2)6_”2)‘} (LD
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Note that (1.1) has more stringent asymptotics on a(n) than our result. If
A =nand 7a?(n) = 10gn+10g20gn+c(n), then lim, .o, P(|V(n,a(n))| >0) =
0 for ¢(n) — +o0, and lim, .. P(|V(n,a(n))| > 0) > 1/20 for ¢(n) — —oc.
Also, note that coverage of D by discs of radius a(n) = r(n) does not
guarantee connectivity in G(n,r(n)) (recall r(n) is the range of nodes in

G(n,r(n)))). However, a(n) = r(n)/2 does; the corresponding lower bound
4logn+loglogn+c(n) for c(n)

on r(n) is wr?(n) = — +o00, which is much
weaker than the one we obtain. Moreover, since G(n,r(n)) can be con-
nected without D being entirely covered by n discs of radius r(n), this
approach does not lead to any necessary conditions on r(n) for asymptotic
connectivity in G(n,r(n)).

Yet another related problem considered is in continuum percolation theory
(Kesten (1982), Mesteer and Roy (1996)): Nodes are assumed to be dis-
tributed with Poisson intensity A in %2, and two nodes are connected to
each other if the distance between them is less than r. Then the problem
considered is to find a critical value of r such that the origin is connected
to an infinite-order component. Of course for this to make sense, the node
distribution process is conditioned on the origin having a node. We will, in
fact, make use of some results from percolation theory while deriving the
sufficient condition on r(n) for asymptotic connectivity in G(n,r(n)) (cf.
Section 3).

The rest of the paper is organized as follows. In Section 2 we derive the
necessary condition on r(n) for asymptotic connectivity of G(n,r(n)). The
sufficiency of this condition is proved in Section 3. We conclude in Section
4 with some comments on extensions of the problem considered.

2 Necessary Condition on r(n) for Connectivity

In this section we derive necessary conditions on the radio range of a node in
the network for asymptotic connectivity. In the following, to avoid techni-
calities which obscure the main ideas, we will neglect edge effects resulting
due to a node being close to the boundary of D. The complete proofs which
take the edge effects into account are given in the Appendix.

We will frequently use the following bounds.

Lemma 2.1 (i) For any p € [0,1]
(1-p)<e. (12)
(ii) For any given 0 > 1, there exists pg € [0, 1], such that
e < (1—p), forall 0<p< po. (1.3)

If0 > 1, then py > 0.
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Lemma 2.2 If 7r%(n) = lﬂgg—“, then, for any fized 8 < 1 and for all
sufficiently large n
n(l—ari(n))"~t > fe~°. (1.4)

Proof: Taking the logarithm of the left hand side of (1.4), we get
log(L.H.S. of (1.4)) = logn + (n — 1)log (1 — 7r*(n)) .

Using the power series expansion for log(1 — z),

(xr2(n)'

1

I~

log(L.H.S. of (1.4)) = logn—(n—1)

i=1

—logn — (n— 1) (Z W + 5@)) (15)

=1

where

o0

gy = 3 lognto)

‘ int
=3
17N ’
_/<ﬂﬂi% s
3 n

2

1 <logn+c>x
B 310g (logn+c) n
n 2

2
< %(logn—l—c) ’ (1.6)

n

IA

(e}

for all large n. Substituting (1.6) in (1.5), we get

1 5(1 2
log(L.H.S. of (1.4)) > 1Ogn_(n_1)<ogz+c+ (ogn+6))

6n?
(logn + ¢)* — (logn + ¢)
n

v

Z —Cc—=¢

for all sufficiently large n. The result follows by taking the exponent of both
sides and using # = e~ °. |

Now, let P*)(n,r(n)),k = 1,2,... denote the probability that a graph
G(n,r(n)) has at least one order-k component. By an order-k component
we mean a set of k nodes which form a connected set, but which are not
connected with any other node. Also, let Py(n, r(n)) denote the probability
that G(n,r(n)) is disconnected.
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Theorem 2.1 If 7r?(n) = bgnni(n), then

liminf Py(n,r(n)) >e=° (1 - e_c) , (1.7)

n— 00
where ¢ = limy,_, o ¢(n).

Proof: We first study the case where 7r?(n) = lﬂg:—‘w for a fixed ¢. Con-

sider P()(n,r(n)), the probability that G(n,r(n)) has at least one order-1
component. That is, P()(n, r(n)) is the probability that G(n,r(n)) has at
least one node which does not include any other node in its range. Then

PW(n,r(n)) > Z P({i is the only isolated node in G(n,r(n))})

> Z <P({z is an isolated node in G(n,r(n))})
_ ZP({Z and j are isolated nodes in G(n, r(n))}))
i
> Z P({i is isolated in G(n,r(n))})
- Z Z P({i and j are isolated in G(n,r(n))}).(1.8)
i=1 j#i

Neglecting edge effects, we get
P({iis isolated in G(n,7(n))}) ~ (1 —ari(n))"},
P({i and j isolated in G(n,r(n))}) ~ (47r%(n) — 7r(n))(1 — Zﬂ'rz(n))"_2
+ (1 —4nr?(n))(1 — 277%(n))* "2 (1.9)

The first term on the RHS above takes into account the case where j is at
a distance between r(n) and 2r(n) from ¢. Substituting (1.9) in (1.8), we
get

PWB(n r(n)) > n(l—ar(n)* ' —n(n—1) (37rr2(n)(1 - %Wﬂ(n))n—?

F(1- 271'7‘2(71))"_2).

Using Lemmas 2.1 and 2.2, we get that for 7r?(n) = lﬂgg—“, and for any
fixed § < 1 and € > 0,

P(l)(m r(n)) > 0e7° —n(n—1) (371'7“2(71)@_%("_2)”2(”) + 6—2(n—2)7rr2(n))

> fe¢ — (14 €)e™ %,
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for all n > N(e,0,¢). Since PM)(n,7(n)) < Pay(n,r(n)), we have
Pa(n,r(n)) > 0™ — (1 + €)e™ 2, (1.10)

for all n > N (e, 0, ¢). Now, consider the case where ¢ is a function ¢(n) with
limy, .o ¢(n) = €. Then, for any € > 0, ¢(n) < ¢+ ¢ for all n > N'(€). Also,
the probability of disconnectedness is monotone decreasing in c. Hence

Py(n,r(n)) > 0=+ — (1 4 ¢)e=2(7+9),
for n > max{N(e, 0, ¢+ ¢), N'(¢)}. Taking limits
liminf Py(n,r(n)) > ge—(Fte) _ (1+ 6)6—2(5+e).

Since this holds for all € > 0 and 8 < 1, the result follows. a

Corollary 2.1 Graph G(n,r(n)) is asymptotically disconnected with posi-
tive probability if mr?(n) = w and limnsup e(n) < 4oo.

3 Sufficient Condition on r(n) for Connectivity

In order to derive a lower bound on r(n) so as to ensure asymptotic con-
nectivity in G(n,r(n)), we make use of some results from continuum per-
colation (Meester and Roy (1996)). In percolation theory, nodes are as-
sumed to be distributed with Poisson intensity A in 2 (results are in
fact available for more general cases, see Meester and Roy (1996)). As in
G(n,r(n)), two nodes are connected to each other if the distance between
them is less than r(A). Let GFOIS500() r())) denote the resultant (infinite)
graph. Also, let gi(A,7())) be the probability that the node at the ori-
gin is a part of an order-k component. Of course for this to make sense,
the node distribution process is conditioned on the origin having a node.
Then, (1 =372, ax(X, 7(A))) =: g (A, 7(X)) gives the probability that the
origin is connected to an infinite-order component. It can be shown that
almost surely QPOISSOH(A,T()\)) has at most one infinite-order component
for each A > 0 (Theorem 6.3 of Meester and Roy (1996)). Furthermore, the
following is true (Propositions 6.4-6.6 of Meester and Roy (1996))

o0

: 1 B
Jim m;qk(/\,r()\)) =1 (1.11)

Hence, as A — 0o, almost surely the origin in GFOISSO (X r(X)) lies in either
an infinite-order component or an order-1 component (i.e., it is isolated).

Now, our original problem concerning a fixed number of nodes n in the unit-
area disc D can be approximated by regarding that process as the restric-
tion to D of the Poisson process on 2 with A = n. Let the graph obtained
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by restricting gPOiSSOH(n, r(n)) to D be denoted by ggOisson(n, r(n)). Then,
by the above observation, the probability that gEOiSSOH(n, r(n)) is discon-
nected, denoted by PdPOiSSOH(n,r(n)), is asymptotically the same as the
probability that it has at least one isolated node, denoted by pPoisson;(1)
(n,r(n)). Although ggOISSOH(n, r(n)) has a Poisson(n) number of nodes in
D, the difference between gEOiSSOH(n, r(n)) and G(n,r(n)) is negligible for
large n. This is made precise below.

Lemma 3.1 If 7r?(n) = W, then

lim sup PPOiSSOH;(l)(n,r(n)) <e”° (1.12)

n— oo
where ¢ = limy, o ¢(n).

Proof: Note that since e‘"’f—f is the probability that gEOiSSOH(n, r(n)) has
j nodes; and defining a graph with 0 nodes to be connected, we have

. = j
PPOISSOH;(l)(n’ r(n)) = ZP(l)(j’ r(n))e—nz_'. (1.13)
=1 '

Let E1(j,7(n)) denote the expected number of order-1 components in G(j,
r(n)). Then

PG r(n)) < El(j,r(n))
= E[Z I(i is isolated in G(j, r(n)))]
= jP({jis isola‘Fed in G(j,r(n))})
j(l _ 71_7,2(”))]—1. (1.14)

i

Substituting (1.14) in (1.13), we get

. 0 . J
PPOISSOH;(l)(n’ r(n)) < Zj(l _ 77’2(71))}_16_”7;—'
ji=1 ’
= n Z(l — Wrz(n))]e_”ﬁ
j=0
= pe () (1.15)
from which the result follows. O

The following must be a known fact though we are not aware of any refer-
ence for it.
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Lemma 3.2 For all e > 0 and sufficiently large n
Ze_"n,—>(§—e). (1.16)

We are now ready to give a sufficient condition on r(n) for asymptotic
connectivity in G(n,r(n)).

Theorem 3.1 If 7r?(n) = log"ni(") and lim, .o ¢(n) = ¢, then

limsup Py(n,r(n)) < 4e™°. (1.17)

n—oo

Proof: By (1.11) and the observation made thereafter, we get that, for any
€ > 0 and for all sufficiently large n,

P})Oisson(n, 7’(77,)) < (1 + €)PPOiSSOH?(1)(n, r(n)) (1.18)
Note that
. °° j
Pdesson(n, r(n)) = Z Py(j,r(n))e" 7;_' (1.19)
j=1 '

For a fixed range r = r(n), we have
Pi(k,r) < P({node k is isolated in G(k,r)}) + Pa(k — 1, 7).

which after recursion gives, that for 0 < j < n,

Pyi(n,r(n)) < E P({node k is isolated in G(k,7(n))}) + Pa(j, 7(n))
k=j+1

Z (1 —7ri(n))* =1 + Py(j, r(n))
k=j+1

(A= ar(n))
= 7r2(n)

IN

+ Py(4,7(n)). (1.20)

Substituting (1.20) in (1.19), we get

n : n—1 . .
Poisson - (1- mr? (n))]_l -
P, (n,r(n)) > Pin, r(n)); e 7 — ; T(n)e j—'
> P L R 1.21
> Py(n, 7’(”))(5 —€)— “ari(n) (1.21)

where we have used Lemma 3.2. Using (1.18), we get

—nar?(n)

Poisson;(1) €

Pi(n,r(n)) < 2(1+4¢) | P (n,r(n))+ (1.22)

wr2(n)
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For the given mr?(n) = M, from Lemma 3.1, we get that, for any

fixed € > 0, the following holds for all sufficiently large n

—c(n)
P <91+ 4 —e(n) . ¢ 7
(7 () < 21440 [0 4 o
Thus, since € > 0 is arbitrary,
limsup Py(n,r(n)) < 2e~°. (1.23)

n—oo

The following is an obvious consequence of Theorem 3.1.

Corollary 3.1 Graph G(n,r(n)) is asymptotically connected with proba-
bility one for wr?(n) = W if e(n) — +o0.

Combining Corollaries 2.1 and 3.1, we get the main result of the paper.

Theorem 3.2 Graph G(n,r(n)), with 7ri(n) = log”ni(”) is connected
with probability one as n — oo if and only if ¢(n) — +o0.

4 Concluding Remarks

We have derived the critical range of nodes placed randomly in a disc of
unit area, for the resulting network to be connected with probability one as
the number of nodes tends to infinity (cf. Theorem 3.2). One can consider
the following extensions of the problem discussed in this paper:

e Our lower and upper bounds on Pg(n,r(n)) are not tight. A more
refined argument may lead to bounds which hold for all n. In par-
ticular, we believe that for 77%(n) = B2 Py p(n)) — 1 if
e(n) — —o0.

e Consider the following generalization of the problem: Even if a node
has another node in its range, it can communicate with that node with
probability p(n),0 < p(n) < 1. The quantity p(n) can be regarded
as the reliability of a link, and is tantamount to Bernoulli deletion of
edges in G(n,r(n)). Our conjecture is that Theorem 3.2 is true with
7r?(n) replaced by mr?(n)p(n). This conjecture holds for at least
two special cases: 7r?(n) = 4 (i.e., range of each node includes D)
and p(n) arbitrary in [0, 1] (Theorem VIIL.3 in Bollobds (1985)), and
r(n) arbitrary and p(n) = 1 (cf. Theorem 3.2). As in the proof of
Theorem 3.1, continuum percolation theory results can be used to
obtain sufficient conditions on wr?(n)p(n). Clearly, Theorem 2.1 still
holds. However, stronger necessary conditions need to be worked out.
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e A much harder problem to analyze is when nodes are not placed
independently in the disc D. For example, nodes may be placed in
clusters, with a specified probability distribution on the size of a
cluster.
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r(n)

(i) (i)

FIGURE 1. Two cases for evaluating P({n is isolated in G(n, r(n)}).

1 Appendix

Here we give the complete proofs of the theorems given in the main body
of the paper, taking the edge effects into account.

Proof of Theorem 2.1:

As before, we first study the case where 7r?(n) = lﬂg:—"'c for a fixed ¢. Con-
sider P()(n, r(n)), the probability that G(n,r(n)) has at least one order-1
component. Then, as argued in (1.8), we have

P(l)(n, r(n)) > ZP({Z is isolated in G(n,r(n))})

i=1
n
- ZZP({Z and j are isolated in G(n,r(n))}). (.24)
i=1 j#i
Now, let us consider each sum in (.24) separately. For this purpose, define
the notation

N(l)(g) ;= {i€G: iisan isolated node in G},
DO

1
z €D ol < 7= = s,

oD = D -D°. (.25)
Then, as illustrated in Figure 1, we need to consider two cases to evaluate
the probability that node n is isolated, namely: When z,, € D° (recall that

zp, is the position of node n in D), and when z,, € dD. To obtain a lower
bound, we consider only the first case, i.e.,

Z P({i is isolated in G(n,r(n))}) = nP({n is isolated in G(n,r(n)})

i=1
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> nP({zn €Dy, n € N(G(n,r(n)))})
—r(n))*(1 — ari(n))" L.

= nn(
Using Lemma 2.2, we see that for any # < 1, when n is sufficiently large,

Z P({i is isolated in G(n,r(n)}) > fe™°. (.26)

i=1

Next, consider the second sum in (.24), which in the notation of (.25) can
be written as

>N P{i, e NV(@G(n,r(n)})

i=1 j#i
> (P({i,j € NO(G(n, r(n))), and z; or z; € ID})
i=1 j#i

+ P({i,j € NOG(n,r(n)), and z;,z; € D"}))

IA

n(n — 1)(2P({n, n—1¢ NY(G(n, r(n))), and z, € 8D})
+ P({n,n—1€ NO(G(n, r(n))), and zp, zn_; € D"})). (.27)

The first term can be written as

2n(n —1)P({n,n —1 € ND(G(n,r(n))), and z, € dD})
= 2n(n—1)-P({n € N (G(n,r(n))), and z, € dD}) -
P({n—1€ N (G(n,r(n)))|n € ND(G(n,r(n))),z, € dD}). (.28)

Now nP({n € NU)(G(n,r(n))), and z,, € ID}) can be evaluated using Fig-
ure 2, to give
(-

<7r — cos™! r(y—n)) r2(n) + 5(y)>n_1 2m( = =)y, (29)

r

—~

n)
nP({n € NO(G(n,r(n))), and z, € D}) < n

= o

where

E(y)

IN

N

3

—~~

3

S—
TN TN

= 2y/ar?(n). (.30)
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() (ii)

FIGURE 2. Evaluating nP({n € N (G(n,r(n))), and z, € D}): (i) Shaded
area gives a lower bound on the area which nodes 1,2,...,7» — 1 should not
lie in for node n to be isolated, when n is at a distance of y from the boundary
of D, and (ii) Area within the rectangle is an upper bound on the error £(y) due
to approximation of the portion of the disc D within the range of node n by its
tangent.

Substituting (.30) in (.29), and changing the variable to § = cos™! r&),

we get

nP({n € NO(G(n,r(n))), and z,, € dD})

us
2

< n (1 — (7= 0)r*(n) + Qﬁr?’(n))n_l 2v/wr(n) sin 0d0

o

)eje—e_je
27

IN

n - 2/7r(n) / = (n=1)((T=8)r?(n)=2/7r" (n) 40
0

2/mnr(n)e (D) =2/ ()

e("_l)%r2(")(n —1)r?(n)+1
=D+l L3

For the given mr?(n) = lﬂgg—“, we thus have

nP({n € NV(G(n,r(n))), and z, € dD})
4rne=(n=1(Fr*(n)=2v/7r’(n))
(n — 1)y/7r(n)
4(14 e)me™3
—_—t .32
Viogn (:32)
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il
\/

(@ (b)
FIGURE 3. Evaluatmg P({ ,(n—1) € N(l)(g(n,r(n))), and zn,z,—1 € D}).
Note that A% = r2 ( )

for any € > 0 and sufficiently large n. The remaining factor in (.28) can be
evaluated as

2(n — 1)P({n—1 € NV(G(n, r(n)))‘n e NO(G(n, r(n))), z, € 8D})
= 2(n-1) (P({n — 1€ NY(G(n,r(n))), 2n_1 € 3'])‘
n € NY(G(n,r(n)), 2, € 9D}) + P({n — 1 € N(G(n, r(n))),

ne NVO(G(n,r(n))), 2, € 37)}))

Tn-1€ D°

IN

2(n—1) (2\/_7’( )(1 — 7r?(n) +2£(0))" 2
+ (- + s(o))H), (33)

where £(-) is defined in (.30). For the given 772(n) = %82%¢ we thus have

2(n—1)P({n— 1€ NVY(G(n, r(n)))‘n e NO(G(n,r(n))), z, € 8D})

<4(l+¢) loi”, (.34)

for any ¢ > 0 and all sufficiently large n. Substituting (.32) and (.34) in
(.28), we get

2n(n —1)P({n,n —1 € NV (G(n,r(n))), and z, € dD})

< 4(1 4 e)me™ 2 A1+ 6) [logn
logn n
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16(1 + €¢')me™ 3
Vvn ’

for any ¢’ > 0 and all sufficiently large n. The second term in (.27) is (as
illustrated in Figure 3),

<

(.35)

n(n—1)P({n,(n—1) € N(l)(g(n,r(n))), and z,,%,-1 € D°})

< nn—-1)P{z, €D°})- [P({r(n) < |ep — &noa] < 20(n), |2 — 5]
>r(n),1<i<n—2;j=n,n— 1}z, € D°)+ P({2r(n) < |z,
—Zpal |ei— x| >r(n),1<i<n-—-2;j=n,n—1}z, EDO)]

< nln = (= = r(w)*-

2r(n) , n_?
1 — 272 2.y Y .
/ < ar‘(n) + =« (r (n 1 )) 2mydy—+
r(n)
+ (1—ar*(n)) (1 - 271'7'2(71))”_2]
_2r(n) ,
< nn-—1) / e_("_z)”(rz(")’LyT)wady + (1 =277 (n))"* 2
Lr(n)
[ —(n—2)rr? 4 _(n=2)my? r(n) —(n—2)27r2

< n(n—1) e _—_¢ 1 + e~ (n=2)27r%(n)

- L n—2 2r(n)

< n(n _ 1) E i 26—(71—2)%7”“2(71) + 6—(n—2)27rr2(n):|

S n(n _ 1)(1 + 6//)6—(n—2)27rr2(n)

< (1t (.36)

for any ¢ > 0, the given wr?(n) = lggg—-l'c and all sufficiently large n.
Substituting (.35) and (.36) in (.27), we get

Z Z P({i and j are isolated in G(n,r(n))})

i=1 j#i

167(1+€”)
vn

(14 €)e™2. (.37)

eT 7+ (1+ e')e_Qc

IN

for any ¢ > 0 and all sufficiently large n. Substituting (.26) and (.37) in
(.24), we get
P(l)(n,r(n)) > 0™ — (14 €)e™
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for all n > N(e,0,¢). Since PM)(n,7(n)) < Pa(n,r(n)), we have
Pa(n,r(n)) > 0™ — (14 €)™, (.38)
for all n > N (e, 0, ¢). Now, consider the case where ¢ is a function ¢(n) with
limy, .o ¢(n) = €. Then, for any € > 0, ¢(n) < ¢+ ¢ for all n > N'(€). Also,
the probability of disconnectedness is monotone decreasing in c¢. Hence
Py(n,r(n)) > ge—(te) (1+ 6)6_2(E+6).
for n > max{N (e, #,c+¢), N'(¢)}. Taking limits
lirlrriiol.}de(n, r(n)) > ge—(ote) _ (1+ 6)6_2(5+6).

Since this holds for all € > 0 and 8 < 1, the result follows. a

Proof of Lemma 3.1:
As before,

. > J
pPotsson( i r(n)) = 3" PO, r(n))e_”?—'. (.39)
i=1 '
Let E1(j, (n)) denote the expected number of order-1 components in G(j, r(n)).
Then
PU(j,r(n)) < Ei(j,r(n))
J

E[>_I(i is isolated in G(j,7(n)))]

i=1

= jP({j is isolated in G(j,r(n))}). (.40)

Using the definitions of N()(G), D? and 9D given in (.25), we can write
P({j is isolated in G(j,7(n))})
= P({j € NV(G(j,r(n))) and z; € D°})
+ P({j € N(G(j,(n))) and z; € ID}). (:41)
iFrom (.31) and (.41) , we get
PO, r(n)) < jP({jis isolated in G(j,r(n))})
1 2 i—1
< ./ - = I 2 J y ] .
< gm <ﬁ r(n)) (1—ar*(n))" "+ 2¢/7jr(n)
(= Da(r(nyy €7D — Dré(n) +1
((G=Dr*(n)" +1

, o (42)
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where fi(r) = ar? — 2y/7r3, and fo(r) = wr?/2. From (.39) and (.42), we
get

o . ni
PPmsson(l) Z ({7 is isolated in G(j,7(n))})e 7T (.43)

IN

1!

. :
Z] 1 —7ar?(n))y~? el T + 2\/57*(71)6_"2
j=1 ’

e~ =D)(f1(r(n))=f2(r(n))) e—(G—1)f1(r(n)) Y nd

G-02m) (G- nemy)C A
Je " T + 2y/7r(n)ne

+ 2/@r(n) Zj

IN
=
[
-
|
5
3
=
=

0
2 © i = =1D)(f1(r(n))=fa(r(n)))yd

j—1 J!

Qﬁi i j41eU=Dh(rm)pi
i—1ji—-1 G+

IN

ne="T ) {9\ fEr(n)ne=" + %Qen(mﬂ))—n(r(n)) .
r

ne—U1(r(m)=t2(r(m)) _,  24/T 2 3e2f1(r(n)) —I1(r(n) _p,
3 + 3 e
r3(n) n
ne="T0) 1 9 frr(n)ne" 4 2V == D)= Far ()
r(n)
.ew 12\/_ e~ (r=2)f1(r(n)), nfl( ) (.44)

nr?’(n)

where we have used e=% < 1 — z + L-. For the given mr?(n) = lognte(n)

n

IN

we thus have

i —c(n)
PPOlsson;(l)( ( )) < e_c(n) +2\/W _n 47T 1 —}—e)

logn + ¢(n)

127%(1 + €) e
n(logn + ¢(n))3
for any € > 0 and all sufficiently large n. The result follows. a

(.45)

]

Proof of Lemma 3.2:
By Chebyshev’s inequality, we have that for any «

E e_”,— < —.
_ jt = ne
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Let o = %—}—e for some € > 0, then

(e}

bl

J 1
> et <
j=n+4no41 J: n
Also,
- = €
j=n+1 ']' ji=1 (n—i—j)'
7 _, nnTitl 1
= e .
n—j—1)! J
=t (i) I (1-())
1=0
< &, it
€ -
I =t (n—j—1)
1
1<5n
j<n= 2
I (1- (%))
1=0
Now,
1 1
1?12}( j < 1£m<1X J
<j<ne 2 j<n« 2
I (1- ()7 1= 3 (8)
2=0 =1
_ 1
= —
2
-2 ()
=1
_ 1
1— ne n"+61nz2n°‘+1
< 1

1— 14¢" nae_%
3

Xviil

(.46)

(.47)

(.48)

for the chosen a = %—{—6, any ¢’ > 0 and all sufficiently large n. Substituting

(.48) in (.47), we get

n¥n® -~ < i _, nnTiTt ) 2(14—6/)77,36_%
E ST € —_a_1 ) + 3
j=n+1 J: j=1 (n— )!

IN
S
@
|
S
|:
o
TN
—
+
[\]
—~~
—
+
™
Q
=
by
|
vl
~——

)

(.49)
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;From (.46), (.49) and the fact that " e™"n’ /j! = 1, we get that

j=0
zn:e-”".—f > 1_6%_”1_2; 1
FETE 1414 20En 2
> l— e’
Z 3 ;
for any € < + &, €/ > 0 and all sufficiently large n. a

Proof of Theorem 3.1:
By (1.11) and the observation made thereafter, we get that, for any € > 0
and for all sufficiently large n,

PfOisson(n, r(n)) < (1 + E)PPOiSSOH;(l)(n’ r(n)) (,50)
Note that )
. _.n

Pdesson n r n) Zpd jr 7 (.51)

For a fixed range r = r(n), we have
Pi(k,r) < P({node k is isolated in G(k,r)}) + Pa(k — 1, 7).

which after recursion gives, that for 0 < j < n

n

Pi(n,r(n)) < Z P({node k is isolated in G(k,r(n))})
k=j+1
+ Pal (). (52)

Substituting (.52) in (.51), we get

PfOiSSOH(n, r(n))

> Pi(n,r(n)d e —

ji=1
nd

n—1 n
- Z Z P({k is isolated in G(k,r(n))})e " —
i=1lk=j+1

J!

k-
> Pa(n, T’("))(% —€) EP ({k is isolated in G(k,r(n))} E b
k=2 j=1
> Py(n, T(n))(% —€)— ZP({k is isolated in G(k, r(n))})]{;e‘”ﬁ,

k=2
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n

where we have used Lemma 3.2 and the fact that e~ ’;c—},c increases with k,

for 1 < k < n. Using (.50), we get

Pay(n,r(n)) < 2(1+ 6¢) [pPoiSSOH%@)(n, r(n))

3 k
+ > kP({k is isolated in g(k’r(n))})e_nz_! .
k=1

For the given mr?(n) = %ﬂ, and from Lemma 3.1, and (.43) we get
that for any ¢ > 0,

Pa(n,r(n)) < 2(1 +66)2- (14 ")),
holds for all sufficiently large n. Thus,

limsup Py(n, r(n)) < 4(1 +€”)e™".

n—o0

Since €’ can be made arbitrarily small, the result follows. a
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