
J. Parallel Distrib. Comput. 67 (2007) 302–317
www.elsevier.com/locate/jpdc

Energy optimal data propagation in wireless sensor networks�

Olivier Powell∗, Pierre Leone, José Rolim
Department of Computer Science, Centre Universitaire d’Informatique, University of Geneva, 24 rue du General Dufour 1205, Geneva, Switzerland

Received 30 September 2005; received in revised form 29 September 2006; accepted 28 October 2006

Abstract

We propose an algorithm to compute the optimal parameters of a probabilistic data propagation algorithm for wireless sensor networks
(WSN). The probabilistic data propagation algorithm we consider was introduced in previous work, and it is known that this algorithm, when
used with adequate parameters, balances the energy consumption and increases the lifespan of the WSN. However, we show that in the
general case achieving energy balance may not be possible. We propose a centralized algorithm to compute the optimal parameters of the
probabilistic data propagation algorithm, and prove that these parameters maximize the lifespan of the network even when it is not possible
to achieve energy balance. Compared to previous work, our contribution is the following: (a) we give a formal definition of an optimal data
propagation algorithm: an algorithm maximizing the lifespan of the network. (b) We find a simple necessary and sufficient condition for the
data propagation algorithm to be optimal. (c) We constructively prove that there exists a choice of parameters optimizing the probabilistic data
propagation algorithm. (d) We provide a centralized algorithm to compute these optimal parameters, thus enabling their use in a WSN. (e)
We extend previous work by considering the energy consumption per sensor, instead of the consumption per slice, and propose a spreading
technique to balance the energy among sensors of a same slice. The technique is numerically validated by simulating a WSN accomplishing a
data monitoring task and propagating data using the probabilistic data propagation algorithm with optimal parameters.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Wireless sensor networks; Ad-hoc networks; Energy-balancing; Data propagation algorithm; Lifespan maximization

1. Introduction

Wireless sensor networks (WSN) are composed of sensor
nodes which are small electronic devices equipped with com-
puting resources (CPU), environment sensing capabilities and
wireless links used in a multi-hop fashion to build a network
structure [RAdS+00, WLLP01, SL05]. Sensor nodes usually
have restricted resources and this constrains the design of
distributed algorithms running on top of sensor networks. In
this paper we specifically address the constraint of energy
consumption, motivated by the fact that sensors are usually
battery powered. We consider one of the most common scenar-
ios where sensors have to report sensed events to a particular
node of the network, called the sink, and we analyze the

� Research partially funded by Swiss SER Contract No. 05.0030 and the
Swiss National Science Foundation (SNF).
∗ Corresponding author. Fax: +4122 3797780.

E-mail addresses: olivier.powell@cui.unige.ch (O. Powell),
pierre.leone@cui.unige.ch (P. Leone), jose.rolim@cui.unige.ch (J. Rolim).

0743-7315/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2006.10.007

lifespan of a distributed probabilistic data propagation algo-
rithm. Since sensors propagate data to the sink in a multi-hop
fashion [BN04, AKK05, AY05], evenly balancing the energy
consumed among the entire set of sensors increases the lifespan
of the network. The probabilistic data propagation algorithm
we consider for balancing the energy was first introduced in
[ENR04]. It allows each sensor responsible for propagating
data to choose between sending it to a next hop sensor, a pro-
cedure which requires a relatively small amount of energy, and
sending the data directly to the sink, a procedure which re-
quires a long hop and hence a relatively large amount of energy.
The algorithm we present computes optimal parameters for
the probabilistic data propagation algorithm. These parameters
control the ratio of data sent directly to the sink and the ratio
sent to a next hop neighbour, and depend on the network topol-
ogy and the distribution of sensed events. The probabilistic
data propagation algorithm we consider has already been used
in [ENR04, ENR06, LNR05] and the main contributions of this
paper are to formally prove the connection between energy bal-
ancing and lifespan maximization, define the optimality of data

http://www.elsevier.com/locate/jpdc
mailto:olivier.powell@cui.unige.ch
mailto:pierre.leone@cui.unige.ch
mailto:jose.rolim@cui.unige.ch

O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317 303

Fig. 1. Network division into slices.

propagation algorithms as maximizing the lifespan of the net-
work and prove that an optimal probabilistic data propagation
algorithm always exists. Moreover, we provide an algorithm
computing off-line the probability of sending data directly to
the sink ensuring the optimality of the probabilistic data prop-
agation algorithm in terms of lifespan of the network.

A typical application is to use the centralized algorithm to
compute at the sink level the optimal parameters and to broad-
cast them in the WSN, thus letting each node fulfill its role in
the distributed optimal data propagation algorithm. The input
to the algorithm running at the sink level is a description of
the network in terms of density of sensors per region and rel-
ative frequencies of sensed events per region. These could be
estimated statistically or observed dynamically during run-time
of the WSN, as proposed in [LNR05]. The formal analysis of
the distributed probabilistic propagation algorithm is based on
modelling the network as a succession of slices and balanc-
ing the energy consumed between the slices. The division of a
WSN into slices is illustrated in Fig. 1. The energy balancing
among sensors belonging to the same slice is not considered
by the algorithm. Actually, numerical experiments discussed in
this paper show that the energy is usually not balanced among
those sensors and a spreading technique is introduced and nu-
merically validated to ensure energy balancing among all sen-
sors composing the network.

The paper is organized as follows. In Section 2, we give a
brief survey of related work. In Section 3, we introduce an ap-
propriate mathematical model of a WSN, together with nota-
tional conventions and some preliminary technical results. Sec-
tion 4 presents the off-line centralized algorithm computing the
parameters needed to adjust the distributed probabilistic data
propagation algorithm. Section 5 is a formal proof of the op-
timality of the probabilistic data propagation algorithm when
using the parameters computed by the centralized algorithm.
Section 6 presents numerical validations of the data propaga-
tion algorithm as well as a simple spreading technique to over-
come the unbalanced energy among sensors of the same slice,
an issue which was not taken into account by the mathematical
model of Section 3. Finally, we draw conclusions in Section 7.

2. Related work

Minimizing the energy consumption has been considered
under various approaches: multi-hop transmission techniques
[IGE00, CNS02], clustering techniques [HCB00], alternating
power saving modes [STGS02], varying transmission levels
with route selection [CT00], energy replenishment [LSS05],
multi-path routing [HGWC02], combination of sleep/awake
and probabilistic forwarding techniques [BCN05] are among
existing strategies. However, these strategies minimize the en-
ergy consumption without taking into account the overuse of
some bottleneck regions of the network. These regions will
prematurely run out of energy and eventually disconnect the
multi-hop network, even if most of the sensors still have enough
energy to keep running. In Section 2.1, we give a survey of
energy balancing algorithms for WSNs, not all of them being
data gathering algorithms. In Section 2.2, we present alterna-
tive approaches to energy aware data gathering in WSNs which
differ from the approach used in this paper, either because the
lifetime metric for the network is different, not based on en-
ergy balancing, or because a radically different approach, e.g.
by allowing the sink to be mobile, is used.

2.1. Maximizing the lifetime of sensor networks by balancing
energy consumption among sensors

The idea of balancing energy consumption in the network
can be traced back to [SP03, YP03, GLW03]. To our knowl-
edge, the first solution to the premature energy depletion of
sensors close to the sink was proposed in [GLW03]. This
problem has since then been investigated in a setting similar
to ours, where the network is divided into slices and energy
consumption studied at the slice level, in a series of papers
[ENR04, ENR06, LNR05, JLPR06, SD05, OS06]. Sichitiu
and Dutta [SD05] consider varying battery levels between
slices, called rings, while Olariu and Stojmenovic [OS06] al-
low varying emission ranges between slices, called coronas;
however, in both cases the data propagation is exclusively
hop-by-hop. On the other hand, in order to avoid or mini-
mize the premature depletion of sensors close to the sink,
the authors in [ENR04, ENR06, LNR05, JLPR06] use hop-
by-hop transmission combined with ejections, first introduced
in [ENR04].

In [SP03] the authors consider the particular process of sort-
ing in wireless networks and show (among other things) that
sorting can be done in O(n log(n)) time and energy. During the
sorting time period, no node is awake for more than O(log(n))

time steps. Notice that sorting can actually be done in O(n)

time and energy but no algorithm balancing the energy with
this complexity is known.

In [YP03] the authors consider the problem of task allocation
by formulating an associated integer linear problem. The tasks
have to be allocated periodically to the nodes. Besides the ILP
formulation they propose a heuristic to solve the problem and
show experimentally that it is efficient on small scale problems.
The total energy consumption is the cumulative consumption

304 O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317

due to computations and transmissions which are assumed to
occur without collisions (for instance if the network is synchro-
nized and nodes transmit according to a time division (TDMA)
scheme). The energy consumption due to computations may be
lowered by reducing the running frequency. This approach is
called dynamic voltage scaling (DVS) and takes advantage of
the fact that energy consumption of an electronic component
is proportional to f V 2 with f the frequency and V the voltage
power supply (the energy consumption per cycle is proportional
to V 2). The heuristic is based on three phases. In the first phase
(1) the voltage power supply is assumed maximal and the tasks
are grouped into clusters with the objective of minimizing the
overall execution time. In the second phase (2) the clusters are
assigned to nodes, so that the energy dissipation is proportional
to the remaining energy. In the third phase (3) the DVS device
is used to maximize the lifetime. It is experimentally shown
that results obtained with this heuristic improve by 125–250%
the solution of the ILP formulation without DVS. We empha-
size that these works solve the energy-balancing problem with
centralized computations.

In [GLW03] the problem considered is data gathering with
a single sink while balancing the energy between sensors. This
work is extended by the same authors in [LXG05] in which
they consider a division of the network into slices, see Fig. 1,
composed of sensors at nearly equal distance to the sink and
able to send the data to sensors belonging to the next slice
(towards the sink) or directly to the sink. They assume that the
energy used to send data directly to the sink is proportional
to the square of the distance. In order to balance the energy
between sensors, they divide time into two different phases:
during the first one sensors send data to the sink and during
the other one data is sent to the next slice, the ratio between
the two periods of time depends on the slice and needs to be
found in order to balance energy. In their work the optimal
ratio, ensuring the balance of energy consumption, is found by
simulation of the process.

In [ENR04] the problem of finding an energy-balanced so-
lution to data propagation in WSNs using a probabilistic algo-
rithm was considered for the first time. The lifespan of the net-
work is maximized by ensuring that the energy consumption in
each slice is the same. Sensors are assumed to be randomly dis-
tributed with uniform distribution in a circular region or, more
generally, the sector of a disk. Data have to be propagated by
the WSN towards a sink located at the centre of the disk, and
it is shown that energy balance can be achieved if a recurrence
relation between the probabilities that a slice ejects a message
to the sink is satisfied.

In [LNR05], a more general case is studied: events may not
happen according to a uniform distribution, and the sensors
may not be distributed uniformly over the area to be moni-
tored. Moreover, it is assumed that the distribution of events is
unknown. A solution to the energy-balancing problem is then
computed on-line by a centralized algorithm while the distri-
bution is inferred from observations of the events. The idea is
then to broadcast periodically the updated parameters, and it
is shown that the algorithm converges to the energy-balanced
solution when this solution exists.

Fig. 2. Line model of the sliced sensor network.

We point out that neither [ENR04, ENR06] nor [LNR05]
consider the case where an energy-balanced solution does not
exist. Results obtained in the present paper show that an energy-
balanced solution does not always exist and, in such a case,
the algorithms of [ENR04, ENR06, LNR05] are useless. Our
algorithm is a generalization of these two approaches since
it finds the same optimal and energy-balanced solution when
it exists, and finds an optimal non-energy-balanced solution
otherwise.

In [JLPR06], a distributed algorithm is proposed. Each sen-
sor is allowed to transmit data directly to the sink or to neigh-
bour nodes. The algorithm is inspired by the gradient based
routing family of protocols from [SS01] and uses a local heuris-
tic to balance energy consumption between neighbour nodes.
It is shown experimentally that the algorithm converges to an
energy-balanced solution in the case of uniform distribution of
events and sensors. An analytical proof of the convergence of
the algorithm is also given using Markov chain theory in the
restricted line model which is illustrated in Fig. 2.

2.2. Other strategies to maximize the lifetime of sensor
networks

The strategies described in Section 2.1 are closely related to
the strategy for maximizing the lifetime of WSNs proposed in
this paper. However, different approaches for maximizing the
lifetime of a WSN accomplishing a data gathering task exist
and are summarized in this section. We focus on the main ideas
and do not try to track every contribution from an historical
point of view. Although we do not claim to be exhaustive, we
try to cover the contributions which are relevant to the results
presented in this paper. Moreover, we do not incorporate con-
tributions which are mainly incremental in order to emphasize
the fundamental ideas. The interested reader is referred to sur-
vey books or articles such as [Bou05, AKK05, AY05, BN04].

The LEACH protocol (low energy adaptive clustering hier-
archy) is presented in [HCB02] as a protocol to achieve good
performance in terms of sensor lifetime. The protocol is con-
strained to (a) run on an easily deployed sensor network, (b)
increase the lifetime of the network, (c) be respectful of the
latency. The protocol is based on self-organization of the net-
work in clusters with cluster head election. In order to consume
energy evenly the cluster head changes through time and dis-
tributed signal processing is used in order to minimize the data
traffic.

In [OS06] the authors consider the data gathering problem
and the sliced network as introduced in the preceding section,
see Fig. 1. From the energy point of view, they consider the
total amount of energy needed to convey data from a source
node to the sink. They consider the problem of network design
and assume that sensor parameters can be set according to the
position of the sensor. More precisely they allow for the range

O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317 305

of emission to vary depending on the slice the sensor belongs
to. The sliced network thus constructed has slices of varying
sizes and the aim is to find the appropriate values for the ranges
of emission in order to maximize the lifetime of the network.
The assumptions on which the computations are based are (a)
each sensor is equally likely to be the source of data and (b)
each sensor in a given slice is equally likely to be required to
handle data from a previous sensor (the model is similar to the
one in Fig. 2).

With this model they prove that in order to minimize the total
energy spent on routing along a path, every slice must have the
same size, and point out that this result is not satisfactory since
uneven energy depletion is observed in this situation. Hence,
they specifically consider the problem of balancing the energy
among slices. However, it turns out that in the situation where
the power attenuation factor is 2, uneven energy depletion is
intrinsic to the system and cannot be avoided with this strategy.

As sensor networks are deployed in order to monitor an area,
one can make the lifetime of the network longer by avoiding
monitoring the entire region at all times. This leads to the con-
cept of �-lifetime which is the time duration during which at
least an � portion of the region is monitored by the WSN. Stated
in this way the problem to be solved is to schedule the sensors’
activity in order to maximize the lifetime while still satisfy-
ing the constraint on the size of the region to be monitored at
any time [ZH04, ZH05]. In [ZH04] the authors provide an up-
per bound of �-lifetime for large sensor networks. In [ZH05] a
centralized algorithm is proposed and numerically validated.

Another new metric of the network lifetime is the lifetime
per unit cost [CCZ05] which is the average network lifetime
divided by the number of sensors enabled. This measure is
based on the observation that the lifetime of networks increases
monotonically with the number of sensors involved in the net-
work. However, the lifetime per unit cost decreases for large
values of the total number of sensors after reaching a maximal
value. This shows that efficient network design would need to
take into consideration the tradeoff between the total number
of sensors and the desired lifetime. Moreover, a longer lifetime
is achieved by dividing sensors in small groups and switching
on only one in each group each time.

Classical optimization methods are relevant for lifetime max-
imization. In [GK05], it is assumed that sensors have to send
data periodically towards the sink and the following linear pro-
gram is to be solved in order to minimize the energy required
for each period of time:

minimize z (1)

subject to (2)
1

Ei

(∑
0� j �n

�ij f (d(i, j))+
∑

1� j �n

�ij

)
�z,

1� i�n, (3)∑
0� j �n

�ij −
∑

1� j �n

�ji = bi, 1� i�n, (4)

�ij �0, 1� i, j �n, (5)

where bi is the amount of data to be transmitted, n the num-
ber of sensors, �ij the fraction of data sent from node i to j, f
a function describing the energy consumption as a function of
the distance of emission and fR the energy consumption for
receiving data. The first constraint expresses the minimization
of the energy consumption and the second one is a flow preser-
vation constraint. A closed solution of this linear program is
exhibited for various particular topologies of the network. In
particular, they show that for the line model, see Fig. 2, the
routing strategy ensuring maximum lifetime consists only of
choosing between sending data directly to the next slice or di-
rectly to the sink, as is done in [ENR04, ENR06, LNR05] as
well as the present paper. Actually, we independently proved
this result in [JLPR06] using different technical tools.

The mobility of the sink [Luo06, LH05, LH06] is also an
alternative to increase the lifetime of a sensor network accom-
plishing a data gathering task. In [LH06] the authors consider
different approaches to apply mobility and suggest a theoret-
ical framework in which formal analysis can be done. Given
the flow of data the problem can be stated as a linear program.
However, it is proved in [Luo06] that the problem is NP-hard.
Hence, based on duality theory, approximation algorithms are
investigated in [LH06].

3. Model and notations

The model we study is the same as the one from [ENR04,
ENR06, LNR05, JLPR06] and resembles the models of [SD05,
OS06]. It is based on the division of a sensor network in slices.
To define slices, we first consider the unit disc graph built upon
the sensor network with a vertex for each sensor, including the
sink, and an edge between any pair of sensors which are at a
distance less than 1 from one another. The first slice, S1, is com-
posed of all the sensors located in the unit disc around the sink.
The kth slice Sk is defined to be the union of sensors located k
hops away from the sink, as illustrated on Fig. 1. When con-
sidering a slice Sk , we use the convention of calling Sk+1 the
previous slice to Sk , while Sk−1 is the next slice. By convention,
S1 is the first slice, and the letter N is used for the last slice SN ,
thus the slices range from S1 to SN . When a slice, for example
Si , needs to send a message to the sink, it can send it to the next
slice, Si−1. However, as already mentioned in the introduction,
to ensure energy balance we follow [ENR04, ENR06, LNR05,
JLPR06] and assume that a slice also has the option of sending
a message directly to the sink. This long hop is significantly
different from the hops which are used to send a message from
a slice to the next slice, since it implies a larger amount of en-
ergy consumption. Indeed, the energy consumption required to
send a message at distance d is usually taken to be d�, where
� is an attenuation factor depending on the environment with
typical values between 2 and 6. In this paper, we take � = 2
but the results are similar for other values of �. When a slice Si

sends a message to the next slice Si−1, we say that the message
is slid from Si , and when the message is sent directly to the
sink, we say it is ejected from Si . In our model, the amount of
energy consumed by Si to slide a message is arbitrarily chosen

306 O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317

Table 1
Summary of symbols

Symbol Units Interpretation

fi (messages/s) Sliding rate from Si to Si−1

ji (messages/s) Ejection rate from Si to the sink
pi Sliding probability
gi (messages/s) Rate of events detection for slice Si

d2
i (J/messages) Cost for ejecting a message from Si

bi (J) Energy initially available in slice Si

Pi (J/s) Power of slice Si

to be 1 J per message (J/message), and the energy required to
eject a message is d2

i (J/message), where di is a constant de-
pending on the network topology, proportional to the distance
between Si and the sink. Each time a slice detects an event, it
needs to report to the sink by sending a message. gi is the rate
of events detection in slice Si , the unit being messages per sec-
ond (message/s). bi is the total amount of energy available in
slice Si , the unit being Joules (J). Assuming that each sensor
has the same amount of energy available, bi is proportional to
the number of sensors in Si . fi is the rate of messages slid-
ing from Si to Si−1, the unit being (message/s). ji is the rate
of messages ejected from Si to the sink, the unit being (mes-
sage/s). Pi is the power of slice Si , it is the expected energy
consumption per slice, defined in J/s or Watts (W). Pi satisfies
the following equation: Pi := fi + jid

2
i (J/s). It was shown

in [ENR04, ENR06] that introducing a cost for receiving mes-
sages does not change results and is thus not relevant for en-
ergy balancing. However, it increases the complexity of equa-
tions and diminishes clarity, we therefore follow the common
convention of not including in our model the cost of receiving
a message. This is also justified in a setting where the energy
costs of waiting for a message, or listening, and receiving a
message are close. Notice that the following recurrence relation
holds:

fi + ji (message/s) = fi+1 + gi (message/s).

These are flow equations, which account for the fact that mes-
sages are propagated along the network slices, where each slice
is a source with input rate gi . We define pi to be the sliding
probability, with pi = fi/(fi + ji).

Definition. We say that the network is energy-balanced if the
power to battery ratio is a constant, i.e. if for 1� i�N it holds
that Pi/bi = P1/b1, and the lifespan of the network is defined
as min{bi/Pi}1� i �N(s).

That is, the lifespan of the network is determined by the time
until one of the slices depletes all its energy and the network
is energy-balanced if the total energy available in every slice is
consumed during the same time period, namely bi/Pi (s).

Table 1 lists the symbols used in this article, together with
their units and interpretation.

3.1. Preliminary result

Suppose Si ejects a message directly to the sink with prob-
ability �i . The mean energy consumption per message handled
in slice Si is equal to[

(1− �i)+ �id
2
i

]
(J/message).

Hence, the mean number of messages which can be handled
by slice Si before it runs out of energy is given by

bi

(1− �i)+ �id2
i

(message).

Among this total number of messages, a (1−�i) fraction reaches
slice Si−1 after having been slid from slice Si (the rest being
ejected directly to the sink). If the �i’s are chosen to ensure that
the following equality is satisfied for i, i − 1, . . . , 1:

(1− �i)
bi

(1− �i)+ �id2
i

(message)

= bi−1

(1− �i−1)+ �i−1d
2
i−1

(message) (6)

and if we assume that messages are only generated in slice Si ,
it results that the expected lifespan of slices Si, Si−1, . . . , S1 is
the same. More formally

Proposition. Suppose that messages are slid by Si towards
Si−1 with probability 1− �i and ejected with probability �i (for
1� i�N). Suppose that the rates of event detections {gi}Ni=k

satisfy gi = 0 if i �= k and gk > 0 for some 1�k�N and that
Eq. (6) is satisfied if 2� i�k. Then for every Si with 1� i�k,
the lifespan of Si is a constant equal to

bk/gk

(1− �k)+ �kd2
k

(s).

Relation (6) can be rewritten in the following useful form:

�i+1 = ((bi+1)/bi)
(
1− �i + �idi

2
)− 1

((bi+1)/bi)
(
1− �i + �idi

2
)+ di+1

2 − 1
. (7)

Setting �1 = 1 (which is natural since the first slice can only
send messages directly to the sink), we can directly compute
the �i’s satisfying the recurrence relation for fixed bi’s and di’s.

4. Computation of an optimal solution

We propose an algorithm to compute the sliding probabili-
ties pi which ensure that a probabilistic data propagation algo-
rithm is optimal in the sense that it maximizes the lifespan of
the network, as defined in Section 3. The input is a description
of the network and a statistical description of the data to be
propagated in the form of three sequences of the same lengths
{bi}1� i �N , {d2

i }1� i �N and {gi}1� i �N where the bi’s de-
scribe the energy available in each slice in Joules (J), the d2

i ’s
are the energy necessary to eject a message from slice Si to the

O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317 307

Phase 1

3

Phase 2

Slice Position

2

Phase 3

Po
w

er
 to

 B
at

te
ry

 R
at

io
 (

E
/b

)

Po
w

er
 to

 B
at

te
r y

 R
at

io
 (

E
/b

)

Po
w

er
 to

 B
at

te
ry

 R
at

io
 (

E
/b

)

13

Slice Position

2 1 3

Slice Position

2 1

Fig. 3. Intuitive idea of the algorithm.

sink (J/message) and the gi’s are the distribution of events gen-
erating data to be propagated in the network (message/s), as in
Section 3. The output is a sequence {pi}1� i �N representing
the parameters of the probabilistic data propagation algorithm:
in order to maximize the lifespan of the network, each slice Si

for 1� i�N should send data directly to the sink with proba-
bility 1− pi and slide it to the next slice with probability pi .

The heuristic for balancing the energy consumed among
slices relies on the observation that the power of the first slice
S1 induced by considering only the rate of events g1 generated
in the first slice equals P1 = f1 + j1d

2
1 = g1 (J/s), where the

last equality holds because by convention, d1 = 1, and because
we only consider g1. This is illustrated on the leftmost pic-
ture of Fig. 3. In turn, with the energy-balancing constraint of
Eq. (3), this will determine the power consumption P2 in slice
S2 when taking into consideration the rate of events g2 gener-
ated in S2. g1 was already considered in the previous step, so a
strategy to balance the energy consumed in the second slice S2
with S1 consists of first ejecting the right number of messages
in order to ensure that the power to battery ratio P2/b2 (s−1)
in the second slice is equal to the power to battery ratio P1/b1
in the first slice. This is illustrated by the crossed-out rectangle
of the middle picture of Fig. 3. Then, the remaining messages
to be handled are slid to S1 using the probability �2 computed
in Proposition 3.1, hence equally increasing the power to bat-
tery ratio of slices S1 and S2 which thus remain balanced, as
illustrated by the black rectangle in the middle picture of Fig.
3. The heuristic must be inductively applied considering slices
S3, S4, . . . up to SN , the case of S3 is illustrated on the right-
most picture of Fig. 3. Since the bi’s and di’s are given from
the input for 1� i�N , we can compute the �i’s (1� i�N), the
solution to relation (6) with �1 = 1.

Remark. Notice that although Eq. (6) implies that �i �1, noth-
ing guarantees that �i �0. For simplicity, let us make the tem-
porary assumption that �i �0. We treat the case with negative
�’s in Section 4.1.2.

During its execution, our algorithm needs the following vari-
ables, for 1� i�N :

• Gi is the rate of messages to be treated at slice Si (mes-
sage/s).

• Fi is the rate of messages forwarded from slice Si towards
slice Si−1 (message/s).
• Ji is the rate of messages ejected from slice Si directly to

the sink (message/s).
• Pi is the power consumed by slice Si , which is equal to

Fi + Jidi
2 (J/s).

Using the gi’s from the input we initialize Fi = Ji = 0 and
Gi = gi for every 1� i�N . The algorithm then treats each
slice one at a time from S1 towards SN . First, S1 is treated
according to the heuristic described at the beginning of this
section: we let J1 = G1 to account for the fact that all the
messages generated at S1 are ejected to the sink. This means
an average power consumption in slice S1 of P1 = G1d

2
1 =

J1d
2
1 . Since all messages have been ejected, there are no more

messages to treat for S1 and we update the value of G1 to
G1 = 0.

We then repeat the following for each of the slices Si for
i from 2 to N: first, let Ji := (bi/bi−1di

2)Pi−1, which is
equivalent to

bi

Jidi
2
(s) = bi−1

Pi−1
(s). (8)

This ensures that the time needed to exhaust the available en-
ergy bi−1 in slice Si−1 equals the time needed to exhaust the
energy bi in slice Si while considering only ejection, which is
represented by the crossed-out regions in Fig. 3. Notice that
Ji > Gi means that we are trying to eject more messages than
the total amount of messages available to be treated, which is
not physically possible. Therefore, our approach requires the
presence of a sufficiently number of messages to be treated at
slice Si , i.e. it should be that the following holds:

Ji = bi

bi−1di
2
Pi−1 �Gi. (9)

We overcome this limitation in Section 4.1.1. For the time be-
ing, we consider only the case where the initial Gi’s are large
enough to ensure that Eq. (9) holds. So far energy balance is
achieved for slices Si to S1 (because of Eq. (8) and by in-
duction), which is represented by the crossed-out rectangles of
Fig. 3. Since Ji messages have been ejected, we update Gi to
Gi := Gi − Ji . The remaining Gi messages to be treated will
be handled in such a way that they will increase the power to

308 O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317

battery ratio in each of the slices Si to S1 by exactly the same
amount, as illustrated by the black rectangles of Fig. 3. The
strategy is the following: a fraction (1− �i) of the Gi messages
yet to be treated is forwarded to the next slice Si−1, while the
rest is ejected directly to the sink, thus increasing the power of
slice Si . Formally, this means setting the following:

Fi := (1− �i) Gi, (10)

Ji := Ji + �iGi, (11)

Gi := 0. (12)

Among the Gi (1− �i) messages slid from Si towards Si−1, a
fraction 1 − �i−1 will be further slid from Si−1 towards Si−2,
while the rest is ejected directly to the sink from Si−1, thus
increasing the power of Si−1. This process goes down to the
first slice, and the numbers of slid and ejected messages have
to be updated. The algorithm implementing this idea needs to
do the following:

Fi−1 := Fi−1 + (1− �i−1) (1− �i) Gi, (13)

Ji−1 := Ji−1 + �i−1 (1− �i) Gi, (14)

Fi−2 := Fi−2 + (1− �i−2) (1− �i−1) (1− �i) Gi, (15)

Ji−2 := Ji−2 + �i−2 (1− �i−1) (1− �i) Gi, (16)

Fi−3 := Fi−3 + (1− �i−3) (1− �i−2) (1− �i−1)

×(1− �i) Gi, (17)

Ji−3 := Ji−3+�i−3 (1−�i−2) (1−�i−1) (1−�i) Gi, (18)

... (19)

The messages handled increase the power of slice Si by an
amount equal to

mi := Gi

[
(1− �i)+ �id

2
i

]
(J/s)

while the increase in power for slice Si−1 equals

mi−1 := Gi (1− �i)
[(

1− �i−1 + �i−1d
2
i−1

)]
(J/s)

and so forth for slices Si−2, Si−3, up to S1. But because the
�i’s satisfy Eq. (7), the (bj /mj)(s)’s (1�j � i) have the same
value, as follows from Proposition 3.1. So when we finish treat-
ing slice Si the average time before running out of energy in
S1, S2, . . . , Si is equal. Again, this is illustrated by the black
rectangles of Fig. 3. We then go on to treat the next slice (Si+1)
until we reach the last slice, SN .

At this point and for each 1� i�N slice Si treats a total of
Fi + Ji (messages/s), of which Fi are slid and Ji are ejected,
and the network is energy-balanced. The output of the algo-
rithm representing the optimal parameters for the probabilistic
data propagation algorithm is the following ordered sequence:
{Fi/(Fi + Ji)}1� i �N .

4.1. Special cases

In this section, we lift the assumption that all �’s are positive
(Remark 4), and the assumption that Eq. (9) holds, starting with
the former.

4.1.1. First case: too many sensors or too few messages
Suppose that while executing the algorithm from the previ-

ous section, Eq. (9) does not hold for some i, meaning that
while treating slice Si , even if all the gi generated messages
are ejected to the sink, the power to battery ratio Pi/bi for Si

will not be as high as for Si−1. In Fig. 3, this means that the
crossed-out rectangle is not as high as the white rectangle on
its right.

In essence, the solution is to get slices previous to Si (i.e.
Si+1, Si+2, etc.) to forward some of their generated messages
towards Si , so that Si can “catch-up” with the power to battery
ratio of Si−1. To do so, we recursively use the algorithm de-
scribed earlier in the following way: since the problem is that
Si has not got enough messages to eject, we recompute new
values of �’s satisfying Eq. (7), only this time we force �i = 1,
which means that slice Si will now eject every message which is
slid from Si+1. This will eventually enable Si to catch-up with
Si−1, if sufficient messages are slid from Si+1. If the power to
battery ratio Pi/bi of Si catches up with the power to battery
ratio of Si−1, we can lift the constraint of having �i = 1 and
go on with the previous values of �’s.

When Si needs to catch-up with Si−1 and we need to force
�i = 1, we say the algorithm goes down one-level in the recur-
sion. This brings the need to stack some values, which we will
be able to unstack when coming up one level in the recursion,
and to compute some new values. The following list explains
how and what to stack.

• Stack the current value of a variable start, which remembers
at what position the last recursion started. (If this is the first
level of recursion, we stack the value start = 1). The new
value of start is set to start = i, which is the position of the
slice which is trying to catch up.
• Stack the current value of a variable max. If this is the first

level of recursion, we stack the value max = ∞. The new
value of max is set to

max = 1

bstart−1

(
Fstart−1 + Jstart−1d

2
start−1

)
(s−1)

which is the power to battery ratio increase needed for Sstart
to “catch up” with Sstart−1.
• Stack the value of the previous �’s. Set new current values

for �j ’s for start �j �N :

◦ �start is set to 1, so that slice Sstart ejects every sliding
messages it sees, in order to try to catch up with Sstart−1.
◦ The other �k’s with start < k�N are computed using

Eq. (7).

Once this is done, we can go down one level in the recursion,
which essentially means redoing the algorithm from Section 4,
but using the above newly computed �’s, and considering the

O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317 309

possibility of either going further down one recursion level, or
on the contrary coming back up one recursion level. That is,
once the algorithm has gone down one level of recursion and
while treating slices Sstart+1, Sstart+2, and so on, we have to take
into account that three different possible cases may occur (for
the sake of comprehensiveness, suppose we are treating slice
Sk for some k > 0):

• Sk may in turn not be able to increase its power to battery
ratio Pk/bk to the level of Sk−1, in which case we need to
go down one further recursion level.
• Slice Sstart may be able to catch up (using messages pre-

viously slid from slices Sstart+1 to Sk−1 and the messages
newly slid from Sk), i.e. sufficient messages will have been
slid from the previous slices. In this case, we shall have to
go back up one recursion level.
• Finally, it may be that neither of the two above cases hap-

pens: slices Sk, Sk−1, . . . , Sstart have so far the same power
to battery ratio (but less than Sstart−1), and we start treating
the next slice, Sk+1.

Keeping in mind these three possible cases, a description
of how the algorithm of Section 4 should be adapted follows,
assuming it has gone down some levels of recursion and slice
Sk is being treated for some k > start while slice Sstart is trying
to catch up with slice Sstart−1.

1. If there are not enough messages for Sk to increase its
power to battery ratio to the level of Sk−1 and hence, even
if all the Gk messages are ejected from slice Sk , the lifes-
pan of Sk−1 remains smaller than the lifespan of Sk , i.e. if
bk/Gkd

2
k (s) > bk−1/(Fk−1 + Jk−1d

2
k−1) (s) we just try to

diminish this unbalanced lifespan as much as possible by
ejecting all the Gk messages, setting JK = GK , Gk = 0
and going further down one recursion level. Now Sk will
have to try to catch up with Sk−1.

2. Else, we eject Jk = bk/(d
2
k bk−1)

(
Fk−1 + Jk−1d

2
k−1

)
mes-

sages from Sk and set Gk = Gk − Jk . Sk now has the
same lifespan as Sk−1, but there are still Gk messages to
be treated. Essentially, we now want to slide the remaining
Gk messages along the network, from Sk to Sstart, but with
some precaution:
• First of all, we still have to take into the account the �’s

and eject “� fractions” of the messages sliding along the
network from Sk to Sstart as was explained in the previous
section. This was explained in detail in Eqs. (10)–(18).
• If we have enough remaining messages, i.e. if Gk is still

sufficiently large, we will be able to let slice Sstart (and
slices Sk to Sstart+1) catch up with Sstart−1. If this is so,
we want to slide just enough messages to catch up, then
go back up one recursion level and unstack the previous
�’s. The remaining messages will then be slid along the
network, this time using the �’s that have just been un-
stacked.

Here is how we propose to implement the above remark.
3. Set �t = (max − (1/bk)

(
Fk + Jkd

2
k

)
)−1 (s) and msgTo

GoUp = bk/
(
�t

(
�kd2

k + (1− �k)
))

. Let � = max{Gk,

msgToGoUp}. From the remaining Gk messages, we fur-

ther slide and eject, respectively, F = (1− �k) ·� and J =
�k · � messages. This ensures that slices Sk to Sstart still
have the same lifespan and that this is bounded from under
by the lifespan of slice Sstart−1. We thus need to make the
following adjustments: Fk = Fk + F , Jk = Jstart + J and
Gk = Gk − F − J . The Fj ’s and Jj ’s for start �j < k

also have to be adjusted, acknowledging the fact that F new
messages are slid along the network from Sk to Sk−1, and
using as usual the �’s to compute the ratio which is slid and
ejected by each slice.

4. If there are enough messages for Sstart to catch up with
Sstart−1, i.e. if � is equal to MsgToGoUp, we can go back up
one recursion level, which means unstacking the previous
�’s, unstacking the previous value of max and unstacking the
previous value of start. Otherwise, we do not unstack any
variables, and keep them as they are. Finally, if there are
no more messages to treat for slice Sk , i.e. if Gk = 0, we
can start to treat the next slice, Sk+1. This means jumping
to point 1 above, but this time with k = k + 1, which also
means we can stop the algorithm if k + 1 > N . Otherwise,
we need to treat the remaining Gk messages. This is done
by jumping to point 3 above.

In the end, if the algorithm returns from all the recursive calls
to the main algorithm, it is easily seen that energy balance is
reached. Otherwise, we have a solution with increasing lifespan
(from slice S1 towards SN), and which is “locally” energy-
balanced, for example, we could have

b1

P1
= b2

P2
= b3

P3
<

b4

P4
<

b5

P5
= b6

P6
� · · · .

Although not reaching energy balance, we shall prove in Sec-
tion 5 that this solution is optimal in the sense that it maximizes
the lifespan. An important thing to observe is that if a recursion
starts at slice Si , either one of the two cases happens:

• The algorithm returns from this recursive call and the solu-
tion is locally energy-balanced: Pi/bi = Pi−1/bi−1.
• The algorithm does not return from this recursive call and

the solution is not energy-balanced: Pi/bi < Pi−1/bi−1.
Furthermore, since Si was trying to “catch up” with Si−1
and since we set �i = 1 (point (4.1.1) of the algorithm), it
holds that Fi = 0, and thus that

pi = 0. (20)

In Section 5, we use Eq. (20) to show that this solution is always
optimal.

4.1.2. Second case: too few sensors or not enough battery
The second problem which may occur is when the assump-

tion that all �’s are positive, (i.e. the assumption from the re-
mark of p. 11) does not hold. From Eq. (7), we can see that this
occurs only if some of the slices have little bi’s (thus the title
of this subsection, since bi’s are proportional to the amount of
sensors). Let us first analyze what it means for an �, say �i , to
be negative. Suppose slice i has, so far, ji ejected messages

310 O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317

(per second) and fi forwarded messages (per second). When
it receives k sliding message from Si+1, it should eject an �i
fraction to the sink and pass on the 1 − �i rest to the next
slice. After this, there are ji + k�i ejected messages and fi +
k (1− �i) slid messages. The fact that the �’s satisfy Eq. (7)
ensures that energy balance is conserved (at least locally if we
are already into a recursive call as described in Section 4.1.1).
A difficulty follows from the fact that since �i is negative, ji

becomes negative if

k · �i + ji < 0 ⇔ k > ji/�i (21)

and thus the solution is not physical (a negative amount of mes-
sages cannot be ejected from Si). The solution to this problem
has some similarity with the previous one. Whenever a slice
(say the ith) is about to slide k messages along the network,
it should ensure that no slice will find itself in a non-physical
state afterward by bounding the number of messages it allows
itself to slide along the network. Suppose that, for some fixed
k, a slice Sk wants to slide messages along the network. We
call maxSlide the maximum number of messages Sk may slide
along the network without putting any of its following slices in
a non-physical state. In order to compute maxSlide, we should
remember what happens when k messages are slid along the
network by slice Sl : some (or part) of them are ejected by each
of the slices sliding the message, according to the �’s, and there-
fore only a ki = k · �l

j=i+1 (1− �i) fraction of the k initial
messages reaches slice Si . maxSlide is defined as the maxi-
mum value k such that ki�i+ji �0 for 1� i� l, or equivalently,
the maximum value such that ki �ji/|�i | for every 1� i� l

such that �i < 0, and it can be computed by the following
algorithm.

Algorithm 4.1. computeMaxSlide(i).

Input: i, a slice number.
Output: max, the max number of messages Si can slide.
global �[] comment: �[] is an array storing the values of

the �’s
local F ← 1
local ejected[]
for (k← i; k�1; k← k − 1)

do
{

ejected[k] ← F ∗ �[k]
F ← F ∗ (1− �[k])

local max←∞
for (k← i; k�1; k← k − 1)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

local j ← ejected[k]
if j < 0

then

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

j ←−j

if max = ∞
then max← j [k]/j
else

do

⎧⎨
⎩

local tmp_max← j [k]/j
if tmp_max < max

then max← tmp_max
return (max)

Once we have computed maxSlide, we can decide what to
do when slice Si wants to slide k messages. If k�maxSlide,
then we can simply slide the k messages, but if k > maxSlide,
we have to be more careful. First, we can partially fulfill the
aspiration of Si by allowing it to slide maxSlide messages. At
this stage, Si still wants to slide k − maxSlide messages and
one of the previous following slices (say Sk) has a negative �k
and jk = 0. If any more messages are slid, Sk will be in a
“non-physical” state. So what we do is that we recompute all
�k’s for 1�k�j . Notice that if we are inside a recursion of the
type described in Section 4.1.1, we do not recompute all �k’s
for 1�k�N , but we rather set �start = 1 and recompute all the
�i’s for start < i�N , where start is the place where the last
recursion took place (cf. the first buller of the first enumeration
in Section 4.1.1). While recomputing the �’s, whenever �k <

0 and jk = 0, we force �k to 0. What this does is, first of
all, to force the solution to be physical. Second, it breaks the
relation from Eq. (7), since for some k’s �k is forced to 0. The
fact of breaking this relation prevents slices from ejecting a
negative amount of messages (and thus in a sense save some
energy), when this would lead them to be in a non-physical
state. Thus slice Sk will spend more energy than the (locally)
energy-balanced solution would require, and on the other hand,
slices following Si (that is Si−1 to S1) will spend less since
the negative amount of messages which have been prevented
from being ejected were supposed to be slid along the network.
We are therefore confronted with a “local peak”, in the sense
that

Pk

bk

>
Pk−1

bk−1
.

It should be observed that for the rest, energy balance is con-
served (at least locally), and furthermore whenever such a
“peak” appears at Sk , it holds that

pk = 1 (22)

which is an important fact we shall use to prove that the solution
obtained is optimal.

4.2. Time complexity

On input ({bi}Ni=1, {di}Ni=1, {gi}Ni=1), the algorithm presented
in the previous section returns a list {pi}Ni=1 of values. We
explain at a high level of abstraction why the runtime of the
algorithm has a worst-case complexity of O(N3), and omit the
tedious details. To see this, first observe that the algorithm runs
in a top-down fashion from slice S1 to slice SN , so there are N
slices to be treated. Each time a slice is treated, e.g. when slice
Sk is treated for some 1�k�N , new values of Ji and Fi have
to be computed for 1� i�k, as follows from Eqs. (10) to (18).
This already implies a O(N2) complexity. The reason why the
final complexity is not O(N2) but rather O(N3) is a bit more
subtle. What happens is that for each slice, say for slice Sk , the
values of Ji and Fi may, in the worst case, have to be updated
up to k times, for some k�N . The reason why the Fi and Ji

O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317 311

may have to be updated more than once is that each of the
slices S1 to Sk−1 may force the algorithm to update the Fi’s
and Ji’s twice, by limiting the number of messages to be slid
from Sk to the sink on the first occasion. This may happen
for two distinct reasons: either because one of these slices was
“catching up” and the algorithm “comes back up one level
of recursion”, as explained in Section 4.1.1, thus forcing the
update of the Ji’s and Fi’s to happen twice. Alternatively this
may happen because one of the slices has a negative � value, as
explained in Section 4.1.2, and it limits the maximum number
of messages allowed to be sent during the first step to maxSlide,
the value which is computed by Algorithm 4.1, the rest being
sent in a second step. In the worst case, slice Sk thus has to
update the values of {Fi}ki=1 and {Ji}ki=1 for every slice from 1
to k − 1. When k = N , this means a total of (N − 1) updates
of {Ji}Ni=1 and {Fi}Ni=1 (i.e. O(N2) updates). This brings the
worst-case runtime complexity of the algorithm to O(N3) since
there are N slices. It may be observed that when neither of the
two special cases from Section 4.1 occurs, i.e. when Eq. (9)
holds or if condition (21) is never satisfied, then the algorithm
runs in O(N2).

5. Proof of optimality

In this section, we prove that our algorithm produces an
optimal solution, in the sense that it maximizes the lifespan, cf.
Definition 3.

Convention. In this section, we consider a fixed sensor net-
work of size N, with fixed event distribution {gi}1� i �N and
fixed battery levels {bi}1� i �N . A configuration C of the
network is the choice of a sliding probability assignment
{pi}1� i �N for each slice. If C and C̃ are two configurations,
we use the letters fi and f̃i to denote the slid messages under
configurations C and C̃, respectively. We do the same for the
other parameters: ji’s, pi’s, �i’s and Pi’s.

Lemma (No win–win modification). No configuration is
strictly better in terms of lifespan than another configuration:
if C and C̃ are two configurations, then there exists an i such
that:

Pi

bi

� P̃i

bi

.

Proof. Suppose (absurd) this is not true. Therefore, there exist
two configurations C and C̃ such that

∀i Pi

bi

� P̃i

bi

(23)

and for at least one of the i’s

Pi

bi

<
P̃i

bi

. (24)

We now define the following configurations C0 = C̃ and CN =
C, and more generally, Ci is the configuration where the i last
pi’s (i.e. pN , pN−1, …pN−i+1) are the same as the pi’s from
C, whereas the N − i first pi’s are the same as the pi’s from
C̃. Then for each 1� i�N , if we use iE and ib to desig-
nate the power and battery of configuration Ci , the following
holds:

iPk

ibk

= Pk

bk

∀N �k > N − i,

iPi

ibi

� Pi

bi

, (25)

where the first equation follows from the definition of Ci and the
second follows from the easy observation that iPi/

ibi � P̃i/b̃i

combined with Eq. (23). Next, let k = max{i|Pi/bi <

P̃i/b̃i}1� i �N , which exists by (24). Then for every i�k the
inequality in (25) becomes strict. In particular, for i = 0 (and
using the fact that C0 = C) it becomes P0/b0 > P0/b0, which
is the contradiction we need. �

The reason we give this lemma the name of no win–win
modification lemma is that a principle can be derived from it,
the no win–win modification principle, which is the following:
if a configuration is modified to increase the lifespan in some
parts of the network, then necessarily the lifespan is decreased
in another part of the network.

In [ENR04, ENR06], the authors point out that looking at the
numerical solutions, one observes that an energy-balanced so-
lution mostly uses single-hop data propagation, and only with
little probability propagates data directly to the sink. The au-
thors then suggest that this is an important finding implying
that the energy-balanced solution is also energy efficient, since
it only rarely uses the costly single-hop direct ejection of mes-
sages to the sink. Our previous lemma enables us to easily for-
malize this intuition:

Corollary. Any energy-balanced solution is optimal in terms
of lifespan: if C is an energy-balanced configuration (i.e.
∀i Pi/bi = Pi+1/bi+1), then for every other configuration C̃,
we have the following inequality, with equality if and only if
C = C̃: min{bi/Pi}� min{b̃i/P̃i}, that is, C maximizes the
lifespan among all possible configurations.

Next we generalize the previous corollary.

Lemma. Let C be a configuration of our network. Let
max = max{Pi/bi}. Let k = max{i|Pi/bi = max}, and let
l = min{i|Pi/bi < max}, if such an l exists. The configura-
tion is optimal if and only if the conjunction of the following
holds:

• (k < N and pk+1 = 0) or k = N ;
• (l < N and pl+1 = 1) or l = N or l was not well

defined.

312 O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317

Proof. We only give the main ideas of the proof. First, notice
that slices Sk to Sl form a tabletop-like maximum of the plotting
of slice position against power to battery ratio (cf. Fig. 3). Since
pk+1 = 0, nothing can be done on the left-hand side of the
tabletop to lower it. Second, since pl+1 = 1, the tabletop cannot
rely on the slices on its right to take on a larger part of the
message sliding towards the sink. The only solution to produce
a better solution than C (i.e. if C was not an optimal solution)
would therefore be to modify the probabilities from pk to pl+1,
i.e. to reorganize the configuration “inside the tabletop”. The
final point is to notice that this will break the energy balance
of the tabletop, increasing the maximum, using the no win–win
modifications lemma of p. 19. �

Theorem. Our algorithm always produces an optimal solution.

Proof. The demonstration would be complete if we could prove
that our algorithm always produces a solution where the maxi-
mum power to battery ratio is reached at a tabletop with pi =
0 on the left and pi = 1 on the right, since this enables to
use Lemma 5. To see that this is the case, the main ingredi-
ents are Eqs. (20) and (22). We leave the easy details to the
reader. �

6. Simulations

In this section, we present numerical validation of our algo-
rithm. The approach consists of randomly and uniformly scat-
tering sensor nodes in a sector of the plane, with a sink placed
at the centre of the sector, cf. Fig. 1. We consider the unit disc
graph constructed upon the sensor nodes: we place an edge be-
tween two sensor nodes or the sink if and only if they are at
distance at most 1 from one another. The shortest path from a
node to the sink determines in which slice it is. For example,
if the shortest path from a node to the sink is a 3-hop path,
the node is considered to be in the third slice S3. Let N be the
maximum slice number. For each 1� i�N , bi is the number of
sensor nodes in Si . Assuming a uniform distribution of events,
the expected number of events in Si is equal to the expected
number of sensors in Si , and thus we set gi = bi . Finally, in
a pessimistic approximation, we let di = i. Using these bi ,
gi and di as an input to the algorithm described in Section 4,
we compute pi the sliding probabilities which are predicted to
balance the energy between slices. The simulations we present
show that this is indeed the case.

6.1. First simulation

We divide the time into rounds, and during each round we let
a randomly and uniformly chosen sensor node detect an event.
The sensor node which has detected an event adds a message
to be sent to its message queue. Also, during each round, each
sensor node which has a non-empty message queue sends one
message according to the following strategy: suppose that a
sensor node n which is in the ith slice Si needs to send a
message, it sends the message directly to the sink (the message

is ejected) with probability 1 − pi , thus spending i2 (J), and
with probability pi it slides the message to one of its neighbours
in the unit disk graph, thus spending 1 (J). In the case where
the message is slid, the receiving node is chosen among all
neighbours of n which are in the slice Si−1. More precisely, let
R be the set of neighbours of n which are in Si−1, which is the
next slice towards the sink. n sends the message to the node of
R which has the highest remaining energy. If this node is not
unique, a random decision is made. The implicit assumption
that sensor nodes are aware of the remaining battery level of
their neighbours can be implemented in a real WSN by adding
information on the remaining battery level of emitting nodes in
a small header to the messages.

This routing protocol is inspired by the gradient based rout-
ing (GBR) family of routing algorithms, see [SS01, HKK04,
YZLZ05]. GBR was introduced in [SS01] and is inspired by
[IGE00]. In our simulations, the gradient is determined by the
slice number and the remaining battery level: a node is lower
than another when its slice number is smaller, and when the
slice number is the same, a node is lower than another if is has
spent less energy.

Simulations show that, as expected, the average energy con-
sumption in each slice is balanced. However, inside of each
slice, the energy consumption is not well balanced. In particu-
lar, we observe that in each slice, the nodes which are further
away from the sink spend more energy than the nodes close to
the sink. We understand that this phenomenon happens because
in slice Si the nodes which are the furthest away from the sink
have a lot of neighbours in Si+1 and just a few neighbours in
Si−1 while the contrary happens for the nodes of Si which are
close to the sink. As a consequence, nodes on the “far from the
sink” side of Si receive more messages from Si+1 than nodes
on the “close to the sink” side of Si .

On the left-hand side of Fig. 4, we plot the radius of each of
6280 nodes scattered in a 20 m radius and 90◦ sector against the
energy spent by each of these nodes while reporting events to
the sink according to the strategy before mentioned for a total
of 118 000 rounds. For readability, the nodes which belong to a
slice Si with i an odd number are in grey and black is used when
i is even. For each slice, we also compute the average radius
and the average energy spent, and plot this as the squares joined
by a line. The figure shows that the mean energy consumption
from sensors of the same slice is almost the same for every
slice, but inside of each slice the energy consumption is not
balanced among sensors.

6.2. Improvement with spreading techniques

The previous simulation shows that the probabilistic algo-
rithm which makes slice Si eject with probability (1 − pi)

and slide with probability pi balances energy well between
slices. Notice that this simulation validates our theoretical in-
vestigations since they are only concerned with balancing en-
ergy among the slices. However, as previously pointed out, the
energy consumption is not well balanced among the sensors
of a fixed slice. This can be circumvented by using spreading

O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317 313

Fig. 4. Simulations.

techniques (cf. [SS01]) on messages: the messages need to be
spread more evenly inside of each slice. We propose a simple
spreading technique, which is the following. When a message
is to be ejected by a node n of slice Si , the node n does not eject
the message straight away. Instead, the message is marked for
ejection, and sent to a neighbour of m in the same slice as n,
i.e. in slice Si . More precisely, let S be the set of neighbours of
n which are in the same slice as n. When n marks a message
for ejection, it passes it to the node of S which has spent the
least energy so far. A node which receives a message marked
for ejection takes care of sending the message directly to the
sink. This spreading technique does not change the amount of
ejected messages in each slice, but it transfers the charge of
ejecting messages to nodes which have more energy and are,
as explained in Section 6.1, in each slice, the nodes which are
close to the sink.

We show by simulation that this very simple spreading tech-
nique balances energy consumption not only between slices,
as was the case in the previous simulation, but also between
nodes of the same slice. Furthermore, the overhead due to
the fact that messages are passed to a node in the same slice
before being ejected is low. On the right-hand side of Fig.
4, we see that the use of the spreading technique induces a
well balanced energy consumption not only among slices but
also among nodes of the same slice. Furthermore, comparison
with the left-hand side plot shows that the mean energy con-
sumption while using the spreading technique is almost the
same as the mean energy consumption of the previous exper-
iment, without spreading. This means that the overhead intro-
duced by the spreading technique has a minor impact. We con-
ducted many similar experiments (changing the radius, the an-
gle, the density and the distribution of generated events), and
the simulation results are comparable to those presented in this
section.

7. Conclusion

Previous to this work, data propagation algorithms have been
proposed to balance the energy consumption evenly inside of

a WSN using a combination of multi-hop short range trans-
missions and long-range single-hop transmissions, also called
ejections. We have shown that ejections can be used to maxi-
mize the lifespan of a WSN even when an energy-balanced so-
lution does not exist. The main idea is to divide the WSN into
slices and to make sensor nodes eject messages according to a
probability depending on the slice in which they are located.
The probability, for each slice, is computed off-line by the al-
gorithm described in Section 4. In the simulations of Section
6, we adapt the GBR family of data-propagation algorithms to
use the ejection probabilities computed by our algorithm, and
show that a simple spreading technique is required and suffi-
cient to make the energy evenly spread not only among slices,
but also among all sensors of the network. It would be possi-
ble to use other spreading techniques, which could be inves-
tigated in future work. Another interesting question would be
to find necessary and sufficient conditions for the existence of
an energy-balanced solution. Indeed, we show that when an
energy-balanced solution exists it is optimal but we did not ad-
dress the question of finding necessary and sufficient conditions
for such a solution to exist. Another important issue would be
to find a totally distributed version of our algorithm: one where
the computation of the ejection probabilities is made at the sen-
sor node level. The impact of collisions was not taken into ac-
count by our model and it would be interesting to study the im-
pact of long-range transmissions on collisions. Finally, in our
model, sensor nodes are allowed two sorts of transmissions:
long-range ejections directly to the sink and short-range trans-
missions to a neighbour node. Future work could investigate the
possibility of using “medium” range transmissions, for example
from a sensor node to a neighbour which is more than one hop
away.

Appendix A. Pseudo code of the Algorithm

We give below a pseudo-code of the algorithm presented in
this paper. This pseudo code is rigorously based on a Perl im-
plementation of the algorithm which was validated on various
inputs.

314 O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317

Algorithm A.1. computeOptimal(N; g[]; b[]; d[]).
global f []; j [];max = ∞; recLevel = 0; startPosition = 1; �[]
comment: Following arrays used as stacks while changing recLevels

global startPositions[];maxs[]; epsilons[]
main
global i = 0; initialG[] = g[];
for i ← 1 to N

do
{
f [i] = j [i] = 0

�[] ← epsilons(1)

while i < N

do

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i ← i + 1

push(recLevels[], recLevel)

if i = 1

comment: First step

then

do

{
j [i] ← g[i]
g[i] ← 0

else

comment: From second step to the Nth

do

⎧⎪⎪⎨
⎪⎪⎩

local E1← f [i − 1] + j [i − 1] ∗ d[i − 1]2
local idealj ← avgNrj(i − 1) ∗ b[i]/d[i]2
if idealj > g[i]
comment: Not enough messages to stay at this level

then

do

{
eject(g[i])
downOneLevel()

else

comment: Enough messages to stay at this level

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eject(idealj)

while (g[i] > 0)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

local nrjDelta← max − avgNrj(i)

local msgToGoUp← nrjDelta
1

b[i] ∗(e[i]∗d[i]2+(1−e[i]))
if recLevel = 0 or g[i] < msgToGoUp

comment: Slide the rest

then slide(g[i])

else
comment: Slide enough to go up one level

do

{
slide(msgToGoUp)

upOneLevel()

O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317 315

Algorithm A.2. Ejection and sliding of messages().

procedure eject(eject)
j [i] ← eject
g[i] ← g[i] − j [i]

procedure slide(F)

slideCareful(F)

procedure slideCareless(F)

g[i] ← g[i] − F

for (k← i; k�1; k← k − 1)

do

⎧⎪⎨
⎪⎩

f [k] ← f [k] + F ∗ (1− e[k])
j [k] ← j [k] + F ∗ e[k]
F ← F ∗ (1− e[k])

procedure slideCareful(F)

local maxCarelessSlide← computeMaxSlide()

if maxCarelessSlide = ∞ or F <= maxCarelessSlide
then
do

{
slideCareless(F)

else

do

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

slideCareless(maxCarelessSlide)

F ← F − maxCarelessSlide

�[] ← epsilons(startPosition, “withCaution”)

slide(F)

Algorithm A.3. Going up or down one level().

procedure upOneLevel()

local max← pop(maxs[])
startPosition← pop(startPositions[])
local tmp[] ← pop(epsilons[])
�[] ← tmp[]
recLevel← recLevel − 1

procedure downOneLevel()

push(maxs[], max) comment: store old max

max← avgNrj(i − 1)

push(startPositions[], startPosition)

startPosition← i

local tmpArray[] = �[]
push(epsilons[], tmpArray[]) comment: store old epsilons

e[] ← epsilons(i)

recLevel← recLevel + 1

Algorithm A.4. Computation of the epsilons().

procedure epsilons(first; option)

local �[]
for k← 1 to first

do
{
�[k] = 1

for k← first + 1 to N

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

local A← d[k]2−1
b[k]

local B ← (�[k−1] ∗ (d[k−1]2 − 1)+ 1)/b[k−1]
�[k] ← B−1/b[k]

A+B

if option = “withCaution”
then

do

⎧⎪⎨
⎪⎩

if �[k]�0 and j [k] = 0 and k� i

then
do

{
�[k] = 0

return (epsilons[])

Algorithm A.5. Average energy and maximum number ().

of messages to slide
procedure avgNrj(pos)
return (1

b[pos]) (f [pos] + j [pos] ∗ d[pos]2))

procedure computeMaxSlide()

F ← 1 comment: Simulated slide of one packet from the

current pos (i)

local ejected[]
for (k← i; k�1; k← k − 1)

do

{
ejected[k] ← F ∗ e[k]
F ← F(1− e[k])

local max←∞
for (k← i; k�1; k← k − 1)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

local j ← ejected[k]
if j < 0

then

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j ←−j ;
if (max = ∞)

then
do max← j [k]

j

else

do

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

local tmpmax← j [k]
j

if tmpmax < max
then
do max = tmpmax

return (max)

316 O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317

References

[AKK05] J.N. Al-Karaki, A.E. Kamal, A taxonomy of routing techniques
in wireless sensor networks, in: M. Ilyas, I. Mahgoub (Eds.),
Handbook of Sensor Networks: Compact Wireless and Wired
Sensing Systems, CRC Press, Boca Raton, FL, 2005, pp. 6.1–
6.24.

[AY05] K. Akkaya, M. Younis, A survey on routing protocols for wireless
sensor networks, Ad Hoc Network J. 3 (3) (2005) 325–349.

[BCN05] A. Boukerche, I. Chatzigiannakis, S. Nikoletseas, Power-
efficient data propagation protocols for wireless sensor networks,
Simulation 81 (6) (2005) 399–411.

[BN04] A. Boukerche, S. Nikoletseas, Wireless communications systems
and networks, in: Protocols for Data Propagation in Wireless
Sensor Networks: A Survey, Kluwer Academic Publishers,
Dordrecht, 2004, pp. 23–51.

[Bou05] A. Boukerche, Handbook of Algorithms for Wireless Networking
and Mobile Computing, Chapman & Hall/CRC, London, Boca
Raton, FL, 2005.

[CT00] J. Chang, L. Tassiulas, Energy conserving routing in wireless ad
hoc networks, IEEE INFOCOM 1 (2000) 22–31.

[CNS02] I. Chatzigiannakis, S. Nikoletseas, P. Spirakis, Smart dust
protocols for local detection and propagation, in: Second
Workshop on Principles of Mobile Computing (POMC), ACM,
ACM Press, 2002, pp. 9–16.

[CCZ05] Y. Chen, C.-N. Chuah, Q. Zhao, Sensor placement for maximizing
lifetime per unit cost in wireless sensor networks, in: MILCOM,
October 2005.

[ENR04] C. Efthymiou, S. Nikoletseas, J. Rolim, Energy balanced data
propagation in wireless sensor networks, in: Best papers of
the Fourth International Workshop on Algorithms for Wireless,
Mobile, Ad Hoc and Sensor Networks, 2004.

[ENR06] C. Efthymiou, S. Nikoletseas, J. Rolim, Energy balanced data
propagation in wireless sensor networks, Wireless Networks
(WINET) J., 2006.

[GK05] A. Giridhar, P.R. Kumar, Maximizing the functional lifetime of
sensor networks, in: The Fourth International Conference on
Information Processing in Sensor Networks (IPSN), April 2005.

[GLW03] W. Guo, Z. Liu, G. Wu, An energy-balanced transmission scheme
for sensor networks, in: Poster Session of the First International
Conference on Embedded Networked Sensor Systems (SenSys),
ACM, IEEE Computer Society Press, November 2003.

[HKK04] K.-H. Han, Y.-B. Ko, J.-H. Kim, A novel gradient approach
for efficient data dissemination in wireless sensor networks, in:
International Conference on Vehicular Technology Conference
(VTC), IEEE, vol. 4, September 2004.

[HCB00] W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy
efficient communication protocol for wireless microsensor
networks, in: 33rd Hawaii International Conference on System
Sciences (HICSS), 2000.

[HCB02] W.B. Heinzelman, A.P. Chandrakasan, H. Balakrishnan, An
application-specific protocol architecture for wireless microsensor
networks, Transactions on Wireless Communications 1 (4) (2002).

[HGWC02] X. Hong, M. Gerla, H. Wang, L. Clare, Load balanced, energy-
aware communications for Mars sensor networks, Aerospace
Conference Proceedings, 2002, IEEE, vol. 3, 2002, pp. 3–1109.

[IGE00] C. Intanagowiwat, R. Govindan, D. Estrin, Directed diffusion: a
scalable and robust communication paradigm for sensor networks,
in: Sixth International Conference on Mobile Computing
(MOBICOM), ACM/IEEE, New York, 2000.

[JLPR06] A. Jarry, P. Leone, O. Powell, J. Rolim, An optimal data
propagation algorithm for maximizing the lifespan of sensor
networks, in: Proceedings of Distributed Computing in Sensor
Systems (DCOSS) 2006.

[LH05] J. Luo, J.-P. Hubaux, Joint mobility and routing for lifetime
elongation in wireless sensor networks, in: 24th INFOCOM,
2005.

[LH06] J. Luo, J.-P. Hubaux, Mobility to improve the lifetime of wireless
sensor networks: a theoretical framework, in: Workshops of the
Second International Conference on Distributed Computing in
Sensor Systems (DCOSS), 2006.

[LNR05] P. Leone, S. Nikoletseas, J. Rolim, An adaptive blind algorithm
for energy balanced data propagation in wireless sensor networks,
The First International Conference on Distributed Computing in
Sensor Systems (DCOSS), Lecture Notes in Computer Science,
vol. 3560, Springer, Berlin, June/July 2005.

[LSS05] L. Lin, N.B. Shroff, R. Srikant, Asymptotically optimal power-
aware routing for multihop wireless networks with renewable
energy sources, in: Proceedings of INFOCOM’05, 2005.

[LXG05] Z. Liu, D. Xiu, W. Guo, An energy-balanced model for data
transmission in sensor networks, in: 62nd Semiannual Vehicular
Technology Conference, September 2005.

[Luo06] J. Luo, Mobility in wireless networks: friend or foe—network
design and control in the age of mobile computing, Ph.D.
Thesis, School of Computer and Communications Science, EPFL,
Switzerland, 2006.

[OS06] S. Olariu, I. Stojmenovic, Design guidelines for maximizing
lifetime and avoiding energy holes in sensor networks
with uniform distribution and uniform reporting, in: 25th
Conference on Computer Communications (INFOCOM), IEEE
Communications Society, IEEE Computer Society Press, Silver
Spring, MD, April 2006.

[RAdS+00] J.M. Rabaey, M. Josie Ammer, J.L. da Silva, D. Patel, S. Roundy,
Picoradio supports ad hoc ultra-low power wireless networking,
Computer 33 (7) (2000) 42–48.

[SL05] M.J. Sailor, J.R. Link, “smart dust”: nanostructures devices in a
grain of sand, Chem. Commun. 11 (2005) 1375–1383.

[SS01] C. Schurgers, M.B. Srivastava, Energy efficient routing in wireless
sensor networks, in: Military Communications Conference
(MILCOM), October 2001, pp. 357–361.

[STGS02] C. Schurgers, V. Tsiatsis, S. Ganeriwal, M. Srivastava, Topology
management for sensor networks: exploiting latency and density,
in: Eighth International Conference on Mobile Computing
(MOBICOM), ACM/IEEE, New York, 2002.

[SD05] M.L. Sichitiu, R. Dutta, Benefits of multiple battery levels for the
lifetime of large wireless sensor networks, in: NETWORKING
2005: Fourth International IFIP-TC6 Networking Conference,
Lecture Notes in Computer Science, Springer, Berlin/Heidelberg,
May 2005, pp. 1440–1444.

[SP03] M. Singh, V. Prasanna, Energy-optimal and energy-balanced
sorting in a single-hop wireless sensor network, in:
First International Conference on Pervasive Computing and
Communications (PERCOM), IEEE, 2003.

[WLLP01] B. Warneke, M. Last, B. Liebowitz, K.S.J. Pfister, Smart dust:
communicating with a cubic-millimeter, Computer 34 (1) (2001)
44–51.

[YZLZ05] F. Ye, G. Zhong, S. Lu, L. Zhang, Gradient broadcast: a robust
data delivery protocol for large scale sensor networks, Wireless
Networks (WINET) 11 (3) (2005).

[YP03] Y. Yu, V.K. Prasanna, Energy-balanced task allocation for
collaborative processing in networked embedded system, in:
Conference on Language, Compilers, and Tools for Embedded
Systems (LCTES), June 2003.

[ZH04] H. Zhang, J.C. Hou, On deriving the upper bound of �-lifetime
for large sensor network, Technical Report, Department of
Computer Science, University of Illinois at Urbana-Champaign,
2004, published in ACM Mobihoc 2004, ACM Transactions on
Sensor Networks, 2005.

[ZH05] H. Zhang, J.C. Hou, Maximizing �-lifetime for wireless sensor
networks, in: Third International Workshop on Measurement,
Modelling, and Performance Analysis of Wireless Sensor
Networks (SenMetrics 2005), July 2005.

O. Powell et al. / J. Parallel Distrib. Comput. 67 (2007) 302–317 317

Pierre Leone is Assistant Professor at the De-
partment of Computer Science of the University
of Geneva where he is involved in the European
CRESCCO and AEOLUS European projects as
well as the Cost 295 action (DYNAMO). He was
a scientific researcher at the Engineering School
of Geneva where he was involved in various re-
search projects in the fields of collaborative op-
timization algorithms on distributed systems and
hardware development. He received his Ph.D.
degree in Mathematics from the University of
Geneva and has a background of electrical en-
gineer with orientation in Computer Science.

He spent a post-doctoral year as a Visiting Lecturer of the Mathematics,
Department of the Auckland University in New-Zealand.

Olivier Powell is a Swiss National Science
Foundation research fellow at the Computer Sci-
ence and Informatics Department of the Uni-
versity of Patras, Greece. He was previously a
post-doctoral research associate at the TCSensor
lab of the Computer Science Department of the
University of Geneva. He received a Ph.D. de-
gree in Computer Science from the University
of Geneva in the field of Complexity Theory
and a Masters Degree in Mathematics from the
same University.

Jose Rolim is Full Professor at the Depart-
ment of Computer Science of the University of
Geneva where he heads the Theoretical Com-
puter Science and Sensor Lab (TCSensor Lab).
He received his Ph.D. degree in Computer Sci-
ence from the University of California, Los An-
geles, in the area of formal languages and com-
plexity. He has published many articles in the ar-
eas of theoretical computer science, distributed
systems, randomization and computational com-
plexity and leads two major national projects
in the areas of Power Aware Computing and
Games and Complexity. He also participates as

a partner in two European Projects in the areas of Dynamic Systems and
Foundations of Sensor Networks. Prof. Rolim participates in the editorial
board of several journals and conferences and he is the Steering Committee
Chair and General Chair of the IEEE Distributed Computing Conference in
Sensor Systems. He has been Program Committee Chair of major confer-
ences such as ICALP, IPDPS, RANDOM and served as Program Committee
Member of all major conferences in theoretical computer science.

