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Abstract—Collecting sensory data using a mobile data sink has
been shown to drastically reduce energy consumption at the cost
of increasing delivery delay. Towards improved energy-latency
trade-offs, we propose a biased, adaptive sink mobility scheme,
that adjusts to local network conditions, such as the surrounding
density, remaining energy and the number of past visits in each
network region. The sink moves probabilistically, favoring less
visited areas in order to cover the network area faster, while
adaptively stopping more time in network regions that tend to
produce more data. We implement and evaluate our mobility
scheme via simulation in diverse network settings. Compared to
known blind random, non-adaptive schemes, our method achieves
significantly reduced latency, especially in networks with non-
uniform sensor distribution, without compromising the energy
efficiency and delivery success.

I. INTRODUCTION

The collected data in wireless sensor networks is usually
disseminated to a static control center (called data sink) in the
network, using node to node – multi-hop data propagation.
Such settings have increased implementation complexity and
sensor devices consume significant amounts of energy, since
a distributed routing protocol for disseminating data towards
the sink is executed in each sensor node. Also, in the area
around the control center, nodes need to heavily relay the
data from the entire network, thus a hotspot of increased
energy consumption emerges and failure, due to strained
energy resources, of these nodes leads to a disconnected
and dysfunctional network [1]. Towards a more balanced and
energy efficient data collection sink mobility can be used.

A. Sink Mobility: Opportunities and Challenges

In recent years, a new category of important sensor net-
works applications emerges, where motion is a fundamental
characteristic. In such applications sensors may be attached to
vehicles, animals or people that move around large geographic
areas, while robotic elements may be present as well. Data
exchange between individual sensors and infrastructure nodes
will drive applications such as traffic and wild life monitoring,
smart homes and pollution control.

Motivated by these developments, a new approach has been
introduced that shifts the burden of acquiring the data, from
the sensor nodes to the sink. The main idea is that the sink
has significant and easily replenishable energy reserves and
can move inside the region the sensor network is deployed,
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in close proximity to a (usually small) subset of the sensor
devices, collecting the recorded data from the sensor nodes at
very low energy cost.

This data collection paradigm has many attractive prop-
erties. A mobile agent that moves closer to the nodes can
help conserve energy since data is transmitted over fewer
hops. Connectivity of the network is not required, thus sparse
networks can be better handled, and additionally, fewer sensor
devices may be deployed, to reduce the operational cost
of the network. Also, the sensor devices can reduce their
transmission range to the lowest value required to reach the
mobile infrastructure, thus saving energy.

However, many apparent difficulties arise as well since
traversing the network in a timely and efficient way is critical.
Failure to visit some areas will result in data loss, while
infrequently visiting some regions will result in high delivery
delays. Also, routing and localization problems in the case of
mobile sinks become more difficult to cope with.

Additionally, critical issues arise in node to sink commu-
nications. For single hop communication, the sink should
eventually come within range of every sensor. Furthermore,
to successfully complete the communication, it must remain
within the range of the transmitter for the entire period that the
message is transmitted. This problem can be severe when there
is high density of sensors in an area or when some sensors
have recorded a significant amount of data. In such cases, the
communication time between the nodes and the sink is not
enough to upload their data, thus they need to wait for the
sink to return. This results in high delivery delays or even
data loss when the nodes have limited buffers. This problem
can be mitigated or even completely eliminated if the sink
pauses the network traversal in order to collect the data. In
our work we investigate sink mobility strategies that follow
this approach, since we introduce adaptive stop times which
are proportional to the local data traffic.

B. Our Contribution

We propose biased sink mobility with adaptive stop times, as
a method for efficient (with respect to both energy and latency)
data collection in wireless sensor networks. We assume a weak
model of a single mobile sink and propose a strategy for
network traversal, which serves nodes in a balanced manner.
The traversal is performed on a per region basis: the sink
visits regions one after another, stopping at each region for an
appropriate interval to collect data.



When moving in a random manner, we propose an efficient
biased random choice method that favors less visited and more
dense areas. Also, our method locally determines the stop
time needed to serve each region with respect to some global
network resources. More specifically, we estimate an upper
bound for the available total pause time, based on the initial
energy reserves of the nodes and hence the expected lifetime of
the network. We disperse the total pause time, based on local,
at each region, criteria, stopping for a greater time interval at
regions with higher density, and hence more traffic load. In this
way, we achieve accelerated coverage of the network as well as
fairness in the service time of each region. Besides randomized
mobility, we also propose an optimized deterministic trajectory
without visit overlaps, including direct (one-hop) sensor-to-
sink data transmissions only.

We evaluate our methods via simulation, in diverse network
settings and comparatively to related state of the art solutions.
Our findings demonstrate: a) for both network traversal meth-
ods (e.g. the randomized and deterministic) the introduction of
stop times (both constant and adaptive) reduces latency a lot,
while keeping high (or even increasing) the delivery success
rate, and also reducing the energy consumption, b) especially
in the case of adaptive stop times, the latency improvements
are very significant; in fact, our adaptive random walk outper-
forms the optimized deterministic traversal.

II. RELATED WORK AND COMPARISON

In mobile settings, the protocols and findings of previous
research on static wireless sensors networks can not be (at
least directly) applied. Efficient solutions in the state of the
art become inefficient or even inoperable. Even well studied
algorithms need to be redesigned; as an example, [2] proposes
a leader election algorithm suitable for mobile networks. Also,
new problems arise due to the high dynamics, e.g. maintaining
system integrity [3] and security [4] becomes more difficult.

Recently, applications that motivate mobility in wireless
sensor networks appeared. For networks of highly mobile
sensors (e.g. when the sensors themselves move dynamically)
[5] proposes adaptively redundant data dissemination strate-
gies as replacement for connectivity e.g sensors moving fast
throughout the network are favored for message ferrying, while
less data is forwarded under high mobility.

Relevant research is also presented in [6]. The authors pro-
pose and evaluate experimentally two algorithms for adaptive
movement of a data sink, that moves back and forth on a
straight line at given speed levels. The algorithms achieve low
energy consumption and satisfy an arbitrary time constraint,
set by the network operators, for the round trip time of the sink.
In our work we examine the problem in the more general case
where the sink moves either deterministically or randomly in
a two dimensional setting. We also impose stops on the sink
movement but the total stop time, and hence the cover time, is
constrained by the energy reserves of the nodes. We examine
equally distributed, fixed stop times as well as adaptive ones,
based on the observed local density in the area where the sink

is visiting. Our approach aims at reducing the overall delay in
collecting the data from the network.

Another relevant idea is presented in [7]. In a two dimen-
sional setting, multiple mobile sinks that move with constant
speed on precomputed linear trajectories are examined. Our
work is also based on a two dimensional setting but we assume
a single sink only and propose mobility methods that cover
the whole network area in both deterministic and randomized
ways. Also, we propose adaptive movement in order to better
handle areas with increased load.

The effects of docking the sink in different points in
the network are investigated in [8]. The authors propose a
multihop routing scheme where a single sink stops at certain
anchor positions while collecting data. Our protocols assume
only knowledge of the initial energy reserves of the sensor
nodes and operate using only local knowledge; we do not
acquire any global knowledge about the network conditions;
also, we focus on minimizing latency.

Finally, in [9], [10] the authors present methods for sche-
duling the movement of mobile elements in a sensor network
to avoid data loss due to buffer overflow.

III. THE MODEL

Sensors in our model do not move. The network area A is a
flat square region of size D×D. The positions of sensor nodes
within the network area are random and in the general case
follow a uniform distribution. Let n be the number of sensors
spread in the network area and let d be the density of sensors in
that area. However, in several important scenarios the network
operators are expected to deploy more sensors in areas where
fine grained monitoring is required. We model such scenarios
by assuming Pn “pockets” i.e. regions in the network with high
sensor node density. For the sake of simplicity, each pocket
is a circular area of radius rP , pockets don’t overlap and the
density of sensors in these areas is dP . For the rest of the
network area, the density is dn. We denote AP = πrP

2Pn the
area occupied by the pockets. Let nP the number of sensors
contained in pockets; clearly nP = dP · AP . Likewise, the
number of sensors contained in the rest of the network is nn =
dn(A−AP ). Thus the total number of sensors is n = nP +nn.

Sensor devices are equipped with hardware monitors that
measure environmental conditions of interest. Each device
has a broadcast (digital radio) beacon mode of fixed trans-
mission range R, and is powered by a battery. Also a
sensor is equipped with a general purpose storage memory
(e.g. FLASH) of size C. Let Ei the initial available energy
supplies of sensor i. At any given time, each sensor can
be in one of three different modes, regarding the energy
consumption: a) transmission of a message, b) reception of
a message and c) sensing of events. In our model, for the
case of transmitting and receiving a message, we assume that
the radio module dissipates an amount of energy proportional
to the message’s size. To transmit a k-bit message, the radio
expends ET (k) = εtrans · k and to receive a k-bit message,
ER(k) = εrecv · k, where εtrans, εrecv are constants that
depend on the radio module and the transmission range R.



For the idle state, we assume that the energy consumed for
the circuitry is constant for each time unit and equals eidle.

There is a special node within the network area, which we
call the sink S, that represents a control center where data
should be collected. Here, we assume that the sink is mobile.
The sink is not resource constrained i.e. it is assumed to be
powerful in terms of computing, memory and energy supplies.
The sink can accurately calculate its position (e.g. by using
navigational equipment, such as GPS) and is aware of the
dimensions and boundaries of the network area.

Finally, we assume that a specific, high-level, application
is executed by the sensors. This application is characterized
by the same message generation rate λ, for all sensors . The
approach of the uniform message generation rates, however,
is meant to address the following: a) In some applications it
is λi = λ, indeed and traffic is captured by the heterogeneous
density b) even if λi’s are different, we may not know their
exact values but only an average; even if known, we may take
λ as a gross, average value in each neighborhood, since the
sink each time adapts on all sensors it can listen to (see IV.B).

IV. DATA COLLECTION WITH ADAPTIVE STOPPING TIMES

As the mobile sink traverses the network, the subset of
sensors that it is able to communicate with changes very
frequently. To collect all the recorded data, the sink may need
to visit each sensor several times, since data is generated
continuously and not all of the data may be collected in a
single session with a sensor. In the latter case, this means that
some data will be delivered extremely delayed since the sink
will have to roughly complete a trip around the network before
visiting again. This effect can be mitigated if the sink pauses
to collect more data where available. The approach we follow
here is focused on two complementary directions. First, we
suggest efficient ways to traverse the network area and then
we propose efficient methods to determine for how long should
the sink remain in each region.

A. Network Traversal

A graph formation phase is executed by the sink during
the network initialization. The network area is partitioned in
j × j equal square regions, called cells. The center of each
cell is considered as a vertex in a graph that is connected with
unidirectional edges only to the four vertices corresponding to
adjacent cells. Thus, a lattice graph Go = G(V,E) is created
which is overlayed over the network area as depicted in Figure
1. We set j = dD/

√
2Re, thus when the sink is located at

the center of a cell, it can communicate with every sensor
node within the cell area. By reducing the walk in an overlay
graph we can perform some optimizations more easily; also,
our mobility schemes can be deployed in areas of arbitrary
topologies as long as we can abstract them by an overlay
graph. Initially, the mobile sink is positioned on one of the
nodes of Go. We define two traversal methods of Go.
Deterministic Walk. In order to cover the whole network area
in an efficient way we first suggest a deterministic walk that
spans the entire network. The sink visits cells from left to right

and vice versa when a boundary is reached, thus forming a
trajectory seemingly composed of connected horizontal linear
segments as seen in Fig. 1. By moving on this trajectory, the
sink will be, at some point in time, within the communication
range of each node in the network. This walk assumes some
global network knowledge at least at some stage (e.g. the sink
knows the boundaries of the network) and since it avoids visit
overlaps and multihop communication it represents some kind
of optimality with respect to the time needed to cover the
network and the energy spent.
Biased Random Walk. However, in the general case it may
not be feasible to traverse the network in a deterministic way as
the one we already presented. The presence of obstacles may
hinder the movement of the sink while it may be desirable
to move in an unpredictable way to avoid mischiefs from
adversaries. Also, the network topology may not be known to
the sink or may change dynamically. We thus propose a form
of random walk that uses probabilistic transitions between the
cells. The next position of the sink is determined by selecting
(with some appropriate probability) one of the neighbors of
the current vertex/cell in the graph.

In this walk, the sink associates a counter cu for every vertex
u; initially cu = 0 ∀u ∈ V . When the mobile sink enters
the area corresponding to vertex u it increases the associated
counter cu by 1. Thus, the frequency of visits of each area
can be estimated and maintained by the sink. The selection
of the next area to visit is done in a biased random manner
depending on this variable. If the mobile element is currently
on vertex u of degree degu, then we define

cneigh(u) =
∑

v

cv

for all v : (u, v) ∈ E. Then the probability p(f)v of visiting
a neighboring vertex v is calculated as

p(f)v =
1− cv/cneigh(u)

degu − 1

when cneigh 6= 0. When cneigh = 0 we have p(f)v = 1/degu.
Thus, less frequently visited regions are favored when the sink
is located at a nearby region.

Fig. 1. Example of the overlay graph Go and deterministic sink movement

B. Calculation of Stop Time

For each one of the network traversal methods (deterministic
or random) proposed in the previous subsection, we addition-



ally introduce stop times i.e. as the sink traverses the overlay
graph Go, it pauses its movement in each vertex of the graph
(i.e. in each network region) for a certain amount of time.
In particular, we propose constant (the same for all vertices)
and adaptive stop times (the stop time depends on some local
parameters e.g. density), and also compare them to the non-
stop movement (e.g. the stop time is zero at each vertex). We
present these schemes in next paragraphs.

First, in order to decide the stopping times for each case, we
define the variable Ttotal stop, which represents the maximum
total amount of time the sink can remain stationary. Ttotal stop

is calculated as follows:

Etotal = total messages sent · Emsg

= n · λ · Ttotal stop · Emsg + Eidle (1)

where Etotal is the total initial energy of all the sensors in the
network, n is the number of sensors of the network and λ is
the average event generation rate. Assuming that the maximum
length of a message sent is bounded, let Emsg be the maximum
amount of energy consumed when sending a message. In this
way, we calculate the maximum stop time the sink can use
until the whole energy of the network is depleted. It is:

Etotal = n · Ei = d · A · Ei

where A is the size of the network area, d the density of sensor
deployment and Ei the initial energy of each sensor i. Also

Eidle = eidle · n · Tsim − eidle · n · Ttotal stop

where eidle is the energy spent when the sensors remain idle,
since Eidle = n · Tidle · eidle and Tidle = Tsim − Ttotal stop,
where Tidle is the total time the sensors remain idle and Tsim

is the total time that the experiment is performed. Then

Ttotal stop =
Etotal − eidle · n · Tsim

n · λ · Emsg − eidle · n

=
d · A · Ei − eidle · n · Tsim

n · λ · Emsg − eidle · n

That is, Ttotal stop is a function f of d, A and λ: f(d·A
λ ) =

f(n/λ). We assume that the algorithm evolves in r rounds,
where round is the time needed for the sink to visit all
the nodes. This interval is stored in the variable Tround. If
the total stopping time is equally shared among the rounds,
then for each round Ttotal stop round = Ttotal stop

r . Thus,
Ttotal stop round is the maximum amount of time that the
sink will remain static in each round. For the first round,
from standard random walk theory, the value of Tround is
number of cells2 · a , where a depends on the distance
between the centers of two adjacent cells and the speed of
the sink (in our case it is a = (D/j)/smax/10). After the
first round, Tround takes its actual value. We now propose
two different types of stopping:

Constant stop time. Here we disperse Ttotal stop round

equally in each cell. The constant time the sink pauses at each
cell i is:

Tcelli =
Ttotal stop round

number of cells

Adaptive stop time. Here we adaptively calculate the stopping
time, with respect to the local density of the network and thus
the expected traffic in the cell. Let Tadapi

the adaptive pause
interval for cell i:

Tadapi
=

di

d
Tcelli

1

where di is the local density in cell i and 0 ≤ di

d ≤ β (β can
be > 1).

In all cases, data is collected in a passive manner. The sink
periodically broadcasts beacon messages. Nodes that receive
a beacon start transmitting the data stored in their memory
to the sink. The maximum time the sink can stay in cell i is
Tadapi . The messages the nodes send to the sink include a flag
reporting whether their memory emptied or not. If the sensors
empty their memory before Tadapi

expires, the sink leaves
the cell, to avoid spending a lot of time in an area without
collecting data. Otherwise, it leaves at the end of Tadapi

, even
if there is more data in the sensors’ memory to be sent.

Also, at each cell, the sink waits for messages to arrive for
a submultiple of Tadapi

, Tadapi

c ; if no messages arrive during
that time it leaves the cell (in particular, we take c = 10).
Especially for the case of deterministic network traversal, after
the first round the sink does not stop at all in a cell where no
nodes were discovered.

V. PERFORMANCE EVALUATION

We implement our schemes in ns− 2 [11], using the
extension framework TRAILS [12] which aims at better
handling networks of high dynamics due to e.g. mobility,
failures and obstacles. In addition to the protocols we propose,
we implemented two well known schemes, for comparison.
The first is a protocol without stop times, that in the case of
random movement is the classic random walk on the overlay
graph Go. Also, we adapted, to operate in our two dimensional
setting, and implemented SCD (Stop to Collect Data), one of
the algorithms proposed in [6]. In SCD, the mobile sink stops
when receiving new data, for an interval inversely proportional
to the number of newly discovered sensor nodes.

A. Simulation Setup

We considered different simulation setups for various net-
work settings and mobility parameters. We here present the
results for the set of experiments that consider several mobility
parameters. In particular, the size of the network area is
200m×200m and 300 sensor nodes are deployed. We consider
a deployment of nodes in one pocket of radius rp = 2R. The
ratio of the number of nodes in pockets over the number of

1
∑

Tadapi
=

Tcelli
d

∑
di =

Tcelli
d

· d · number of cells =
number of cells · Tcelli = Ttotal stop, i.e. the stop times sum up to
the total stop time as they should.



nodes in the rest of the network is np

nn
= 9. The transmission

range of the sensors and the sink is set to R = 15m.
We evaluate our methods considering different values for

the speed of the mobile sink, s ∈ {4, 8, 10, 20}m/s. The initial
energy reserves of the nodes are 5.5 Joules. The values of
εtrans, εrecv and eidle were set to match as close as possible
the specifications of the mica mote platform. We assume a high
level periodic monitor application executed by the sensors; the
application is triggered at the beginning of the simulation and
registers data about the network region. The data is generated
at random times at an average rate of 1 message/10 sec. Each
sensor device transmits 100 messages before the monitored
phenomenon ends and the simulation lasts 7000sec.

Conducting these experiments, we measure several metrics
depicting the behavior of the protocols. We call success rate
the percentage of data messages received by the sink over the
total number of generated messages. We measure the energy
consumed at the sensor network (i.e. we do not measure the
energy consumption of the mobile entity), as an absolute value
in Joules. Latency is defined as the time interval between the
creation of a message and the time it is delivered to the sink.

For each result we executed 100 runs. The findings demon-
strated high concentration around the average values, which
are depicted in the figures below.

B. Findings

The performance of the methods we proposed when the
network traversal is performed deterministicly is shown in
Fig. 2. In Fig. 2a, we observe that increased mobility speed
affects positively the performance of both the adaptive and
the constant schemes, since when speed increases, the latency
of the adaptive scheme is reduced, while the latency of the
constant scheme initially reduces and then remains almost
the same. On the contrary, increased speed leads to increased
latency in the case of the deterministic walk with no stop times.
The high speed in the case of the adaptive scheme balances
the effect of stopping in different network regions, thus it
achieves better latency. The increase of speed is beneficial
for the SCD algorithm, too, since when speed increases its
latency reduces. In Fig. 2b, we can see that the success rate
of the adaptive scheme is close to 100% for all the mobility
speed values. The success rate of the constant scheme is also
very high (98%-100%), while that of the deterministic walk
with no stop times is between 94% and 99.5%. The success
rate of the SCD algorithm is over 99%, too. In the cases of the
adaptive and the constant schemes, the energy consumption is
very high (Fig. 2c), because almost all messages are delivered
(success rate close to 100%). The same stands for the SCD
algorithm, too. On the other hand, when no stop times are
used, the energy consumption is very high even if the success
rate is not close to 100%; this happens because the sink moves
in a way that it cannot collect all the data of a region when
it visits it (especially when it moves very fast), so there is an
increased need of retransmissions.

Comparing the results of the adaptive scheme with the
results of the SCD algorithm, we observe that when the
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Fig. 2. Latency (a), success rate (b), energy dissipation (c) of the deterministic
walk, for different speeds of the mobile sink.

mobility speed is low, the adaptive scheme gives a higher
latency than the SCD, but also achieves higher success rate
and lower energy consumption. When speed increases the
difference in the latency between the two strategies becomes
very small, the success rate remains higher in the case of the
adaptive scheme and energy consumption is lower or almost
the same with the energy consumption of the SCD algorithm.

Figure 3 depicts the performance of the proposed schemes
when they are combined with the biased random walk. In Fig.
3a, we observe that by increasing the mobility speed, latency



is reduced for the adaptive scheme. The constant scheme has
high latency for low mobility speed, as the speed increases, it
initially drops and then remains almost the same. The latency
of the random walk with no stop times is high for low speed
and slightly drops when speed increases. Besides, we see
that the adaptive scheme achieves lower or almost the same
latency for all the values of the mobility speed. Fig. 3b shows
that the adaptive scheme achieves a very good success rate,
almost 100%. The success rate of the constant scheme is also
very good (95.5% - 99.5%). The success rate of the random
walk with no stop times also increases as the mobility speed
decreases. As shown in Fig. 3c, the energy consumption is
high for all of the three cases; this is expected because the
success rate of all the cases is high. Nevertheless, the adaptive
scheme has a better behaviour in terms of energy consumption
than the random walk with no stop times, because the latter
consumes a lot of energy even when the succes rate is high
(the same as in the deterministic walk explained above).

In more detail, the comparison between three main mobility
strategies, our biased random walk with adaptive stop times,
the random walk with no stop times and the deterministic
traversal with no stop times, suggests that for mobility speed
s = 20m/s, our adaptive scheme achieves significantly reduced
latency; in particular the combination of adaptive stop times
with biased network traversal achieves about 70% lower
latency that the other two simple mobility strategies’. This
implies that stop times and especially adaptation can accelerate
network traversal and data collection a lot, since even when
applied to the classic random walk (which is known to be slow)
they lead to significant latency improvements (even compared
to an optimized deterministic traversal). Thus, adaptation is
very relevant, especially under weak models of very limited
network knowledge (in such models, randomness is very
suitable).

VI. CLOSING REMARKS

Our work points out the relevance of adaptively choosing the
stopping times for sensory data collection using a mobile sink.
In particular, in our method the stop times depend on the local
density in each network region, towards balanced traversal,
stopping more in regions with higher traffic. We propose both
randomized mobility and optimized deterministic traversals. In
all cases, the adaptive stop times lead to significantly reduced
latency, especially for non-uniform sensor distribution, while
keeping the delivery success rate and energy dissipation at
satisfactory levels. We plan to continue this work by investigat-
ing additional stop strategies towards even better performance.
Also, to combine with alternative suitable data dissemination
mechanisms. Finally, we plan to consider adaptive loosely
coordinated motion strategies for multiple mobile sinks.
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