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Abstract 

In ad-hoc networks, location estimation must be de- 
signzed for  mobility and zero-configuration. A peer-to- 
peer relative location system i ~ e s  pair-riiise range esti- 
mates made between devices and their neaghbors. De-  
rrices are not required to be in, range of fied base sta- 
taons, instead, a few known-location devices in the net- 
work alloui the remaining devices to cnhdate  their loca- 
tion using a maximum-likelihood (ML) method dehued 
an this paper. This paper presents simulations using 
both a standard channel " i e l  and actual indoor chan- 
nel measurements for verification. Both simulation wid 
measurements show that a peer-to-peer relative location 
system can provide accurate location estimation using 
received signal strength (RSS) as a ranging method. 

1. Introduction 

In many proposed applications for wireless peer-to- 
peer and ad-hoc networks, knowing the location of the 
devices in the network is key. For ad-hoc networking, 
researchers have proposed using location information 
for routing purposes [6]. For military, police, or fire- 
man radio networks, knowing the precise location of 
each person with a radio can be critical. In offices and 
in warehouses, object location and tracking applica- 
tions are possible with large-scale ad-hoc networks of 
wireless tags. Finally, for wireless sensor networks that 
have a variety of home, indnstrial, and agriciiltural a p  
plications, knowlcdgc of scnsor location is critical. 

Motorola has introduced the concept of 
NeuRFonTM systems to describe a wireless sen- 
sor network in which distributed RF devices operate 
in analogy to human neurons. These systems are 
composcd of dcviccs that scnsc, process, transccivc, 
and act in a distributed, low power network. Devices 

communicate with neighboring dcviccs to pays around, 
condense, and make decisions based on information 
they have collected. NeuRFonT" devices, to be fault 
tolerant, are deployed more densely than necessary in 
the environment, of interest. Location information in 
these systems will be critical both for identification; 
information fusion, and localized reactions to stimiili. 
The locatiou of a. seusor may replace ID riurribers as 
the means for addressing sensors [lo]. 

1.1. Exisiting Positioning Systems 

The Global Positiouing System (GPS) has been sug- 
gested as a means to obtain location information in 
ad-hoc networks [SI. For outdoor applications in which 
device density is low, and cost is not a major concern, 
GPS is a viable option. However. adding GPS capabil- 
ity to each device in a deuse rietwork is expensive. Fur- 
thermore, achieving high accuracy from GPS requires 
use of diffcrcntial tcchniqucs. 

Local positconzng sytems (LPS) deploy a grid of RF 
base stations that communicate with devices and then 
triangulate to determine their locations based on re- 
ceived signal strength (RSS), time difference of arrival 
(TDOA), or timc-of-arrival (TOA) tcchnologics [13]. 
In LPS, devices communicate onlv with fixed base sta- 
tions. When one device is to bp located, all other de- 
vices are ignored, and the network of base stations cal- 
culates the position of the single device based on the 
measurements (RSS or TOA) made in onc or more 
device-to-base station links. Such an idea could he 
used in a large scale sensor network in combination 
with GPS. Since the cost of including GPS capability 
in every node would be too expensive, GPS could be 
included in just a fraction of devices [8]. Devices with- 
oiit GPS would range themselves to the devices with 
GPS functionality. However, as the fraction of GPS 
functionality decreases, the range of the devices milst 
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be larger, and the power drain a t  the GPS-functional 
device increases. 

three parts exist and focuses on the location mapping 
algorithm. However, derivation of the algorithm begins 
with statistics of the ranging method. 

2. Peer-to-Peer Relative Location 
3. Range Estimation 

Another way to obtain relative location in a net- 
work is to use pair-wise range estimates made between 
all devices. In [l] and [2] range estimates are used to 
draw lines between pairs of devices. One difficulty us- 
ing these geometric methods is that as more and more 
devices are added into the location map, the range er- 
rors can add onto each other. In [2], a residual weight- 
ing algorithm from [3] is used to remove TOA ranges 
that appear to be due to non-line-of-sight (NLOS) er- 
rors. ,411 possible combinations of estimated ranges are 
tested to find a hlSE solution. But in a peer-to-peer 
network, the possible combinations of pair-wise ranges 
will rise very rapidly with increasing numbers of de- 
vices. 

In this paper, we consider the use of h4L techniques 
to accurately locate all devices in the network. First, 
we define devices in the network as either reference 
devices, which have an independent estimate of their 
coordinates, or blindfolded devices, those that do not. 
Reference devices might obtain these coordinates from 
GPS if they have that capability and they have a clear 
view of the sky. In an indoor system, some reference 
devices could be fixed as beacons throughout a build- 
ing. Or, a stationary device with a high degree of confi- 
dence in its location estimate could become a reference 
device. When a device is incapable of being a reference 
device, it reverts to being a blindfolded device. Blind- 
folded devices cannot ’see’ their location, but they are 
capable of calculating their range to other blindfolded 
and reference devices, and transmitting and receiving 
pair-wise range estimates to and from other devices. 
With the combined range information between many 
pairs of devices and the known locations of a few ref- 
erence devices, a AIL solution for the location of all of 
the blindfolded devices is determined. 

Four components must be present in order t o  make 
location estimates in a peer-to-peer relative location 
system. First, some of the devices must be reference de- 
vices, so there must be an independent method for ab- 
solute location. Second, all of the devices must be able 
to estimate the range between themselves and their 
neighbors. Third, there must be an ad-hoc network 
protocol by which the devices can pass along range 
and location estimates to  other devices. Finally, there 
must be a location mapping algorithm that estimates 
the locations of the blindfolded devices given the pair- 
wise range estimates and the known coordinates of the 
reference devices. This paper assumes that the first 

In a network of asynchronous devices, TOA range 
estimation is made by using two-way delay methods [4] 
and [7]. In two-way TOA, the range estimate will be 
degraded by the multipath and noise in the channel and 
the inaccuracies of device reference clocks. The errors 
due to multipath can be reduced by using very wide 
bandwidths or radar-like technologies such as ultra- 
wideband (UWB). However, the range estimate is lim- 
ited by clock inaccuracies, which can be brought down 
by using expensive low parts-per-million (PPM) and 
low phase noise oscillators. For dense networks of low 
cost, low power wireless devices, it would be advanta- 
geous if RSS could be used to  make range measure- 
ments. RSS can be implemented in simple devices. Al- 
though traditionally seen as a crude distance estimator, 
RSS is less inaccurate at short ranges. A frequently re- 
ported model for the fading channel gives the mean dB 
received power a t  device i that  was transmitted from 
device j as: 

pi , j  = po - lOnlog,, (%) 

where po is the received power in dB at a reference dis- 
tance do and n is the path loss exponent [ 5 ] .  The mea- 
sured power, in error due to fading, is $,,j = p i j  + X,. 
The random variable, .Yo, represents the medium-scale 
fading in the channel and is typically reported to be 
zero-mean and Normal (in dB) with variance g& in- 
variant with range [ 5 ] .  In such a channel, we assume 
that small scale fading effects have been diminished by 
use of time-averaging or spread-spectrum techniques 
such that they do not significantly change the distri- 
bution of X ,  from the log-normal distribution ?f the 
medium-scale fading. Thus the range estimate, d ,  is 

The error in range estimation, di,j -&, is proportional 
to range. To take advantage of the accuracy of RSS at 
short ranges, a traditional LPS would have to deploy 
a dense grid of base stations. A peer-to-peer relative 
location system takes advantage of this characteristic 
when devices estimate the distance to  their neighbors. 
In a dense network (in which inter-device distances are 
smaller than the desired location accuracy), RSS range 
estimation works well. 
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4. Maximum Likelihood Formulation 

In an RSS relative location system, each device mea- 
sures the received powers from the devices with which 
it communicates. The device averages these over time 
and periodically updates a network computer when a 
received power changes significantly. This network pro- 
cessor compiles the pairwise received power estimates 
into a matrix P with elements pi,j representing the 
power received by device i that  was transmitted from 
device j. For the ML formulation, one first postulates 
the coordinates of the N devices and then calculates 
the posulated received power, p i j  , based on Eq. 1. The 
likelihood Li, is the probability, given that the postu- 
lated location estimates are correct, that the received 
power matrix P would be received (within some A p ) :  

where Hi is the set of neighboring devices that device 
i detected. It is assumed that if a received power goes 
below a threshold pthr, then the device will not be de- 
tected. This information is also useful for a location 
algorithm. The likelihood function Lout is the proba- 
bility, given that the postulated location estimates are 
correct, that the received powers for j ,kHt were below 
Pthr: 

j # i  

where &[XI is the area in the tail of the normal dis- 
tribution x standard deviations away from the mean. 
The overall likelihood function is the product of Li, 
and Lout. To simplify this product, plug in Eqs. 1 and 
2, take the negative logarithm of the result and find 
the minimum. The ML coordinates are given by 

b = lOn/(ln(lO)adB) 

(7) dthr = do . 10(PO-l"h?)/(1On). 

TO find the minimum of Eq. 6, a conjugate gradient 
algorithm is used [9]. The algorithm is aided by the 
fact that Eq. 6 is readily differentiable. 
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5. Simulation 

The performance of peer-to-peer relative location is 
simulated for an indoor factory area in 2-D using Mat- 
lab. Reference devices are positioned in the corners of 
a 15m by 15m area, and N blindfolded devices are po- 
sitioned randomly (uniformly distributed) within the 
area. The simulation then randomly generates the re- 
ceived power between all pairs of devices in the area. 
Eq. 1 with n = 2.6 and a dB standard deviation of 
U d B  = 7.1 is used to  simulate a factory environment 
[ l l ] .  Any received powers below Pthr are erased from 
the received power matrix P t o  simulate the range limit 
dthr of the devices. The simulations are run for both 
dthT = 20m and dthT = CO (when all devices are in 
range of each other). 

Once the received powers are generated for the de- 
vices, the central processor guesses the initial coordi- 
nates for each blindfolded device. This simulation uses 
the range estimates between blindfolded and reference 
devices and the method of [la]. If a blindfolded de- 
vice is not in range of a t  least 3 reference devices, the 
simulation generates a random guess (although accu- 
rate initial postulated coordinates may speed up the 
minimization, it is not essential). -4fter the conjugate 
gradient algorithm finds a maximum in the likelihood 
function (minimum in Eq. 6), the location estimates 
are compared with the actual locations and the errors 
are recorded. These location estimates are sometimes 
not the global maximum, however, from closely ana- 
lyzing several of the simulation runs, it seems that the 
errors due incorrectly identifying a local maximum are 
not severe. For N = 1, 5, 10, 15, 20, 25, 30, 35, and 40, 
the number of trials is 1000, 800, 400, 250, 200, 160, 
100, 100, and 100, respectively (at low N more trials 
are necessary to  generate as many location errors). The 
67th percentile of the blindfolded device location errors 
is plotted in Fig. 1. 

6. Measurement Verification 

It is assumed in the simulation that the fading X ,  
between a device and each of its neighbors is statis- 
tically independent, since we are aware of no channel 
model in the literature that addresses link fading cor- 
relations in a peer-to-peer network. Thus verification 
of the simulation requires actual RSS channel measure- 
ments, which are conducted in the Motorola facility in 
Plantation, Florida. The measurement system consists 
of a HP 8644A signal generator transmitting a CW sig- 
nal a t  925 MHz at an output level of 0.1 mW and a 
Berkeley Varitronics Fox receiver. A X/4  dipole with 
Roberts balun resonant at 925 MHz is positioned at a 
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Peer-to-Peer Relative Location in a 15m x 15m area 
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Figure 1. Simulated 67th percentile errors 

height above the floor of 1 meter at  both the trans- 
mitter and receiver. The antennas are both stationary 
during each measurement and have an omnidirectional 
radiation pattern in the horizontal plane and a vertical 
beamwidth of 30". The Fox receiver was set to average 
received power over one second. The campaign is con- 
ducted during evenings and on weekends to ensure that 
the channel is mostly static during the measurements. 
Two meter tall Hayworth partitions and ceiling-height 
interior walls divide the area into cubicles, lab space, 
and offices. To simulate a system in which reference 
devices are placed approximately every 15 m in the in- 
door environment, they are placed in a 4 by 4 grid in 
the measurement area (see map in Fig. 2). 

Forty locations are chosen for the blindfolded de- 
vices in the center quadrant (16 m by 14 m). The cen- 
ter quadrant consists of four columns of cubicles and 
the hallways that separate them. Two or three blind- 
folded device locations are chosen for each cubicle, and 
a few locations put into the hallways. This density or 
greater would be expected in a location and tracking 
system in which each employee places a tag on two or 
three valuable things that he or she works with, such as 
computers and accessories, electronic equipment, brief- 
cases, wireless phones, notebooks, tools, or key rings. 
Together, there are 56 reference and blindfolded device 
locations. 

First, the transmitter is placed a t  location 1, and 
received power readings are taken and recorded at  lo- 
cations 2 through 56. Next, the transmitter is moved to  
location 2, and power readings are taken at  locations 1 
and 3 through 56. This process continues until power 
measurements have been made between each pair of 
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Figure 2. Floor plan of measurement area 

devices, for a total of 3080 RSS measurements. The 
measured received powers, plotted in Fig. 4, fit the 
channel model of Eq. 1 with a do of 1 m, n of 2.98. 
The histogram of X ,  shows a Gaussian PDF with a 
standard deviation of UdB = 7.38. 

The ML location is calculated using the measured 
matrix P by the method in Section 4 and the results 
are shown in Fig. 3. The RMS location error for all 
40 blindfolded devices is 2.1 meters. Of the 33 devices 
located in cubicles, 22 are estimated to  be within the 
correct cubicle, and the remaining 11 are estimated 
to be either in the immediate neighboring cubicle or 
in the hallway just outside the correct cubicle. The 
maximum error is 4.2 m, the median error is 1.8 m, 
and the minimum error is 0.12 m. 

7. Conclusions 

Relative location has several advantages over LPS. 
Higher density of blindfolded devices actually increases 
the accuracy of the location system. High reference de- 
vice density, however, is not necessary. In fact, blind- 
folded devices not in range of any reference devices can 
be located. As a result, devices can use low transmit 
power for purposes of detection avoidance, low inter- 
ference and high capacity, or for extending battery life. 
Reference devices, if they are fixed at known locations, 
do not need to be any more complicated or expensive 
than the transceiver devices that serve as tags for the 
items being tracked. Even if reference devices use GPS, 
then the ratio of devices that need to  be GPS-capable 
can be very low without increasing the load on the 
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Figure 3. True location (T) and relative loca- 
tion system estimate (R) 

GPS-capable devices. 
This paper has presented a ML method to  calcu- 

late device locations given. pair-wise received power 
measurements and reference device coordinates. This 
method has been used in simulations to  show the re- 
lationships between device densities and location accu- 
racy. It has been demonstrated using RSS measure- 
ments in a cluttered office environment to show that a 
simple indoor location and tracking system can locate 
devices to  within the correct cubicle 67% of the time. 
Although RSS range estimates are often in error, short 
range operation and built-in redundancies help correct 
them. With higher device densities, or with more accu- 
rate two-way TOA ranging methods, relative location 
could bring even higher accuracies. 
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