Fast Algorithms for Maintaining Shortest Paths
in Outerplanar and Planar Digraphs * (rCT’95 ver.)

Hristo N. Djidjev!, Grammati E. Pantziou? and Christos D. Zaroliagis®

L Computer Science Dept, Rice University, P.O. Box 1892, Houston, TX 77251, USA
2 Computer Science Dept, University of Central Florida, Orlando FL 82816, USA
3 Max-Planck Institut fiir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany

Abstract. We present algorithms for maintaining shortest path infor-
mation in dynamic outerplanar digraphs with sublogarithmic query time.
By choosing appropriate parameters we achieve continuous trade-offs be-
tween the preprocessing, query, and update times. Our data structure is
based on a recursive separator decomposition of the graph and it encodes
the shortest paths between the members of a properly chosen subset of
vertices. We apply this result to construct improved shortest path algo-
rithms for dynamic planar digraphs.

1 Introduction

The design and analysis of algorithms for dynamic graph problems is one of the
most active area of current algorithmic research. For solving a dynamic graph
problem one has to design an efficient data structure that not only allows fast
answering to a series of queries, but that can also be easily updated after a
modification of the input data. Let G be an n-vertex digraph with real valued
edge costs but no negative cycles. The length of a path p in G is the sum of the
costs of all edges of p and the distance between two vertices v and w of G is
the minimum length of a path between v and w. The path of minimum length
between v and w is called a shortest path between v and w. Finding shortest path
information in graphs is an important and intensively studied problem with many
applications. The dynamic version of the problem has also been studied recently
[3,4] and is stated as follows: Given G (as above), build a data structure that
will enable fast on-line shortest path or distance queries. In case of edge cost
modification of G, update the data structure in an appropriately short time. We
will refer to the above, as the dynamic shortest path (DSP) problem. The DSP
problem has a lot of applications, including dynamic maintenance of a maximum
st-flow in a network [7], computing a feasible flow between multiple sources and
sinks as well as finding a perfect matching in bipartite planar graphs [8].

In this paper, we investigate the DSP problem for particular classes of di-
graphs, namely those of outerplanar and planar digraphs. An efficient solution

* This work was partially supported by the EU ESPRIT BRA No. 7141 (ALCOM 1I),
by the EU Cooperative Action IC-1000 (ALTEC) and by the NSF grant No. CCR-
9409191. Email: hristo@cs.rice.edu, pantziou@cs.ucf.edu, zaroQ@mpi-sb.mpg.de.

to the DSP problem for outerplanar digraphs has been given in [3] where a data
structure is constructed in O(n) time and space and then any distance query
is answered in O(logn) time. The data structure is updated after an edge cost
modification in O(logn) time. (A different approach leading to the same per-
formance characteristics is claimed in [1].) On the other hand, if constant query
time is required one can not do much better than the naive approach, i.e. an
O(n?) time and space preprocessing of the input digraph (using e.g. the algo-
rithm in [6]), such that a distance query is answered in O(1) time and a shortest
path one in O(L) time, where L is the number of edges of the path. Updating
this data structure after an edge cost modification takes O(n?) time which is
equivalent to recomputing the data structure from scratch.

Hence, the interesting question arising is: Can we do better than these two
extremes? In particular, can we build a dynamic data structure for the DSP
problem on outerplanar digraphs in o(n?) time and space, such that a query
can be answered in o(logn) time and also the data structure can be updated in
appropriately short (say sublinear) time after an edge cost modification?

In this paper, we give an affirmative answer to the above question. More pre-
cisely, we present two families of algorithms with o(logn) query time that achieve
an interesting trade-off between preprocessing, update, and query bounds, de-
pending on the choice of a particular parameter £, 0 < € < (1/2). The results
are stated in Theorems 1 and 2. For the case of constant e, our results as well as
their comparison with previous work are summarized on Table 1. (We would like
to mention here that the preprocessing bound has been improved very recently
[2] through a completely different method. However, the algorithms presented
here are much simpler compared with the ones in [2].)

’ H [3] \Naive approach\ This paper \This paper‘
Dynamic Yes No Yes Yes
Preprocessing
Time & Space O(n) O(n?) O(nloglogn) | O(n'*e)
Single-Pair
Dist. Query O(logn) 0(1) O(loglogn) o(1)

Single-Pair
SP Query ||O(L + logn) O(L) O(L +loglogn)| O(L)
Update
Time O(logn) O(n?) O(n?%) O(n*)

TABLE 1: Comparison of results for outerplanar digraphs in the case where ¢ is an
arbitrary constant 0 < ¢ < (1/2).

Our approach is actually a (non-trivial) generalization of the method given in
[3] and is based on: (i) a multilevel decomposition strategy based on graph sep-
arators; and (ii) on a sparsification of the input digraph where we keep shortest
path information between properly chosen ©(n) pairs of vertices.

As a main application of our algorithm we give faster algorithms for shortest
path problems in planar digraphs. In the final section of this paper we list also
other extensions and generalizations of our results.

2 Preliminaries and Data Structures

Let G = (V(G), E(G)) be a connected n-vertex digraph with real edge costs but
no negative cycles. A separation pair is a pair (z,y) of vertices whose removal
divides G into two disjoint subgraphs G; and G5. We add the vertices z, y and
the edges (z,y) and (y,x) to both G; and G3. Let 0 < a < 1 be a constant.
An a-separator S of G is a pair of sets (V(S), D(S)) where D(S) is a set of
separation pairs and V' (.9) is the set of the vertices of D(S) such that the removal
of V(S) leaves no connected component of more than an vertices. We will call
the separation vertices (pairs) of S that belong to any such resulting component
H and separate it from the rest of the graph separation vertices (pairs) attached
to H. It is well known that if G is outerplanar then there exists a 2/3-separator
of G which is a single separation pair.

In the sequel, we assume w.l.o.g. that G, is a biconnected n-vertex outer-
planar digraph. Note that if G, is not biconnected we can add an appropriate
number of additional edges of very large costs in order to convert it into a bi-
connected outerplanar digraph (see e.g. [6]).

An [-decomposition of GG,, where [is an arbitrary positive integer, is a de-
composition of G, into O(l) subgraphs such that (i) each subgraph is of size
O(n/l), and (ii) the number of separation pairs attached to each subgraph is
O(1) . We say that the O(n/l) separation pairs whose removal divides G, into
O(l) subgraphs are associated with G,.

Let A be an arbitrary function over positive integers whose values are positive
integers. Suppose that we compute a A(n)-decomposition of G, and then recur-
sively find a A(n;)-decomposition of each resulting connected component G; of
n; vertices until we get subgraphs of constant size. We associate a tree with the
above decomposition as follows: at each level of recursion, the node associated
with G; is parent of the roots of the trees corresponding to the components
of the A(n;)-decomposition of G;. We call the resulting tree a A-decomposition
tree of G,. Note that each subgraph G; has O(1) separation pairs attached to
it and O(n;/A(n;)) separation pairs associated with it. We describe a recursive
algorithm that constructs a A-decomposition tree DT(G,) of G, that will be
used in the construction of a suitable data structure for maintaining shortest
path information in G,. At each level of the recursion, the algorithm recursively
decomposes an n;-vertex graph G; into O(A(n;)) subgraphs and builds the cor-
responding part of the decomposition tree.

_ Let in the algorithm below G denote an f-vertex subgraph of G, (initially
G :=G,).

ALGORITHM Decomp_Tree(G, A\, DT(G))
BEGIN

1. For any connected component K of G with |V (K)| > i/A\(7) do Steps 1.1
and 1.2.

1.1. Denote by S the set of separation pairs (2/3-separators) in G found
during all previous iterations and denote by n,c, the number of separation pairs
of S attached to K. Check which of the following cases applies.

1.1.1. If ngep < 3, then let p = {p1, p2} be a separation pair of K that divides
K into two subgraphs K; and K> with no more than 272/3 vertices each.

1.1.2. Otherwise (ngsep > 3), let p = {p1,p2} be a separation pair that sep-
arates K into subgraphs K; and K3 each containing no more than 2/3 of the
number of separation pairs attached to K.

1.2. Add p to S.

2. Find a A-decomposition tree of each component of G by running this
algorithm recursively.

3. Create a separator tree DT(G) rooted at a new node associated with all
separation pairs p found in Step 1.1 and whose children are the roots of the
A-decomposition trees of the components of G.

END.

Following [3], we can implement each recursive step of the algorithm in O(7)
time and space. It is easy to see that by choosing A(n) = n®, for any 0 < ¢ <
(1/2), the depth of the DT(G,) is O((1/¢)loglogn). Hence, we have:

Lemma 1. Let A(n) = n®, where 0 < € < (1/2) is an arbitrary number. Algo-
rithm Decomp_Tree(G,, A\, DT(G,)) constructs a A-decomposition tree of G, in
O((1/e)nloglogn) time and O((1/e)nloglogn) space.

Given an outerplanar digraph G, and a set M of vertices of G, compressing
G, with respect to M means constructing a new outerplanar digraph of O(|M|)
size that contains M and such that the distance between any pair of vertices of
M in the resulting graph is the same as the distance between the same vertices

in G, [6].

Definition 1. Let G, be an n-vertex outerplanar digraph and let {p1,p2} be a
separator pair of G, that divides G, into connected components one of which is
G. Let S be a set of A(n) separation pairs that divides G into O(A(n)) subgraphs
K. Let Ak be the set of separator pairs attached to K, |Ax| = O(1). Construct
a digraph SR(G) as follows: remove S from G, compress each resulting subgraph
K with respect to (V(S) U {p1,p2}) NV (K), and join the resulting subgraphs at
vertices V(Ak). We call SR(G) the sparse representative of G.

Remark: Let e be an edge with both of its endpoints in A . It is clear that e can
be shared by at most two subgraphs K. In the above definition, when subgraphs
are joined at the vertices of V(A), we keep as the cost of e the smallest of the
(possibly) two different costs that e may have in the two subgraphs.

3 The Dynamic Shortest Path Algorithm for Outerplanar
Digraphs
3.1 The Preprocessing Phase

The preprocessing algorithm constructs the A-decomposition tree DT(G,). Each
node of DT(G,) is associated with a subgraph G of G, along with the set of

separation pairs associate with it (as they are determined by the decomposition
procedure), and also contains a pointer to the sparse representative SR(G) of
G. The sparse representative SR(G) is computed for all graphs G of DT(G,).
According to Definition 1, SR(G) consists of the union of the compressed versions
of GG; with respect to the separation pairs attached to G plus the associated
separation pairs dividing G into the subgraphs G;, where G;’s are the children
of G in DT(G,). Therefore the size of SR(G) is proportional to the number of
separation pairs attached to and associated with G. Note that for each leaf of
DT (G,) we have that SR(G) = G, since in this case G is of O(1) size. Moreover,
for all graphs G of DT(G,), the preprocessing algorithm also computes all pairs
shortest path (APSP) information between the separation pairs associated with
G. Thus, in the query phase, we can answer distance queries in SR(G) in constant
time and shortest path queries in time proportional to the number of edges of
the path.

In the following, let A(n) = n®, where 0 < ¢ < (1/2) is any arbitrary number.

ALGORITHM Pre_1(G,)
BEGIN
1. Construct a A\-decomposition tree DT(G,).
2. Compute the sparse representative SR(G,) of G, as follows.
for each child G of G, in DT(G,) do
(a) if G is a leaf of DT(G,) then SR(G) =G
else find SR(G) by running Step 2 recursively on G.
(b) Construct the sparse representative of G, as described in Definition 1
by using the sparse representatives of the children of G,.
(c) Run an APSP algorithm on SR(G,) storing the shortest path
information among the O(A(n)) separation vertices in a table.
3. Generate a table with entries [v, G;], where G, is the leaf subgraph of
DT(G,) containing v. Construct a similar table for the edges of G,.
4. Preprocess DT(G,) (using e.g. the algorithm in [9]) such that
lowest common ancestor queries can be answered in O(1) time.
END.

From the discussion preceding the algorithm and Lemma 1, we have:

Lemma 2. Let A(n) = n®, where 0 < e < (1/2) is any arbitrary number. Algo-
rithm Pre_1(G,) takes O((1/e)nloglogn) time and space.

3.2 Answering a Query

The query algorithm computes the distance between any two vertices v and z of
G, and proceeds as follows. First, use DT(G,) to find a subgraph G of G, such
that there exists at least one separation pair associated with G that separates v
from z. Let P15 = (p1, p2) be a separation pair associated with G such that v and
p1,p2 belong to the same child subgraph of G and also P, separates v from z.

Let P34 = (ps,pa) be another separation pair associated with G which separates
v from z and moreover, z and ps,py belong to the same child subgraph of G.
(Note that P2 and Psy may coincide.) Let d(v, z) denote the distance between
v and z. Then clearly,

d(v, 2) = min{min{d(v, p1) + d(p1, ps) + d(ps, z),d(v, p1) + d(p1, pa) + d(pa, 2)},
min{d(v, p2) + d(p2, p3) + d(ps, 2),d(v; p2) + d(p2, pa) + dlps, 2)}}. (1)

Hence, for answering the query it suffices to compute the distances d(v,p1),
d(ps, z), d(v,p2), d(ps,z) and D(P12, P34), where D(Pia, P34) denotes the set of
all four distances from a vertex in P2 to a vertex in Ps4. In order to do this
we will need the shortest path information stored in the tables of the sparse
representatives.

Now we discuss how one can use the information the sparse representatives
provide. Let s = (s1,s2) be any separation pair attached to G. The distance
from s1 to s in SR(G) is, by the preprocessing algorithm, equal to the distance
between s; and ss in G. Note that, in general, the distance from s; to s in
G might be different from the distance between these vertices in G,. Before
we present the query algorithm, we give a way to determine the distances in G,
between the vertices of certain separation pairs that are used in the computation
of the distance between v and z. Let G, be the subgraph associated with the
leaf node of DT(G,) that contains v. Let D(G,) be the set of all distances
in GG, between the vertices of the separation pairs attached to ancestors of G,
(including G, itself) in DT(G,). Then D(G,) can be found by the following
algorithm.

ALGORITHM Attached Pairs(G,)
BEGIN

1. Let G’ be the parent of G, in DT(G,). If G = G, then D(G’) := 0;
otherwise compute recursively D(G’) by this algorithm.

2. For each separation pair (s}, s,) attached to G’, find d(s], s5) and d(s}, s})
in G, by using the tables of SR(G’) and the information in D(G’). Set D(G,,) :=
D(G") U{d(s1,55), d(s5,51)}-

END.

Algorithm Attached_Pairs can be used to compute the distances in G, between
the vertices of all separation pairs attached to G, or to any ancestor of G,
in DT(G,), so that one can ignore the rest of G, when computing distances
in G, or in one of its ancestors. (As a consequence, we can also compute the
correct distances in D(Pjo, P34) in O(1) time, using the tables of the sparse
representative of G.) It is not hard to see that the running time of the above
algorithm is O((1/¢)loglogn) (i.e. proportional to the depth of DT'(G,)).

Next we describe the query algorithm. Let v’ be a vertex that belongs to the
same subgraph G, of G, that is a leaf of DT(G,) and that contains v. Let p(v)
be the pair of vertices v, v’. Similarly define a pair of vertices p(z) that contains
z and a vertex z’ which belongs to the leaf G, of DT(G,) containing z. Then
(1) shows that D(p(v),p(z)) can be found in constant time, given D(p(v), Pi2),

D(P12, P34) and D(Ps4,p(2)). The following recursive algorithm is based on the
above fact.

ALGORITHM Query_1(G,,v, 2)
BEGIN

1. Find the subgraphs GG, and G, as defined above.

2. Run the Algorithm Attached_Pairs on G, and on G, .

3. Find pairs of vertices p(v) and p(z) as defined above.

4. Find a subgraph G of G, such that there exist separation pairs Pjq, Py
associated with G (as defined above) that separate p(v) and p(z) in G. Use the
information found at step 2 and the tables of SR(G) to compute the correct
distances in D(Py2, P34).

5. Find D(p(v), P12) as follows:

5.1. Let G’ be the child of G in DT(G,) that contains p(v) and Pio. If G’ is
a leaf of DT(G,), then determine D(p(v), Pi2) directly in constant time.

5.2. If G’ is not a leaf then find the child G” of G’ that contains p(v). For
each separation pair p’ attached to G” do the following. Compute D(p(v),p’)
by executing Step 5 recursively with Py := p/, and then find D(p(v), P12) using
(1). (Note that D(p’, P12) can be taken from the tables of SR(G’).) Keep as
D(p(v), P12) the minimum of the computed distances.

6. Find D(Ps4,p(2)) as in Step 5.

7. Use D(p(v), P12), D(Pi2, P34), D(P34,p(2)) and (1) to find D(p(v), p(2)).
END.

Steps 1, 3 and 4 of algorithm Query_1 take O(1) time by the preprocessing of
G,. Step 2 takes O((1/¢)loglogn) time (as discussed above). It is not difficult
to see that each recursive execution of Step 5 takes O(1) time and the depth of
the recursion is bounded by the depth of DT'(G,). Thus, we have:

Lemma 3. Algorithm Query_1(G,,v,z) finds the distance between any two ver-
tices v and z of an n-vertex outerplanar digraph G, in O((1/€)loglogn) time.

Algorithm Query_1 can be modified in order to answer path queries. The
additional work (compared with the case of distances) involves uncompressing
the shortest paths corresponding to edges of the sparse representatives of the
graphs from DT(G,). Uncompressing an edge from a graph SR(G) involves a
traversal of a subtree of DT(G,), where at each step an edge is replaced by |G|*
new edges each possibly corresponding to a compressed path. Obviously this
subtree will have no more than L leaves, where L is the number of the edges
of the output path. Then the traversal time can not exceed the number of the
vertices of a binary tree with L leaves in which each internal node has exactly 2
children. Any such tree has 2L — 1 vertices. Thus the next claim follows.

Lemma 4. The shortest path between any two vertices v and z of an n-vertex
outerplanar digraph G, can be found in O(L + (1/¢)loglogn) time, where L is
the number of edges of the path.

3.3 Updating the Data Structures

In the sequel, we will show how we can update our data structures for answering
shortest path and distance queries in outerplanar digraphs, in the case where
an edge cost is modified. The algorithm for updating the cost of an edge e in
an n-vertex outerplanar digraph G, is based on the following idea: the edge will
belong to at most O((1/¢)loglogn) subgraphs of G,, as they are determined by
Algorithm Pre_1. Therefore, it suffices to update (in a bottom-up fashion) the
sparse representatives, as well as their tables, of those subgraphs that are on
the path from the subgraph G; containing e (where G, is a leaf of DT(G,)) to
the root of DT(G,). Let parent(G) denote the parent of a node G in DT(G,),
and G denote any sibling of a node G in a DT(G,) such that G and G have a
common separation pair attached to them. (Note also that an edge e can belong
to at most one other sibling of G;.) The algorithm for the update operation is
the following.

ALGORITHM Update_1(G,, e, w(e))
BEGIN
1. Find a leaf G of DT'(G,) for which e € E(G).
2. Update the cost of e in G with the new cost w(e).
3. If e belongs also to some G then update the cost of e in G.
4. While G # G, do
(a) Update SR(parent(G)) by using the new versions of SR(G) and
SR(G) and then by running an APSP algorithm on it.
(b) G := parent(G).
END.

The first three steps of the above algorithm require O(1) time. Let U(n)
be the maximum time required by Step 4. Then it is clear that after updating
recursively the child subgraph of G, containing edge e, we need O(A(n)) time
to recompute SR(G,) plus O(A*(n)) time to recompute the APSP tables of
SR(G,). Hence, U(n) < U(n/A(n)) + O(A*(n)). Letting A(n) = n°, we have:

Lemma 5. Let A(n) = n®, where 0 < ¢ < (1/2) is an arbitrary number. Al-
gorithm Update_1 updates after an edge cost modification the data structures
created by the preprocessing algorithm in O(f(g)n?®) time, where f(e) =1, if &
is a constant (independent of n), or f(e) = (1/e)[loglogn], if € depends on n.

Summarizing all the results in Section 3, we get:

Theorem 1. Given an n-vertex outerplanar digraph G, with real-valued edge
costs but no negative cycles and an arbitrary number 0 < ¢ < (1/2), there
exists an algorithm for maintaining all pairs shortest paths information in G,
under any edge cost modification, with the following performance characteris-
tics: (i) preprocessing time and space O((1/e)nloglogn); (ii) single-pair dis-
tance query time O((1/€)loglogn); (i) single-pair shortest path query time

O(L + (1/¢)loglogn) (where L is the number of edges of the path); (iv) up-
date time (after an edge cost modification) O(f(g)n*), where f(g) = 1, if € is
independent of n, or f(e) = (1/¢)[loglogn] otherwise.

4 Improving More on the Query Time

In this section we shall describe how the algorithms presented in the previous
section can be modified such that a distance query is answered in O(1) time. In
the following, let A(n) = n, for some arbitrary number 0 < & < (1/2).

We change the first step of the preprocessing algorithm as follows. Instead of
dividing each child subgraph H of G, into A(n/A(n)) subgraphs, we can divide it
into A(n) subgraphs. This will reduce the depth of DT(G,) to O(1/¢). However,
notice that now all the descendant subgraphs of G, which are leaves of DT(G,)
are of size O(n®) and there are O(n'~¢) of them. We shall run on these subgraphs
an APSP algorithm. Call the new preprocessing algorithm Pre_2(G,). Hence, we
have the following;:

Lemma 6. Algorithm Pre_2(G,) runs in O((1/e)n + n'*e) time and uses
O((1/e)n + n'*e) space.

A query is answered in the same way as before. But since now the depth of
DT(G,) is O(1/e), we can answer a query in this time.

The data structures can be updated (after an edge cost modification) using
the same approach as in Section 3.3. This means that we need O(1/¢) iterations
and for each SR(G) of a descendant subgraph G we have to run an APSP
algorithm for updating the shortest path information among the separation pairs
associated with it. Also we have to run the APSP algorithm to the leaf subgraph
of G, containing the edge whose cost has been modified. This will give us a total
of O((1/¢)n?®) time for updating our data structures.

The above discussion leads to the following.

Theorem 2. Given an n-vertex outerplanar digraph G, with real-valued edge
costs but no negative cycles and an arbitrary number 0 < & < (1/2), there exists
an algorithm for maintaining all pairs shortest paths information in G, under
any edge cost modification with the following performance characteristics: (i)
preprocessing time and space O((1/e)n + n'*€); (i) single-pair distance query
time O(1/¢); (iti) single-pair shortest path query time O(L+1/¢e) (where L is the
number of edges of the path); (iv) update time (after an edge cost modification)
O((1/e)n?).

5 Extensions of our Results

The algorithms for the DSP problem for outerplanar digraphs we described in
this paper can be used for constructing faster algorithms for planar digraphs.
The approach used is the same as the one in [3] and is (partially) based on

the hammock decomposition technique introduced by Frederickson in [5, 6]. This
technique allows the reduction of the shortest paths problems on planar digraphs
with nice topology to similar problems on outerplanar digraphs. Our results for
planar digraphs can be obtained by incorporating the results of Theorems 1 and
2 into the algorithms of [3]. (We omit details due to space limitations and the
interested reader is referred to [3].)

We mention also the following extensions and generalizations of our results:
(i) We can handle efficiently edge deletions. (Note that deletion of an edge e is
equivalent to assigning a very large cost to e so that no shortest path will use e.)
(ii) Our algorithms can detect a negative cycle (in a way similar to that described
in [3]), either if it exists in the initial digraph, or if it is created after an edge
cost modification. (iii) Using the ideas of [5], our results can be used to design
improved algorithms for the DSP problem on digraphs with small genus. (iv)
Although our algorithms do not directly support edge insertion, they are fast
enough so that even if the preprocessing algorithm is run from scratch after any
edge insertion, they still provide better performance compared with the naive
approach. Moreover, our algorithms can support a special kind of edge insertion,
called edge re-insertion. That is, we can insert any edge that has previously been
deleted within the resource bounds of the update operation.

References

1. H. Bondlaender, “Dynamic Algorithms for Graphs with Treewidth 2”, Proc. 19th
WG’98, LNCS 790, pp.112-124, Springer-Verlag, 1994.

2. S. Chaudhuri and C. Zaroliagis, “Shortest Path Queries in Digraphs of Small
Treewidth”, Proc. 22nd ICALP, LNCS, Springer-Verlag, 1995, to appear.

3. H. Djidjev, G. Pantziou and C. Zaroliagis, “On-line and Dynamic Algorithms for
Shortest Path Problems”, Proc. 12th STACS, LNCS 900, pp.193-204, Springer-
Verlag, 1995.

4. E. Feuerstein and A.M. Spaccamela, “Dynamic Algorithms for Shortest Paths in
Planar Graphs”, Theor. Computer Science, 116 (1993), pp.359-371.

5. G.N. Frederickson, “Using Cellular Graph Embeddings in Solving All Pairs Short-
est Path Problems”, Proc. 30th Annual IEEE Symp. on FOCS, 1989.

6. G.N. Frederickson, “Planar Graph Decomposition and All Pairs Shortest Paths”,
J. ACM, Vol.38, No.1, January 1991, pp.162-204.

7. R. Hassin, “Maximum flow in (s, t)-planar networks”, Inform. Proc. Lett., 13(1981),
p-107.

8. G. Miller and J. Naor, “Flows in planar graphs with multiple sources and sinks”,
Proc. 30th IEEE Symp. on FOCS, 1989, pp.112-117.

9. B. Schieber and U. Vishkin, “On Finding Lowest Common Ancestors: Simplifica-
tion and Parallelization”, SIAM J. Computing, 17(6), pp.1253-1262, 1988.

