On the Efficient Generation of Elliptic Curves
over Prime Fields*

Elisavet Konstantinou'2, Yiannis C. Stamatiou?, and Christos Zaroliagis!-2

L Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
2 Department of Computer Engineering and Informatics,
University of Patras, 26500 Patras, Greece
{konstane, stamatiu,zaro}@ceid.upatras.gr

Abstract. We present a variant of the complex multiplication method
that generates elliptic curves of cryptographically strong order. Our vari-
ant is based on the computation of Weber polynomials that require signif-
icantly less time and space resources than their Hilbert counterparts. We
investigate the time efficiency and precision requirements for generating
off-line Weber polynomials and its comparison to another variant based
on the off-line generation of Hilbert polynomials. We also investigate the
efficiency of our variant when the computation of Weber polynomials
should be made on-line due to limitations in resources (e.g., hardware
devices of limited space). We present trade-offs that could be useful to po-
tential implementors of elliptic curve cryptosystems on resource-limited
hardware devices.

1 Introduction

Elliptic curve cryptography constitutes a fundamental and efficient technology
for public key cryptosystems. One of the most important problems in elliptic
curve cryptography is the generation of cryptographically secure elliptic curves
over prime fields. One method to achieve this is by repeated applications of point
counting [4]: select an elliptic curve (EC) at random, count its order (number of
rational points on the curve), and check whether the order is suitable, that is, it
satisfies certain conditions that guarantee cryptographic strength (i.e., resistance
to known attacks). Unfortunately, this method can be extremely slow.

An alternative method which generates ECs of a suitable order is the Com-
plex Multiplication (CM) method [I]. This method first determines a suitable
order and then constructs an EC of that order. The input to the method is
a prime p (representing the order of the prime field) from which the so-called
CM discriminant D is computed. The EC is generated by constructing certain
polynomials based on D and finding their roots.

* This work was partially supported by the IST Programme of EU under con-
tracts no. IST-1999-14186 (ALCOM-FT) and no. IST-1999-12554 (ASPIS), and by
the Human Potential Programme of EU under contract no. HPRN-CT-1999-00104
(AMORE).

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 333-B48] 2003.
© Springer-Verlag Berlin Heidelberg 2003

334 E. Konstantinou, Y.C. Stamatiou, and C. Zaroliagis

There are two variations of Complex Multiplication, depending on whether
Hilbert or Weber polynomials are used (see Section H)), that have two main
differences: (i) Hilbert polynomials can have huge coefficients as the discriminant
D increases, while for the same discriminant the Weber polynomials have much
smaller coefficients and thus are easier to construct; (ii) the roots of the Hilbert
polynomial construct directly the EC, while the roots of the Weber polynomial
have to be transformed to the roots of its corresponding Hilbert polynomial to
construct the EC.

When one considers hardware implementations of the CM method on em-
bedded systems, one problem that immediately arises is that the Hilbert poly-
nomials require high-precision floating point and complex arithmetic (i.e., large
registers and floating point units) for their construction and storage. Thus, the
Hilbert polynomials do not seem appropriate for hardware implementation that
generates them on-line.

To alleviate this shortcoming of Hilbert polynomials, a variant of the CM
method was recently proposed in [16] that turns out to be rather efficient. This
variant takes as input the discriminant D and then computes the prime field’s
order p and the order m of the EC. The only condition for cryptographic strength
posed on m is that it should be prime. Since Hilbert polynomials depend only
on D, they can be precomputed off-line (for various values of D) and stored for
subsequent use. Thus, if one wants to build an EC of a specific order (ensuring
cryptographic strength) for a certain value of D, then one could simply index
the stored Hilbert polynomial using D and, if succeeds in finding the desired
curve’s order, proceed with the next steps of the CM method.

Although the above variant tackles adequately the efficient construction of
ECs, there may still be problems with storing and handling several Hilbert poly-
nomials with huge coefficients on hardware devices (e.g., microcontroller chips)
with limited resources. Since in such devices the size of floating-point units and
the available memory for data and code are limited, it is desirable to keep their
sizes as low as possible. It is perhaps because of this reason that (to the best of
our knowledge) the vast majority of language tools developed for such hardware
devices are based on ANSI C.

In this paper, we further investigate the space and time efficiency of the CM
method by shifting our attention to the Weber polynomials. We present another
variant of the CM method, similar to the one given in [I6], that uses Weber
polynomials. Our variant takes also as input the discriminant D, but selects the
field’s order p at random (or selects it from a set of prescribed primes) and sub-
sequently computes the curve order m using a different method, requesting that
m (is not necessarily prime but it) should satisfy the suitability conditions given
in [4, Sec. V.7] for cryptographic strength. We have implemented our variant in
ANSI C using the (ANSI C) library GNUMP [7]. Based on this implementation,
we have conducted an experimental study over a large number of ECs investigat-
ing the precision requirements for the off-line generation of Weber polynomials
in comparison with the generation of the corresponding Hilbert polynomials.
We were also interested in investigating the efficiency of our variant that uses

On the Efficient Generation of Elliptic Curves 335

precomputed Weber polynomials in comparison to the variant in [L6] that uses
precomputed Hilbert polynomials, and the efficiency of our variant when con-
structing Weber polynomials on-line. The latter is of particular importance in
space-limited hardware systems.

Our experiments showed that for a wide range of discriminants and polyno-
mial degrees the construction of Weber polynomials requires significantly less
time and precision than that required for the construction of the Hilbert poly-
nomials. The experiments revealed a trade-off between the two CM variants
depending on the values of D, the polynomial degree h, and the space availabil-
ity of the hardware environment on which the CM method will be implemented.
In particular, our experiments showed that, for several values of D and rela-
tively small values of h, our CM implementation requires many fewer iterations
in order to find a suitable curve order m and its time efficiency compares fa-
vorably with that reported in [I6]. When both h and D are getting relatively
large, however, our variant becomes less time efficient than the CM variant in
[16] (mainly because of the different method for computing m and finding the
roots of polynomials). Hence, if there is sufficient space availability for storing
either type of precomputed polynomials, the CM variant in [T6] seems beneficial
for large values of D and h, while ours is better for smaller values of h. On the
other hand, if there are space constraints, the storage of Hilbert polynomials
for large values of D and h may not be possible. Our experiments showed that,
for several values of D and relatively small values of h, the time of our CM
implementation for generating an EC of a suitable order by computing on-line
the Weber polynomials compares favorably with the time the CM variant in [16]
takes to generate ECs of prime order using precomputed Hilbert polynomials.
Since a small value of h does not necessarily imply a compromise in security,
the on-line construction of Weber polynomials could be used in such cases as
an alternative to the off-line construction of Hilbert polynomials. Even in the
case where a larger value of h is required, it would be more space-efficient to
precompute and store the Weber polynomials for the requested large values of
h and compute on-line the Weber polynomials for the smaller values of h.

The rest of the paper is organized as follows. In Section 2] we state briefly
some basic definitions and results from elliptic curve theory. In Section [3, we
present the basic CM method and our variant, while in Section 4 we describe
the construction of the Hilbert and the Weber polynomials, along with some
examples aiming at the explanation of their computational requirements. In
Section [b] we discuss some implementation related issues, while in Section [6] we
discuss our experimental results. We conclude in Section [7.

2 Preliminaries of Elliptic Curve Theory

In this section we review some basic concepts regarding elliptic curves and their
definition over finite fields. The interested reader may find additional information
in e.g., [4I2I]. We also assume familiarity with elementary number theory (see

e.g. [B]).

336 E. Konstantinou, Y.C. Stamatiou, and C. Zaroliagis

An elliptic curve E(F),) over a finite field F},, where p > 3 and prime, is the
set of points (x,y) € F, (represented by affine coordinates) which satisfy the
equation

vy’ =2 +ar+b (1)

and a,b € F, are such that 4a® + 27b% # 0. The set of solutions (z,y) of Eq. ()
together with a point O, called the point at infinity, and a special addition
operation define an Abelian group, called the Elliptic Curve group. The point O
acts as the identity element (details on how the addition is defined can be found
in e.g., [421]).

The order m of an elliptic curve is the number of the points in E(F},). The
expression ¢t = p+1—m (which measures the difference between m and p) is called
the Frobenius trace t. Hasse’s theorem (see e.g., [42T]) states that [t| < 2,/p
which gives upper and lower bounds for m based on p:

p+1-=2p<m<p+1+2yp. (2)

The order of a point P is the smallest positive integer n for which nP = O.
Application of Langrange’s theorem (see e.g., [b]) on E(F}), gives that the order
of a point P € E(F),) always divides the order of the elliptic curve group, so
mP = O for any point P € E(F),), which in turn implies that the order of a
point cannot exceed the order of the elliptic curve.

Two important quantities associated with E(F),) are the curve discriminant
A and the j-invariant, defined by

A= —16(4a® + 27b%) (3)
and
. —1728(4a)®
= 4
J A (4)

Given a j-invariant jo € F, (jo # 0,1728), two elliptic curves can be easily
constructed. The first EC is of the form defined by Eq. ({]) and can be constructed

by setting a = 3k mod p, b = 2k mod p, where k = 172{37"_% mod p. The second
EC, called the twist of the first, is defined as
y? =23 + ac’z + b3 (5)

where c is any quadratic non-residue in Fj. If m; is the order of an EC and
ms is the order of its twist, then mq + mo = 2p + 2, i.e., if one curve has order
p+ 1 —t, then its twist has order p + 1 + ¢, or vice versa [4] Lemma VIIL.3].

The security of elliptic curve cryptosystems is based on the difficulty of
solving the discrete logarithm problem (DLP) on the EC group. To ensure in-
tractability of solving this problem by all known attacks, the group order m
should obey the following conditions:

1. m must have a sufficiently large prime factor (greater than 2160).

On the Efficient Generation of Elliptic Curves 337

2. m must not be equal to p.
3. For all 1 < k < 20, it should hold that p* # 1 (mod m).

The first condition excludes the application of type of methods like the Pohlig-
Hellman [14] one to solve DLP, the second condition excludes the application
of the anomalous attack [I5l20022], while the third condition excludes the MOV
attack [12]. If the order of an EC group satisfies the above conditions, we shall
call it suitable.

3 The Complex Multiplication Method and Our Variant

The theory of complex multiplication (CM) of elliptic curves over the rationals
can be used to generate elliptic curves of a suitable order m, resulting in the so-
called CM method. The CM method computes j-invariants from which is then
easy to construct the EC. The method is based on the following idea (for more
details see [418]).

Hasse’s theorem implies that Z = 4p — (p + 1 — m)? is positive. This in turn
implies that there is a unique factorization Z = Dv?, where D is a square free
positive integer. Consequently,

4p = u? + Dv? (6)
for some integer u satisfying
m=p+1ltu (7)

D is called a CM discriminant for the prime p and the elliptic curve has a CM by
D. The CM method uses D in order to determine the j-invariant and constructs
an EC of order p+1—wor p+ 1+ u.

The method starts with a prime p and then chooses the smallest D along with
an integer u to satisfy Eq. (). Then, checks whether p+1—w and/or p+1+u is
suitable. If neither is suitable, the process is repeated. Otherwise, the so-called
Hilbert polynomials (see Section M) have to be constructed (based on D) and
their roots have to be found. A root of the Hilbert polynomial is the j-invariant
we are seeking. The EC and its twist are then constructed as explained in Section
Since only one of the ECs has the required suitable order, the particular one
can be found using Langrange’s theorem by picking random points P in each
EC until a point is found in some curve for which mP # O. Then, the other
curve is the one we are seeking.

A major problem of the CM method is the construction of the Hilbert poly-
nomials which require high precision floating point and complex arithmetic that
makes their computation very expensive.

To overcome this problem, a variant of the CM method was proposed in
[16]. It takes as input a CM discriminant D (D = 3 (mod 4)), and subsequently
calculates p and m, where the only condition posed on m is that it should be a
prime. The prime p is found by first picking randomly u and v of appropriate

338 E. Konstantinou, Y.C. Stamatiou, and C. Zaroliagis

sizes, and then checking if (u? + Dv?)/4 is prime. An important aspect of the
variant concerns the computation of the Hilbert polynomials: since they depend
only on D (and not on p), they can be constructed in a preprocessing phase and
stored for later use. Hence, the burden of their construction is excluded from the
generation of the EC.

In the rest of the section, we shall describe an alternative to the variant of
[16] with which some similarities are shared: our variant takes also as input a
CM discriminant D, and then computes p and m. The differences are that it uses
Weber instead of Hilbert polynomials, selects p at random (or selects it from a set
of prescribed primes), computes u and v in a different way (using Cornacchia’s
algorithm [6]), and requires m to be suitable (cf. Section 2. Actually, the order
m of the elliptic curves that we generate is of the form m = ng, where n is a
small integer and ¢ is a large prime (larger than 2'%°). Weber polynomials is
the default choice of our variant, since they require much less precision and, as
our experiments show, result in much more efficient computation of ECs. (We
would like to mention that Hilbert polynomials can be equally used as well.) The
polynomials, like in [I6], are also constructed in a preprocessing phase.

In the following, we shall give the main steps of our variant. In order to
facilitate the discussion of the experiments in Section 6] we will include also the
choice of Hilbert polynomials in the description.

Preprocessing Phase.

1. Choose a discriminant D = 0 or 3 (mod 4) and D # 3 (mod 8). In the
following section we will explain why this limitation is necessary.

2. Construct the Weber (or the Hilbert) polynomial using the discriminant D.

Main Phase.

3. Produce randomly (or select) a prime p and check whether Eq. (@) has a
solution (u,v), where u, v are integers, using Cornacchia’s algorithm [6]. This
algorithm solves a slightly different form, namely the equation p = z2 + dy?,
but it is easy to convert Eq. (@) into this form. If a solution (u,v) is found,
then proceed with the next step. Otherwise, another prime p is chosen and
the step is repeated. The prime number p is going to be the order of the
underlying finite field Fj.

4. Having found a solution (u,v), the possible orders of the elliptic curve are
m=p+1—uand m=p+1+wu. Check if (at least) one of them is suitable.
If none is suitable, then return to Step 3. Otherwise, m is the order of the
elliptic curve that we will generate and proceed to the next step.

5. Compute the roots (modulo p) of the Weber (or Hilbert) polynomial. This
is accomplished by using a slight modification of Berlekamp’s algorithm [2].
Transform the roots of the Weber polynomial (if it has been chosen) to the
roots of the corresponding Hilbert polynomial (constructed using the same
D).

6. Ezzch (Hilbert) root computed in Step 5 represents a j-invariant. Construct
the two ECs as described in Section 2] (cf. Eq. () and (&])).

7. Determine which one of the two ECs is of a suitable order: repeatedly pick
random points P on each elliptic curve, until a point is found for which
mP # O. Then, we are certain that the other curve is the one we seek.

On the Efficient Generation of Elliptic Curves 339

The most complicated part of the CM method is the construction of the
polynomials (Weber or Hilbert). This construction is presented in the following
section.

4 Construction of Hilbert and Weber Polynomials

In this section we shall elaborate more on the Hilbert and Weber polynomials
and discuss their strengths and limitations.

The CM discriminant D is the only input in the construction of Hilbert
and Weber polynomials, denoted by Hp(z) and Wp(x) respectively. They both
require complex and floating point arithmetic. The drawback of Hilbert poly-
nomials is that their coefficients can be huge and their construction demands
high precision. This implies that their construction can be very time consuming
and possibly impossible to be implemented in systems of limited memory or
with time constraints. Weber polynomials on the other hand, have much smaller
coefficients and therefore the precision that is needed for their construction is
not very high. In our code, we have implemented both polynomials and in the
following sections we present a comparison between them.

The Hilbert polynomial Hp(x), for a given positive value of D, is defined as

Hp(z) = [[(= - j(7)) ®)

T

for a set of values of 7 given by the expression 7 = (=8 + v/—D)/2a, for all
integers a, (3, and v that satisfy the conditions: (i) 8> — 4ay = —D, (ii) |8| <
a < 4/D/3, and (iii) a <, (iv) ged(a, B,7) =1, and (v) if || = o or a = 7,
then 8 > 0. We shall write Hp[j](x) for Hp(z) when we want to emphasize the
class invariant j(7) in the construction of the polynomial.

Note that the pairs (a, 3) that satisfy the above conditions are finite, which
in turn implies that the values of 7 are finite and consequently the factors in the
Hilbert polynomial in Eq. (). Let

2=V and h(r) = A 9)

where
24

A(T) =21+ Z (_1)n (Zn(Snfl)/2 _|_Zn(3n+1)/2>) (10)

n>1
Then, the term j(7) (the class invariant) is defined as

(256h(7) + 1)3

340 E. Konstantinou, Y.C. Stamatiou, and C. Zaroliagis

The method we followed for the construction of the Hilbert polynomials is
the one described in [4]. Let h be the degree or class number of Hp(x). The
bit-precision required for the generation of the Hilbert polynomials (see [1/4]) is

H-Prec(D) = vy + (Lh}/l2j) % Z é (12)

where the sum runs over the same values of 7 as the product in Eq. (§) and
vp is a positive constant that takes care of rounding errors (typically vy = 33).
Clearly, H-Prec(D) can be rather high.

The above prohibitively large precision required for the computation of the
coefficients of Hilbert polynomials (even for moderate values of D) can be circum-
vented by using the Weber polynomials which required much smaller precision
for the computation of their coefficients.

To define the Weber polynomial Wp(z) we follow the approaches in [T/g].
Let «, (3, v be integers that satisfy the conditions: (i) 3% — ay = —D, (ii)
[20] < a <, (iii) ged(e, 268,7) = 1, and (iv) if 2|6] = o or @ = =, then 5 > 0.
Additionally, let § = 2z~ and F(z) = (A(r)/z)'/?* (where the complex number
z and the function A(7) are those defined in Eq. (@) and (I0)).

The construction of the polynomials is based on the so-called Weber functions
which are defined as follows:

foler, B,7) = 072 F(—0)/F (6?)
file, B,7) = 072 F(0)/F(6?)
fole, B,7) = V2 0Y12F(0*)/F(6%)

For ease of notation, we shall occasionally drop in the following the arguments
«, B3, v from the Weber functions. Let

v = (5" +8)(FF = 1)/ f5
Then, given D, the Weber polynomials are defined as follows:

1. If D £ 0 (mod 3) and D # 3 (mod 8), then
a) If D=7 (mod 8), then Wp(z) = Hap[fo/V2](z)
b) If D/4=2or 6 (mod 8), then Wp(z) = Hp[f1/V2](x)
¢) If D/4=5 (mod 8), then Wp(z) = Hp[f](z)
d) If D/4=1 (mod 8), then Wp(x) = Hp[f2/V/2](x)
2. If D =3 (mod 6), then Wp(z) = Hp[v/—D3](z)
3. Otherwise, Wp(x) = Hp(x).

The above mathematical definition can be alternatively summarized by the
following equation given in [§], which actually helped us in the implementation
to easily construct the polynomials:

Wp(z) = H(x - C(ai, Bi, i) (13)

%

On the Efficient Generation of Elliptic Curves 341

where «;, 3;,7; satisfy the above mentioned conditions for «, 3,7, the values

of 7 run over all possible reduced symmetric matrices (‘g’ 5 ?) which have D =

a;v; — (7 as a positive square-free determinant, and the function C is defined as

—r/=1KBL ¢
24

Clo, Biyvi) = {NEXP (> 2718 (f5(ai, Bi, 7)™

where J € {0,1,2}, G = ged(D,3), I, K € [0,6], and L, N are positive integers.
The precise values of these parameters depend on certain, rather tedious, condi-
tions among «,v and D that encompass the various cases of the mathematical
definition of the Weber polynomials; the interested reader can find all the details
in []].

The bit-precision required for the construction of the Weber polynomials (see
e.g., [23]) is

W-Prec(D) = vy +

sl b (1)

In

where the sum runs over the same values of i as the product in Eq. (I3). Hence,
the precision for the construction of the two polynomials differ by a multiplicative
factor of (Lh’}Z J)' This factor increases as the degree of the polynomials increases.
Our experimental results confirm this fact and demonstrate the difference in
precision and time efficiency between the construction of Hilbert and Weber
polynomials.

To get an idea on the size of coefficients of Hilbert and Weber polynomials as
well as on their space requirements for storing them off-line, we next give three
examples for different values of D.

Wyo(z) =2® —x —1
Hyo(x) = 2% — 4256928002 + 910314547200

Waga(x) = 2t =52 — 1022 — 52 + 1

Hago(z) = !
—206287709860428304608002>
—936936225119290387594970661120000002:2
+45521551386379385369629968384000000000
—380259461042512404779990642688000000000000

342 E. Konstantinou, Y.C. Stamatiou, and C. Zaroliagis

Wara(z) = 2% — 1205 — 2223 — 120 — 1

Hyzo(z) = 2% — 438370860938320369278668592000°
+290243510038159955925726906822209766336000000*
—66219789328649589864651859649768746291200000000002>
+896632690216502725937652246573453867048960000000000002
+77827628475557924086643717208566407495680000000000000002:
+(8476837240896000000)*

It is clear that the memory required for the storage of Hilbert polynomials is
considerably larger than that required by the Weber polynomials.

Table 1. Transforming a root Rw of a Weber polynomial to a root Ry of the corre-
sponding Hilbert polynomial.

d mod 8|Ru

1 7@4?2%6)3 mod p

2 or 6 % mod p

5 7(64122‘1’%§16)3 mod p

7 m;ﬁ# mod p
W

We argued that the use of the Weber polynomials has many advantages
compared to the Hilbert polynomials. However, if we choose to use them in the
CM method, we must transform their roots to the roots of the corresponding
Hilbert polynomials. To accomplish this, the two polynomials must have the
same degree in order to associate one root of the Weber polynomial to one of
the Hilbert polynomial. For discriminant D = 3 (mod 8) the Weber polynomial’s
degree is two times the degree of the corresponding Hilbert polynomial and this is
the reason why we discard those values of D. A detailed analysis of transforming
a root Ry of a Weber polynomial to its corresponding root Ry of a Hilbert
polynomial is presented in [23]. The analysis results in a table that summarizes
the transformation, a modified version of which (due to a different polynomial
representation we use) is presented in Table [l The value of d is determined as
follows. If D =0 (mod 4), then d = D/4, otherwise, d = D.

5 Implementation

In this section, we will discuss some issues regarding the implementation of our
variant of the Complex Multiplication method. The implementation has been
entirely written in ANST C using the GNU Multiple Precision [7] library for high
precision floating point arithmetic and also for the generating and manipulating
integers of unlimited precision. Our implementation is also part of a software

On the Efficient Generation of Elliptic Curves 343

library for EC cryptography that we build [11]. The library is available from
http://www.ceid.upatras.gr/faculty/zaro/software/ecc-1lib/.

The GNUMP library, uses as a basic precision unit the limb, which is com-
posed of 32 bits. Every floating point number in this library is represented by an
integral number of limbs. One may modify the precision with which the float-
ing operations are carried out using a special function that changes the number
of limbs. Note, however, that 2 limbs are the minimum precision required by
GNUMP for any computation.

As a first step, we implemented the basic algebraic operations for elliptic
curve arithmetic. We then turned our attention to the most demanding step of
the CM method, which was the construction of the Hilbert and Weber polyno-
mials. They both require high-precision complex and floating point arithmetic
with the greater demands placed, of course, by Hilbert polynomials. Also, the
operations involved required the implementation of functions such as cos(z),
sin(z), exp(x), In(z), arctan(z) and /z. Since the basic complex number alge-
braic operations (addition, multiplication, exponentiation, and squaring) as well
as a high precision floating point implementation of the above functions did not
exist in GNUMP, we had to implement them from scratch. For the implemen-
tation of the particular functions we used their Taylor series expansion. As a
starting point for the construction of the Hilbert polynomials, we used the code
given in [24] which we considerably modified in order to support high precision
floating point arithmetic. For the construction of the Weber polynomials we im-
plemented the functions described in the IEEE Standard P1363 [R], adopting
a slightly different way for producing the coefficients «, 3,7y described in the
standard. For the computation of the roots of polynomials modulo a prime, we
used the code given in [24], which we had to modify in order to handle correctly
prime numbers of any precision. Finally, the test for the suitability of the order
m was done as follows. The order must be of the form m = nq, where n is an
integer and ¢ is a large prime (greater than 2'°?). The test proceeds by factoring
m and demanding that there are at most four small factors (smaller than 20),
while one factor should be prime. If this fails, then the particular m is rejected
and the process is repeated. It is easy to see that in this way, ¢ is greater than
2160 for sizes of 192 or 224 bits for the field’s order, since n is at most 20%.

6 Experimental Results

Our experiments were carried out on a Pentium IIT (933 MHz) with 256 MB of
main memory, running SuSE-Linux 7.1, and using the ANSI C gcc-2.95.2 com-
piler (along with the GNUMP library). All reported times are averages over 200
ECs per value of the discriminant D. For the size of the field’s order, we con-
sidered two values, namely 192 and 224 bits. Our code has size 69KB, including
the code for the generation of the polynomials (exclusion of the latter reduces
the code size to 56KB).

We first considered experiments regarding the construction of Hilbert and
Weber polynomials. Table [illustrates, for various values of D and h (degree

344 E. Konstantinou, Y.C. Stamatiou, and C. Zaroliagis

of polynomial), the required limb-precision, the number of Taylor terms, and
the total time for the construction. As it turns out, the construction of Weber
polynomials can be done incredibly faster, and requires a much smaller number of
Taylor expansion terms. In addition, it requires only 2 limbs of precision (i.e., the
minimum in terms of GNUMP) for all cases considered, while the construction
of the Hilbert polynomials requires from 2 to 7 limbs depending on the values of
D and h (we noticed that 2 limbs were sufficient for Weber polynomials even for
larger values of D and h, e.g., D = 9640 and h = 16). Note also that the precision
required by the Hilbert polynomials increases with D even if h remains the same.
An interesting observation concerns the cases marked with an asterisk in Table 2l

Table 2. Construction of Weber and Hilbert polynomials. (*) Coefficients of Hilbert
polynomials do not have trailing decimal zeros.

Weber polynomial Hilbert polynomial
D |h limb—precision[Taylor terms[Time limb—precision[Taylor terms[Time [
20 |2 2 6 0.07 2 16 0.59
40 |2 2 7 0.09 2 19 0.75
52 |2 2 12 0.16 2 24 1.11
88 |2 2 13 0.19 3 26 1.38
148 |2 2 21 0.40 3 36 2.48
232 |2 2 24 0.49 4 39 3.37
39" |4 2 20 0.54 3 32 3.29
56 |4 2 10 0.20 3 63 13.61
68 |4 2 11 0.23 3 72 10.84
84" |4 2 18 0.61 3 175 237.82
120 |4 2 20 0.70 4 39 7.06
132 |4 2 21 0.83 4 38 6.50
136 |4 2 18 0.45 4 130 72.90
168 |4 2 23 0.94 4 44 8.82
184* |4 2 22 0.64 4 197 263.55
228 |4 2 27 1.26 5 51 13.01
292 |4 2 28 1.00 5 90 37.97
116*|6 2 19 0.67 4 190 346.57
152 |6 2 20 0.73 5 149 182.24
244" |6 2 27 1.26 5 329 1493.32
472 |6 2 36 2.20 7 485 4980.67

The coefficients of the corresponding Hilbert polynomials in these cases do not
have trailing decimal zeros and this seems to require a higher number of Taylor
terms in order for the computations to converge. We observed that this situation
does not occur when D is even and ends in 0, 2 and 8. Since the trailing zeros
can be stored in a compact way, this observation would suggest which Hilbert
polynomials to consider for off-line computation and storage (if one wishes to
use them).

On the Efficient Generation of Elliptic Curves 345

A final remark concerns the comparison of the theoretically required preci-
sion, according to Eq. and (14)), with that measured experimentally. Our ex-
periments have shown that a smaller precision is required in practice. For exam-
ple, for D € {232,292,472}, the equations give for the Hilbert polynomials bit-
precisions of H-Prec(232) = 364, H-Prec(292) = 1166, H-Prec(472) = 4983, and
for the Weber polynomials bit-precisions W-Prec(232) = 215, W-Prec(292) =
249, W-Prec(472) = 312. Clearly, the precisions given in Table] (as multiples
of 32 bits) are much smaller than these numbers.

We next turn to the efficiency of our CM implementation using only Weber
polynomials. Let #p denote the number of primes that we had to try in order to
find a solution (u,v) using Cornacchia’s algorithm (Step 3), and let #m be the
number of orders m that we tried until a suitable one was found. We shall denote
by T'(p,m) the time required to find a prime p and a suitable order m (Steps 3
and 4), by T5 the time required for the computation of roots of the polynomial
modulo p (Step 5), by Ts7 the time required for the construction of the elliptic
curve (Steps 6 and 7), and by T},qin the total time of the main phase (Steps 3-7)
of our variant. The Weber polynomials have been constructed off-line during the
preprocessing phase.

Table 3. Timing estimations (in secs) of our CM variant in the 192-bit finite field.

[DI A[[#p[#m[T(p,m)[T5 | Tor [Tmain]]

232 2| 4| 5| 0.63 |0.01]0.32| 0.96

568 4| 7| 6 | 1.02 |0.04|0.33] 1.39
1432 6} 12| 5 1.27 |0.09(0.33| 1.69
3448| 8| 15| 5 1.34]0.14]0.35| 1.83
5272| 10|21| 5 | 2.04 |0.21]0.38| 2.63
8248| 12|24 | 5 | 2.39 |0.32]0.31| 3.02
9172| 14|28 | 5 | 2.80 |0.41(0.33| 3.54
9640| 16|33 | 6 | 3.69 |0.51(0.39| 4.59
9832| 18| 37| 7 | 4.55 |0.76|0.35| 5.66
19492| 20|/ 42| 5 | 4.78 |1.22]0.30| 6.30
29908| 30(59| 5 | 6.51 |1.77|0.40| 8.68
39796| 50((102| 6 | 11.73 |6.11|0.39]18.23
39608|100({195| 8 | 27.42 |23.45/0.35|51.22

Table Bl reports the values of the above parameters for various values of
D and h and shows where exactly the time is spent throughout the steps of
our CM variant. According to [4], we have to try roughly 2h primes before
a solution can be found by Cornacchia’s algorithm. This fact was verified by
our experiments with surprising accuracy (cf. the third column of Table B]). The
number of trials for order m are approximately the same regardless of the degree
of the polynomial, which is reasonable as m is directly associated with the prime
p which we choose at random. Therefore, we do not expect that the number
of trials required will increase as the discriminant D increases. As expected, all

346 E. Konstantinou, Y.C. Stamatiou, and C. Zaroliagis

Table 4. Timing estimations (in secs) of our CM variant.

192 bits 224 bits

D| h T[W} #p‘#m‘T(p7 m)‘Tmain #pl#mlT(ﬂ m)‘Tmain‘
20| 2|/ 0.07|| 4] 10| 0.82 1.23 (4|10 1.30 1.72
40| 21 0.09(3| 9 073 | 1.12 |41 9 1.21 1.60
52| 2/0.16 || 4| 8 0.75 1.02 | 4| 8 1.12 1.53
881 2/0.19(4| 7 0.61 | 094 4] 8 0.98 1.41
232 21049 41| 5 063 096 1| 4] 6 0.83 1.30
56| 4/0.20 || 7| 10| 1.45 1.88 || 7|11 | 2.63 | 3.20
84| 410611 71| 9 1.40 | 1.77] 8] 9 2.29 | 2.83
136| 4/ 045 8 | 8 1.43 | 180 (|| 7] 9 2.27 | 2.77
292| 4/1.00 | 7| 6 1.13 145 | 8 | 8 2.20 | 2.68
568 4| 2.001(| 7| 6 1.02 139 || 8| 7 1.98 | 2.43
116| 6/ 0.67 || 11| 9 1.89 | 233 |11 13| 3.90 | 4.39
244| 6 1.26 || 11| 9 1.86 | 2.30 || 12| 11 | 3.58 | 4.17
472| 6| 2.20 ||11] 8 1.52 1.96 |12 10| 3.33 | 3.96
1048| 6/ 4.80 |[13| 6 1.45 1.90 ||11] 8 2.92 | 3.55
1432| 6| 6.64 || 12| 5 1.27 | 1.69 ||11] 6 2.03 | 2.57
376| 8| 2.26 ||16| 8 2.34 | 279 (|16| 10 | 4.41 | 4.95
952| 8/ 6.34 ||16| 7 2.22 | 2.75 |15 9 3.74 | 4.38
1528| 8/ 9.44 ||16| 7 2.19 | 2.64|[16| 6 3.49 | 4.04
2212| 8(16.99||16| 6 1.71 218 ||16| 6 2.94 | 3.20
3448| 8|23.66|| 15| 5 1.34 1.83 ||17] 5 2.65 | 3.01
296(10| 2.00 |{{20] 10 | 3.70 | 4.23 ||19| 13| 6.58 | 7.23
724(10| 5.33 {|20| 9 3.44 | 4.07 ||[20| 12 | 6.51 7.19
1268(10/ 9.80 ||20| 6 2.29 | 2.85 (19| 9 4.28 | 5.01
3412|10{29.17(|20| 6 2.20 | 2.76 |20 7 3.68 | 4.37
5272(10({46.49]| 21| 5 2.04 | 263 (20| 5 2.84 | 3.54

times (except for Ts7) increase as the degree h of the polynomial increases. The
most time consuming step, as D and h increase, is the computation of the roots
of the polynomials.

Table[d elaborates further by reporting values for the most important param-
eters regarding various values of D for the same value of h. In the table, T'[W]
denotes the time for constructing the Weber polynomial. A first observation is
that both T'(p,m) and T4 decrease as D increases, while h remains the same.
Another interesting observation is that for reasonably small values of h (which
do not necessarily compromise security), our variant remains efficient even in
the case where it is required that the computation of Weber polynomials should
be made on-line (e.g., due to limited resources posed by hardware devices).

Comparison with related work. The implementation of the CM variant in [16] was
done in C++ using the NTL library [19], which is a high-performance C++ library
for number theory and polynomial arithmetic. Also, their implementation was
equipped with clever heuristics to find quickly p and m. Their experiments were

On the Efficient Generation of Elliptic Curves 347

done on a Pentium PC (450 MHz) running Windows NT, considering the same
sizes of p (192 and 224 bits) and roughly similar values of D and h as we use. The
size of their code was 164KB, excluding the code for precomputing the Hilbert
polynomials which was done with MAPLE. In our implementation we didn’t use
any kind of heuristics. On the positive side, our variant uses considerably fewer
iterations to find a suitable m, and is faster] compared to the times reported in
[16] for (at least) all h < 30. On the negative side, the construction time of our
variant degrades when h increases above 30 and D is sufficiently large. This is
due to two reasons: (a) The efficient heuristics used in [16] to find p result in a
number of iterations proportional to ch/v/D (for some constant ¢ ~ 300), while
in our variant the number of iterations is roughly 2h. Hence, the larger the D,
the less iterations are made by the variant of [16]. Moreover, our checking of
the suitability conditions for m take clearly more time than simply checking on
whether m is prime. (b) Our implementation takes more time to find the roots
of the Weber polynomial than the time required by the corresponding function
of the NTL library. We plan to further investigate the latter issue, as it is clear
from Table Bl that it will considerably improve the total time.

There are two other efficient C++ implementations of the CM method [3/I8].
The latter uses the MIRACL [I3] library and requires more code space (204KB)
than that in [I6]. The former uses the advanced C++ library LiDIA [I0] whose
adaptation to embedded systems seems very difficult (if at all possible).

7 Conclusions

We have presented an implementation of a variant of the Complex Multiplication
method for generating secure ECs. The variant uses Weber polynomials which
can be either precomputed off-line and stored as their storage requirements are
very low, or (if there are space limitations) can be constructed on-line without
sacrificing efficiency (at least for small values of h).

Acknowledgments. We would like to thank the referees for their helpful com-
ments.

References

1. A. O. L. Atkin, F. Morain, Elliptic curves and primality proving, Mathematics of
Computation 61(1993), pp. 29-67.

2. E. R. Berlekamp, Factoring polynomials over large finite fields, Mathematics of
Computation 24(1970), pp. 713-735.

3. H. Baier, and J. Buchmann, Efficient construction of cryptographically strong el-
liptic curves, in Progress in Cryptology — INDOCRYPT 2000, Lecture Notes in
Computer Science Vol. 1977 (Springer-Verlag, 2000), pp. 191-202.

! The times given in our tables should be roughly doubled in order to be compared
with the times reported in [16].

348

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

E. Konstantinou, Y.C. Stamatiou, and C. Zaroliagis

Tan Blake, Gadiel Seroussi, and Nigel Smart, Elliptic curves in cryptography , Lon-
don Mathematical Society Lecture Note Series 265, Cambridge University Press,
1999.

D. Burton, Elementary Number Theory, McGraw Hill, 4th edition, 1998.

G. Cornacchia, Su di un metodo per la risoluzione in numeri interi dell’ equazione
Sy Cha™ "y = P, Giornale di Matematiche di Battaglini 46 (1908), pp. 33-90.
GNU multiple precision library, edition 3.1.1, September 2000.

Available at: http://www.swox.com/gmp.

IEEE P1363/D13, Standard Specifications for Public-Key Cryptography, ballot
draft, 1999. http://grouper.ieee.org/groups/1363/tradPK/draft.html.
Implementations of Portions of the P1363 Draft.
http://grouper.ieee.org/groups/1363/P1363/implementations.html.

LiDIA. A library for computational number theory, Technical University of Darm-
stadt. Available from
http://www.informatik.tu-darmstadt.de/TI/LiDIA/Welcome.html.

E. Konstantinou, Y. Stamatiou, and C. Zaroliagis, A Software Library for Elliptic
Curve Cryptography, in Proc. 10th FEuropean Symposium on Algorithms — ESA
2002 (Engineering and Applications Track), Lecture Notes in Computer Science
(Springer-Verlag, 2002), to appear.

A. J. Menezes, T. Okamoto and S. A. Vanstone, Reducing elliptic curve logarithms
to a finite field, IEEE Trans. Info. Theory, 39(1993), pp. 1639-1646.
Multiprecision Integer and Rational Arithmetic C/C++ Library,
http://indigo.ie/~mscott/.

G. C. Pohlig and M. E. Hellman, An improved algorithm for computing loga-
rithms over GF(p) and its cryptographic significance, IEEE Trans. Info. Theory,
24 (1978), pp. 106-110.

T. Satoh and K. Araki, Fermat quotients and the polynomial time discrete log al-
gorithm for anomalous elliptic curves, Comm. Math. Univ. Sancti Pauli, 47(1998),
pp. 81-91.

Erkay Savas, Thomas A. Schmidt, and Cetin K. Koc, Generating Elliptic Curves
of Prime Order, in Cryptographic Hardware and Embedded Systems — CHES 2001,
Lecture Notes in Computer Science Vol. 2162 (Springer-Verlag, 2001), pp. 145-161.
R. Schoof, Counting points on elliptic curves over finite fields, J. Theorie des Nom-
bres de Bordeauz, 7(1995), pp. 219-254.

M. Scott, A C++ Implementation of the Complex Multiplication (CM) Elliptic
Curve Generation Algorithm from Annex A, in Implementations of Portions of
the P1363 Drafft.
http://grouper.ieee.org/groups/1363/P1363/implementations.html.

V. Shoup, NTL: A Library for doing Number Theory, URL:
http://shoup.net/ntl/.

I. A. Semaev, Evaluation of discrete logarithms on some elliptic curves, Mathemat-
ics of Computation, 67(1998), pp. 353-356.

J. H. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106,
1986.

N. P. Smart, The discrete logarithm problem on elliptic curves of trace one, Journal
of Cryptography, 12(1999), pp. 193-196.

Thomas Valente, A distributed approach to proving large numbers prime, Rensselaer
Polytechnic Institute Troy, New York, Thesis, August 1992.

Pate Williams. Available at: http://www.mindspring.com/~pate.

	Introduction
	Preliminaries of Elliptic Curve Theory
	The Complex Multiplication Method and Our Variant
	Construction of Hilbert and Weber Polynomials
	Implementation
	Experimental Results
	Conclusions

