
Improved Bounds for Finger Search on a RAM�

Alexis Kaporis, Christos Makris, Spyros Sioutas, Athanasios Tsakalidis,
Kostas Tsichlas, and Christos Zaroliagis

Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
and Department of Computer Engineering and Informatics,

University of Patras, 26500 Patras, Greece
{kaporis,makri,sioutas,tsak,tsihlas,zaro}@ceid.upatras.gr

Abstract. We present a new finger search tree with O(1) worst-case
update time and O(log log d) expected search time with high probability
in the Random Access Machine (RAM) model of computation for a large
class of input distributions. The parameter d represents the number of
elements (distance) between the search element and an element pointed
to by a finger, in a finger search tree that stores n elements. For the need
of the analysis we model the updates by a “balls and bins” combinatorial
game that is interesting in its own right as it involves insertions and
deletions of balls according to an unknown distribution.

1 Introduction

Search trees and in particular finger search trees are fundamental data structures
that have been extensively studied and used, and encompass a vast number of
applications (see e.g., [12]). A finger search tree is a leaf-oriented search tree
storing n elements, in which the search procedure can start from an arbitrary
element pointed to by a finger f (for simplicity, we shall not distinguish through-
out the paper between f and the element pointed to by f). The goal is: (i) to
find another element x stored in the tree in a time complexity that is a function
of the “distance” (number of leaves) d between f and x; and (ii) to update the
data structure after the deletion of f or after the insertion of a new element next
to f . Several results for finger search trees have been achieved on the Pointer
Machine (PM) and the Random Access Machine (RAM) models of computation.

In this paper we concentrate on the RAM model. W.r.t. worst-case complex-
ity, finger search trees with O(1) update time and O(log d) search time have
already been devised by Dietz and Raman [5]. Recently, Andersson and Thorup
[2] improved the search time to O(

√
log d/ log log d), which is optimal since there

exists a matching lower bound for searching on a RAM. Hence, there is no room
for improvement w.r.t. the worst-case complexity.
� This work was partially supported by the IST Programme of EU under contract
no. IST-1999-14186 (ALCOM-FT), by the Human Potential Programme of EU under
contract no. HPRN-CT-1999-00104 (AMORE), and by the Carathéodory project of
the University of Patras.

G. Di Battista and U. Zwick (Eds.): ESA 2003, LNCS 2832, pp. 325–336, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

326 A. Kaporis et al.

However, simpler data structures and/or improvements regarding the search
complexities can be obtained if randomization is allowed, or if certain classes
of input distributions are considered. A notorious example for the latter is the
method of interpolation search, first suggested by Peterson [16], which for ran-
dom data generated according to the uniform distribution achieves Θ(log log n)
expected search time. This was shown in [7,15,19]. Willard in [17] showed that
this time bound holds for an extended class of distributions, called regular1.

A natural extension is to adapt interpolation search into dynamic data struc-
tures, that is, data structures which support insertion and deletion of elements
in addition to interpolation search. Their study was started with the works of [6,
8] for insertions and deletions performed according to the uniform distribution,
and continued by Mehlhorn and Tsakalidis [13], and Andersson and Mattsson
[1] for µ-random insertions and random deletions, where µ is a so-called smooth
density. An insertion is µ-random if the key to be inserted is drawn randomly
with density function µ; a deletion is random if every key present in the data
structure is equally likely to be deleted (these notions of randomness are also
described in [10]).

The notion of smooth input distributions that determine insertions of ele-
ments in the update sequence were introduced in [13], and were further gen-
eralized and refined in [1]. Given two functions f1 and f2, a density function
µ = µ[a, b](x) is (f1, f2)-smooth [1] if there exists a constant β, such that for all
c1, c2, c3, a ≤ c1 < c2 < c3 ≤ b, and all integers n, it holds that

∫ c2

c2− c3−c1
f1(n)

µ[c1, c3](x)dx ≤ β · f2(n)
n

where µ[c1, c3](x) = 0 for x < c1 or x > c3, and µ[c1, c3](x) = µ(x)/p for
c1 ≤ x ≤ c3 where p =

∫ c3

c1
µ(x)dx. The class of smooth distributions is a

superset of both regular and uniform classes.
In [13] a dynamic interpolation search data structure was introduced, called

Interpolation Search Tree (IST). This data structure requires O(n) space for
storing n elements. The amortized insertion and deletion cost is O(log n), while
the expected amortized insertion and deletion cost is O(log log n). The worst
case search time is O(log2 n), while the expected search time is O(log log n)
on sets generated by µ-random insertions and random deletions, where µ is a
(�na� ,√n)-smooth density function and 1

2 ≤ a < 1. An IST is a multi-way tree,
where the degree of a node u depends on the number of leaves of the subtree
rooted at u (in the ideal case the degree of u is the square root of this number).
Each node of the tree is associated with two arrays: a REP array which stores
a set of sample elements, one element from each subtree, and an ID array that
stores a set of sample elements approximating the inverse distribution function.
The search algorithm for the IST uses the ID array in each visited node to
interpolate REP and locate the element, and consequently the subtree where
the search is to be continued.
1 A density µ is regular if there are constants b1, b2, b3, b4 such that µ(x) = 0 for x < b1

or x > b2, and µ(x) ≥ b3 > 0 and |µ′(x)| ≤ b4 for b1 ≤ x ≤ b2.

Improved Bounds for Finger Search on a RAM 327

In [1], Andersson and Mattsson explored further the idea of dynamic inter-
polation search by observing that: (i) the larger the ID array the bigger be-
comes the class of input distributions that can be efficiently handled with an
IST-like construction; and (ii) the IST update algorithms may be simplified by
the use of a static, implicit search tree whose leaves are associated with binary
search trees and by applying the incremental global rebuilding technique of [14].
The resulting new data structure in [1] is called the Augmented Sampled Forest
(ASF). Assuming that H(n) is an increasing function denoting the height of
the static implicit tree, Andersson and Mattsson [1] showed that an expected
search and update time of Θ(H(n)) can be achieved for µ-random insertions
and random deletions where µ is (n · g(H(n)), H−1(H(n) − 1))-smooth and g is
a function satisfying

∑∞
i=1 g(i) = Θ(1). In particular, for H(n) = Θ(log log n)

and g(x) = x−(1+ε) (ε > 0), they get Θ(log log n) expected search and update
time for any (n/(log log n)1+ε, n1−δ)-smooth density, where ε > 0 and 0 < δ < 1
(note that (�na� ,√n)-smooth ⊂ (n/(log log n)1+ε, n1−δ)-smooth). The worst-
case search and update time is O(log n), while the worst-case update time can
be reduced to O(1) if the update position is given by a finger. Moreover, for
several but more restricted than the above smooth densities they can achieve
o(log log n) expected search and update time complexities; in particular, for the
uniform and any bounded distribution the expected search and update time be-
comes O(1). The above are the best results so far in both the realm of dynamic
interpolation structures and the realm of dynamic search tree data structures
for µ-random insertions and random deletions on the RAM model.

Based upon dynamic interpolation search, we present in this paper a new
finger search tree which, for µ-random insertions and random deletions, achieves
O(1) worst-case update time and O(log log d) expected search time with high
probability (w.h.p.) in the RAM model of computation for the same class of
smooth density functions µ considered in [1] (Sections 3 and 4), thus improv-
ing upon the dynamic search structure of Andersson and Mattsson with respect
to the expected search time complexity. Moreover, for the same classes of re-
stricted smooth densities considered in [1], we can achieve o(log log d) expected
search and update time complexities w.h.p. (e.g., O(1) times for the uniform
and any bounded distribution). We would like to mention that the expected
bounds in [1,13] have not been proved to hold w.h.p. Our worst-case search
time is O(

√
log d/ log log d). To the best of our knowledge, this is the first work

that uses the dynamic interpolation search paradigm in the framework of finger
search trees.

Our data structure is based on a rather simple idea. It consists of two levels:
the top level is a tree structure, called static interpolation search tree (cf. Section
2) which is similar to the static implicit tree used in [1], while the bottom level
consists of a family of buckets. Each bucket is implemented by using the fusion
tree technique [18]. However, it is not at all obvious how a combination of these
data structures can give better bounds, since deletions of elements may create
chains of empty buckets. To alleviate this problem and prove the expected search
bound, we use an idea of independent interest. We model the insertions and dele-

328 A. Kaporis et al.

tions as a combinatorial game of bins and balls (Section 5). This combinatorial
game is innovative in the sense that it is not used in a load-balancing context,
but it is used to model the behaviour of a dynamic data structure as the one
we describe in this paper. We provide upper and lower bounds on the number
of elements in a bucket and show that, w.h.p., a bucket never gets empty. This
fact implies that w.h.p. there cannot exist chains of empty buckets, which in
turn allows us to express the search time bound in terms of the parameter d.
Note that the combinatorial game presented here is different from the known
approaches for balls and bins games (see e.g., [3]), since in those approaches the
bins are considered static and the distribution of balls uniform. On the contrary,
the bins in our game are random variables since the distribution of balls is un-
known. This also makes the initialization of the game a non-trivial task which is
tackled by firstly sampling a number of balls and then determining appropriate
bins which allow the almost uniform distribution of balls into them.

2 Preliminaries

In this paper we consider the unit-cost RAM with a word length of w bits,
which models what we program in imperative programming languages such as
C. The words of RAM are addressable and these addresses are stored in memory
words, imposing that w ≥ log n. As a result, the universe U consists of integers
(or reals represented as floating point numbers; see [2]) in the range [0, 2w − 1].
It is also assumed that the RAM can perform the standard AC0 operations of
addition, subtraction, comparison, bitwise Boolean operations and shifts, as well
as multiplications in constant worst-case time on O(w)-bit operands.

In the following, we make use of another search tree data structure on a RAM
called q∗-heap [18]. Let M be the current number of elements in the q∗-heap and
let N be an upper bound on the maximum number of elements ever stored in
the q∗-heap. Then, insertion, deletion and search operations are carried out in
O(1 + logM/ log logN) worst-case time after an O(N) preprocessing overhead.
Choosing M = polylog(N), all operations are performed in O(1) time.

In the top level of our data structure we use a tree structure, called static
interpolation search tree, which is an explicit version of the static implicit tree
used in [1] and that uses the REP and ID arrays associated with the nodes of
IST. More precisely, the static interpolation search tree can be fully characterized
by three nondecreasing functions H(n), R(n) and I(n). A static interpolation
search tree containing n elements has height H(n), the root has out-degree R(n),
and there is an ID array associated with the root that has size I(n) = n ·g(H(n))
such that

∑∞
i=1 g(i) = Θ(1). To guarantee the height of H(n), it should hold

that n/R(n) = H−1(H(n) − 1). The children of the root have n′ = Θ(n/R(n))
leaves. Their height will be H(n′) = H(n) − 1, their out-degree is R(n′) =
Θ(H−1(H(n)− 1)/H−1(H(n)− 2)), and I(n′) = n′ · g(H(n′)). In general, for an
internal node v at depth i containing ni leaves in the subtree rooted at v, we have
that R(ni) = Θ(H−1(H(n)−i+1)/H−1(H(n)−i)), and I(ni) = ni ·g(H(n)−i).
As in the case of IST [13], each internal node is associated with an array of sample

Improved Bounds for Finger Search on a RAM 329

elements REP, one for each of its subtrees, and an ID array. By using the ID
array, we can interpolate the REP array to determine the subtree in which the
search procedure will continue. In particular, the ID array for node v is an array
ID[1..m], where m is some integer, with ID[i] = j iff REP[j] < α+ i(β−α)/m ≤
REP[j + 1], where α and β are the minimum and the maximum element, resp.,
stored in the subtree rooted at v. Let x be the element we seek. To interpolate
REP, compute the index j = ID[((x − α)/(β − α))
], and then scan the REP
array from REP[j+1] until the appropriate subtree is located. For each node we
explicitly maintain parent, child, and sibling pointers. Pointers to sibling nodes
will be alternatively referred to as level links. The required pointer information
can be easily incorporated in the construction of the static interpolation search
tree. Throughout the paper, we say that an event E occurs with high probability
(w.h.p.) if Pr[E] = 1 − o(1).

3 The Data Structure

The data structure consists of two separate structures T1 and T2. T2 is attached
a flag active denoting whether this structure is valid subject to searches and
updates, or invalid. Between two global reconstructions of the data structure, T1
stores all available elements while T2 either stores all elements (active=TRUE)
or a past instance of the set of elements (active=FALSE). T1 is a finger search
tree implemented as in [2]. In this way, we can always guarantee worst-case time
bounds for searches and updates. In the following we focus on T2.

T2 is a two-level data structure, similar to the Augmented Sampled Forest
(ASF) presented in [1], but with the following differences: (a) we use the static
interpolation search tree defined in Section 2; (b) we implement the buckets
associated with the leaves of the static interpolation search tree using q∗-heaps,
instead of simple binary search trees; (c) our search procedure does not start from
the root of the tree, but we are guided by a finger f to start from an arbitrary
leaf; and (d) our reconstruction procedure to maintain our data structure is quite
different from that used in [1]. More specifically, let S0 be the set of elements to be
stored where the elements take values in [a, b]. The two levels of T2 are as follows.
The bottom level is a set of ρ buckets. Each bucket Bi, 1 ≤ i ≤ ρ, stores a subset
of elements and is represented by the element rep(i) = max{x : x ∈ Bi}. The
set of elements stored in the buckets constitute an ordered collection B1, . . . ,Bρ

such that max{x : x ∈ Bi} < min{y : y ∈ Bi+1} for all 1 ≤ i ≤ ρ − 1. In other
words, Bi = {x : x ∈ (rep(i − 1), rep(i)]}, for 2 ≤ i ≤ ρ, and B1 = {x : x ∈
[rep(0), rep(1)]}, where rep(0) = a and rep(ρ) = b. Each Bi is implemented as
a q∗-heap [18]. The top level data structure is a static interpolation search tree
that stores all elements.

Our data structure is maintained by incrementally performing global recon-
structions [14]. More precisely, let S0 be the set of stored elements at the latest
reconstruction, and assume that S0 = {x1, . . . , xn0} in sorted order. The recon-
struction is performed as follows. We partition S0 into two sets S1 and S2, where
S1 = {xi·lnn0 : i = 1, . . . , n0

lnn0
− 1} ∪ {b}, and S2 = S0 − S1. The i-th element

330 A. Kaporis et al.

of S1 is the representative rep(i) of the i-th bucket Bi, where 1 ≤ i ≤ ρ and
ρ = |S1| = n0

lnn0
. An element x ∈ S2 is stored twice: (i) In the appropriate bucket

Bi, iff rep(i − 1) < x ≤ rep(i), for 2 ≤ i ≤ n0
lnn0

; otherwise (x ≤ rep(1)), x is
stored in B1. (ii) As a leaf in the top level structure where it is marked redundant
and is equipped with a pointer to the representative of the bucket to which it
belongs. We also mark as redundant all internal nodes of the top level structure
that span redundant leaves belonging to the same bucket and equip them with a
pointer to the representative of the bucket. The reason we store the elements of
S2 twice is to ensure that all elements are drawn from the same µ-random distri-
bution and hence we can safely apply the analysis presented in [1,13]. Also, the
reason for this kind of representatives will be explained in Section 5. Note that,
after reconstruction, each new element is stored only in the appropriate bucket.
Each time the number of updates exceeds rn0, where r is an arbitrary constant,
the whole data structure is reconstructed. Let n be the number of stored ele-
ments at this time. After the reconstruction, the number of buckets is equal to

n
lnn and the value of the parameter N , used for the implementation of Bi with
a q∗-heap, is n. Immediately after the reconstruction, if every bucket stores less
than polylog(n) elements, then active=TRUE, otherwise active=FALSE.

In order to insert/delete an element immediately to the right of an existing
element f , we insert/delete the element to/from T1 (using the procedures in
[2]), and we insert/delete the element to/from the appropriate bucket of T2 if
active=TRUE (using the procedures in [18]). If during an insertion in a bucket
of T2, the number of stored elements becomes greater than polylog(n), then
active=FALSE. The search procedure for locating an element x in the data
structure, provided that a finger f to some element is given, is carried out as
follows. If active=TRUE, then we search in parallel both structures and we stop
when we first locate the element, otherwise we only search in T1. The search
procedure in T1 is carried out as in [2]. The search procedure in T2 involves
a check as to whether x is to the left or to the right of f . Assume, without
loss of generality, that x is to the right of f . Then, we have two cases: (1) Both
elements belong to the same bucket Bi. In this case, we just retrieve from the q∗-
heap that implements Bi the element with key x. (2) The elements are stored in
different buckets Bi and Bj containing f and x respectively. In this case, we start
from rep(i) and we walk towards the root of the static interpolation search tree.
Assuming that we reach a node v, we check whether x is stored in a descendant
of v or in the right neighbour z of v. This can be easily accomplished by checking
the boundaries of the REP arrays of both nodes. If they are not stored in the
subtrees of v and z, then we proceed to the parent of v, otherwise we continue the
search in the particular subtree using the ID and REP arrays. When a redundant
node is reached, we follow its associated pointer to the appropriated bucket.

4 Analysis of Time and Space Complexity

In this section we analyze the time complexities of the search and update oper-
ations. We start with the case of (n/(log log n)1+ε, n1−δ)-smooth densities, and

Improved Bounds for Finger Search on a RAM 331

later on discuss how our result can be extended to the general case. The tree
structure T2 is updated and queried only in the case where all of its buckets have
size polylog(n) (active=TRUE), where n is the number of elements in the latest
reconstruction. By this and by using some arguments of the analysis in [2] and
[18] the following lemma is immediate.

Lemma 1. The preprocessing time and the space usage of our data structure is
Θ(n). The update operations are performed in O(1) worst-case time.

The next theorem gives the time complexity of our search operation.

Theorem 1. Suppose that the top level of T2 is a static interpolation search tree
with parameters R(s0) = (s0)1−δ, I(s0) = s0/(log log s0)1+ε, where ε > 0, 0 <
δ < 1, and s0 = n0

lnn0
with active=TRUE. Then, the time complexity of a search

operation is equal to O(min{ log |Bi|
log log n + log |Bj |

log log n + log log d,
√

log d/ log log d}),
where Bi and Bj are the buckets containing the finger f and the search ele-
ment x respectively, d denotes the number of buckets between Bi and Bj, and n
denotes the current number of elements.

Proof (Sketch). Since active=TRUE, the search time is the minimum of search-
ing in each of T1 and T2. Searching the former equals O(

√
log d/ log log d). It is

not hard to see that the search operation in T2 involves at most two searches in
buckets Bi and Bj , and the traversal of internal nodes of the static interpolation
search tree, using ancestor pointers, level links and interpolation search. This
traversal involves ascending and descending a subtree of at most d leaves and
height O(log log d), and we can prove (by modifying the analysis in [1,13]) that
the time spent at each node during descend is O(1) w.h.p. ��

To prove that the data structure has a low expected search time with high
probability we introduce a combinatorial game of balls and bins with deletions
(Section 5). To get the desirable time complexities w.h.p., we provide upper
and lower bounds on the number of elements in a bucket and we show that no
bucket gets empty (see Theorem 6). Combining Theorems 1 and 6 we get the
main result of the paper.

Theorem 2. There exists a finger search tree with O(log log d) expected search
time with high probability for µ-random insertions and random deletions, where
µ is a (n/(log log n)1+ε, n1−δ)-smooth density for ε > 0 and 0 < δ < 1, and d is
the distance between the finger and the search element. The space usage of the
data structure is Θ(n), the worst-case update time is O(1), and the worst-case
search time is O(

√
log d/ log log d).

We can generalize our results to hold for the class of (n·g(H(n)), H−1(H(n)−
1))-smooth densities considered in [1], where H(n) is an increasing function rep-
resenting the height of the static interpolation tree and g is a function satisfying∑∞

i=1 g(i) = Θ(1), thus being able to achieve o(log log d) expected time com-
plexity, w.h.p., for several distributions. The generalization follows the proof
of Theorem 1 by showing that the subtree of the static IST has now height
O(H(d)), implying the same traversal time w.h.p. (details in the full paper [9]).

332 A. Kaporis et al.

Theorem 3. There exists a finger search tree with Θ(H(d)) expected search
time with high probability for µ-random insertions and random deletions, where
d is the distance between the finger and the search element, and µ is a (n ·
g(H(n)), H−1(H(n) − 1))-smooth density, where

∑∞
i=1 g(i) = Θ(1). The space

usage of the data structure is Θ(n), the worst-case update time is O(1), and the
worst-case search time is O(

√
log d/ log log d).

For example, the density µ[0, 1](x) = − lnx is (n/(log∗ n)1+ε, log2 n)-smooth,
and for this density R(n) = n/ log2 n. This means that the height of the tree with
n elements is H(n) = Θ(log∗ n) and the method of [1] gives an expected search
time complexity of Θ(log∗ n). However, by applying Theorem 3, we can reduce
the expected time complexity for the search operation to Θ(log∗ d) and this holds
w.h.p. If µ is bounded, then it is (n, 1)-smooth and hence H(n) = O(1), implying
the same expected search time with [1] but w.h.p.

5 A Combinatorial Game of Bins and Balls with
Deletions

In this section we describe a balls-in-bins random process that models each up-
date operation in the structure T2 presented in Section 3. Consider the structure
T2 immediately after the latest reconstruction. It contains the set S0 of n el-
ements (we shall use n for notational simplicity) which are drawn randomly
according to the distribution µ(·) from the interval [a, b]. The next reconstruc-
tion is performed after rn update operations on T2, where r is a constant. Each
update operation is either a uniformly at random deletion of an existing element
from T2, or a µ-random insertion of a new element from [a, b] into T2. To model
the update operations as a balls-in-bins random process, we do the following.

We represent each selected element from [a, b] as a ball. We partition the
interval [a, b] into ρ = n

lnn parts [rep(0), rep(1)]∪ (rep(1), rep(2)]∪ . . .∪ (rep(ρ−
1), rep(ρ)], where rep(0) = a, rep(ρ) = b, and ∀i = 1, . . . , ρ − 1, the elements
rep(i) ∈ [a, b] are those defined in Section 3. We represent each of these ρ parts
as a distinct bin. During each of the rn insertion/deletion operations in T2, a µ-
random ball x ∈ [a, b] is inserted in (deleted from) the i-th bin Bi iff rep(i−1) <
x ≤ rep(i), i = 2, . . . , ρ; otherwise x, is inserted in (deleted from) B1.

Our aim is to prove that w.h.p. the maximum load of any bin is O(lnn), and
that no bin remains empty as n → ∞. If we were knowing the distribution µ(·),
then we could partition the interval [a, b] into ρ distinct bins [repµ(0), repµ(1)]∪
(repµ(1), repµ(2)]∪. . .∪(repµ(ρ−1), repµ(ρ)], with repµ(0) = a and repµ(ρ) = b,
such that a µ-random ball x would be equally likely to belong into any of
the ρ corresponding bins with probability Pr[x ∈ (repµ(i − 1), repµ(i)]] =∫ repµ(i)

repµ(i−1) µ(t)dt = 1
ρ = lnn

n . The above expression implies that the sequence
repµ(0), . . . , repµ(ρ) makes the event “insert (delete) a µ-random (random) ele-
ment x into (from) the structure” equivalent to the event “throw (delete) a ball
uniformly at random into (from) one of ρ distinct bins”. Such a uniform distri-

Improved Bounds for Finger Search on a RAM 333

bution of balls into bins is well understood and it is folklore to find conditions
such that no bin remains empty and no bin gets more than O(lnn) balls.

Unfortunately, the probability density µ(·) is unknown. Consequently, our
goal is to approximate the unknown sequence repµ(0), . . . , repµ(ρ) with a se-
quence rep(0), . . . , rep(ρ), that is, to partition the interval [a, b] into ρ parts
[rep(0), rep(1)] ∪ (rep(1), rep(2)] ∪ . . . ∪ (rep(ρ − 1), rep(ρ)], aiming to prove
that each bin (part) will have the key property: Pr[x ∈ (rep(i − 1), rep(i)]] =∫ rep(i)

rep(i−1) µ(t)dt = Θ
(
1
ρ

)
= Θ

(lnn
n

)
. The sequence rep(0), . . . , rep(ρ) makes the

event “insert (delete) a µ-random (random) element x into (from) the structure”
equivalent to the event “throw (delete) a ball almost uniformly at random into
one of ρ distinct bins”. This fact will become the cornerstone in our subsequent
proof that no bin remains empty and almost no bin gets more than Θ(lnn) balls.

The basic insight of our approach is illustrated by the following random game.
Consider the part of the horizontal axis spanned by [a, b], which will be referred
to as the [a, b] axis. Suppose that only a wise man knows the positions on the
[a, b] axis of the sequence repµ(0), . . . , repµ(ρ), referred to as the red dots. Next,
perform n independent insertions of µ-random elements from [a, b] (this is the
role of the set S0). In each insertion of an element x, we add a blue dot in its
position on the [a, b] axis. At the end of this random game we have a total of n
blue dots in this axis. Now, the wise man reveals the red dots on the [a, b] axis,
i.e., the sequence repµ(0), . . . , repµ(ρ). If we start counting the blue dots between
any two consecutive red dots repµ(i−1) and repµ(i), we almost always find that
there are lnn + o(1) blue dots. This is because the number Xµ

i of µ-random
elements (blue dots) selected from [a, b] that belong in (repµ(i − 1), repµ(i)],
i = 1, . . . , ρ, is a Binomial random variable, Xµ

i ∼ B(n, 1ρ = lnn
n), which is

sharply concentrated to its expectation E[Xµ
i] = lnn.

The above discussion suggests the following procedure for constructing the
sequence rep(0), . . . , rep(ρ). Partition the sequence of n blue dots on the [a, b]
axis into ρ = n

lnn parts, each of size lnn. Set rep(0) = a, rep(ρ) = b, and set as
rep(i) the i · lnn-th blue dot, i = 1, . . . , ρ − 1. Call this procedure Red-Dots.

The above intuitive argument does not imply that limn→∞ rep(i) = repµ(i),
∀i = 0, . . . , ρ. Clearly, since repµ(i), i = 0, . . . , ρ, is a real number, the probabil-
ity that at least one blue dot hits an invisible red dot is insignificant. The above
argument stresses on the following fact whose proof can be found in [9].

Theorem 4. Let rep(0), rep(1), . . . , rep(ρ) be the output of procedure
Red-Dots, and let pi(n) =

∫ rep(i)
rep(i−1) µ(t)dt. Then:

Pr
[
∃ i ∈ {1, . . .m} : pi(n) �= Θ

(
1
ρ

)
= Θ

(lnn
n

)] → 0.

The above discussion and Theorem 4 imply the following.

Corollary 1. If n elements are µ-randomly selected from [a, b], and the sequence
rep(0), . . . , rep(ρ) from those elements is produced by procedure Red-Dots,
then this sequence partitions the interval [a, b] into ρ distinct bins (parts)
[rep(0), rep(1)]∪(rep(1), rep(2)]∪. . .∪(rep(ρ−1), rep(ρ)] such that a ball x ∈ [a, b]

334 A. Kaporis et al.

can be thrown (deleted) independently of any other ball in [a, b] into (from) any
of the bins with probability pi(n) = Pr[x ∈ (rep(i − 1), rep(i)]] = ci lnn

n , where
i = 1, . . . , ρ and ci is a positive constant.

Definition 1. Let c = mini{ci} and C = maxi{ci}, i = 1, . . . , ρ, where ci =
npi(n)
lnn .

We now turn to the randomness properties in each of the rn subsequent
insertion/deletion operations on the structure T2 (r is a constant).

Observe that before the process of rn insertions/deletions starts, each bin Bi

(i.e., part (rep(i − 1), rep(i)]) contains exactly lnn balls (blue dots on the [a, b]
axis) of the n initial balls of the set S0. For convenience, we analyze a slightly
different process of the subsequent rn insertions/deletions. Delete all elements
(balls) of S0 except for the representatives rep(0), rep(1), . . . , rep(ρ) of the ρ
bins. Then, insert µ-randomly n/c (see Definition 1) new elements (balls) and
subsequently start performing the rn insertions/deletions. Since the n/c new
balls are thrown µ-randomly into the ρ bins [rep(0), rep(1)] ∪ (rep(1), rep(2)] ∪
. . . ∪ (rep(ρ − 1), rep(ρ)], by Corollary 1 the initial number of balls into Bi is
a Binomial random variable that obeys B(n/c, pi(n)), i = 1, . . . , ρ, instead of
being fixed to the value lnn. Clearly, if we prove that for this process no bin
remains empty and does not contain more than O(lnn) balls, then this also holds
for the initial process.

Let the random variable M(j) denote the number of balls existing in structure
T2 at the end of the j-th insertion/deletion operation, j = 0, . . . , rn. Initially,
M(0) = n/c. The next useful lemma allows us to keep track of the statistics
of an arbitrary bin. Part (i) follows by Corollary 1 and an induction argument,
while part (ii) is an immediate consequence of part (i).

Lemma 2. (i) Suppose that at the end of j-th insertion/deletion operation there
exist M(j) distinct balls that are µ-randomly distributed into the ρ distinct bins.
Then, after the (j+1)-th insertion/deletion operation the M(j+1) distinct balls
are also µ-randomly distributed into the ρ distinct bins. (ii) Let the random vari-
able Yi(j) with (i, j) ∈ {1, . . . , ρ}×{0, . . . , rn} denote the number of balls that the
i-th bin contains at the end of the j-th operation. Then, Yi(j) ∼ B(M(j), pi(n)).

To study the dynamics of M(j) at the end of j-th operation, observe that in
each operation, a ball is either inserted with probability p > 1/2, or is deleted
with probability 1 − p. M(j) is a discrete random variable which has the nice
property of sharp concentration to its expected value, i.e., it has small deviation
from its mean compared to the total number of operations. In the following,
instead of working with the actual values of j and M(j), we shall use their
scaled (divided by n) values t and m(t), resp., that is, t = j

n , m(t) = M(tn)
n , with

range (t,m(t)) ∈ [0, r] × [1,m(r)]. The sharp concentration property of M(j)
leads to the following theorem (whose proof can be found in [9]).

Theorem 5. For each operation 0 ≤ t ≤ r, the scaled number of balls that are
distributed into the n

ln(n) bins at the end of the t-th operation equals m(t) =
(2p − 1)t + o(1), w.h.p.

Improved Bounds for Finger Search on a RAM 335

Remark 1. Observe that for p > 1/2, m(t) is an increasing positive function of
the scaled number t of operations, that is, ∀ t ≥ 0, M(tn) = m(t)n ≥ M(0) =
m(0)n = n/c. This implies that if no bin remains empty before the process of rn
operations starts, since for p > 1/2 the balls accumulate as the process evolve,
then no bin will remain empty in each subsequent operation. This is important
on proving part (i) of Theorem 6.

Finally, we turn to the statistics of the bins. We prove that before the first op-
eration, and for all subsequent operations, w.h.p., no bin remains empty. Further-
more, we prove that during each step the maximum load of any bin is Θ(ln(n))
w.h.p. For the analysis below we make use of the Lambert function LW (x),
which is the analytic at zero solution with respect to y of the equation: yey = x
(see [4]). Recall also that during each operation j = 0, . . . , rn with probability
p > 1/2 we insert a µ-random ball x ∈ [a, b], and with probability 1−p we delete
an existing ball from the current M(j) balls that are stored in the structure T2.

Theorem 6. (i) For each operation 0 ≤ t ≤ r, let the random variable X(t)
denote the current number of empty bins. If p > 1/2, then for each operation
t, E[X(t)] → 0. (ii) At the end of operation t, let the random variable Zκ(t)
denote the number of bins with load at least κ ln(n), where κ = κ(t) satisfies
κ ≥ (−Cm(t) + 2)/(C · LW (−Cm(t)−2

Cm(t)e)) = O(1), and C is the positive constant
defined in Definition 1. If p > 1/2, then for each operation t, E[Zκ(t)] → 0.

Proof. (i) Recall the definitions of the positive constants c and C (Definition 1).
From Lemma 2, ∀ i = 1, . . . , ρ = n

ln(n) , it holds:

Pr[Yi(t) = 0] ≤
(
1 − c

ln(n)
n

)m(t)n

∼ e−cm(t) ln(n) =
1

ncm(t) . (1)

From Eq. (1), by linearity of expectation, we obtain:

E[X(t) | m(t)] ≤
ρ∑

i=1

Pr[Yi(t) = 0] ≤ n

ln(n)
· 1
ncm(t) . (2)

From Theorem 5 and Remark 1 it holds: ∀ t ≥ 0, 1
ncm(t) ≤ 1

ncm(0) = 1
n . This

inequality implies that in order to show for each operation t that the expected
number E[X(t) | m(t)] of empty bins vanishes, it suffices to show that before
the process starts, the expected number E[X(0) | m(0)] of empty bins vanishes.
In this line of thought, from Theorem 5, Eq. (2) becomes,

E[X(0) | m(0)] ≤ n

ln(n)
· 1
ncm(0) =

n

ln(n)
· 1
n

=
1

ln(n)
→ 0.

Finally, from Markov’s inequality, we obtain

Pr[X(t) > 0 | m(t)] ≤ E[X(t) | m(t)] ≤ E[X(0) | m(0)] → 0.

(ii) In the full paper [9] due to space limitations. ��

336 A. Kaporis et al.

References

1. A. Andersson and C. Mattson. Dynamic Interpolation Search in o(log logn) Time.
In Proc. ICALP’93.

2. A. Anderson and M. Thorup. Tight(er) Worst-case Bounds on Dynamic Searching
and Priority Queues. In Proc. 32nd ACM Symposium on Theory of Computing –
STOC 2001, pp. 335–342. ACM, 2000.

3. R. Cole, A. Frieze, B. Maggs, M. Mitzenmacher, A. Richa, R. Sitaraman, and
E. Upfal. On Balls and Bins with Deletions. In Randomization and Approxima-
tion Techniques in Computer Science – RANDOM’98, Lecture Notes in Computer
Science Vol. 1518 (Springer-Verlag, 1998), pp. 145–158.

4. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth. On the
Lambert W Function. Advances in Computational Mathematics 5:329–359, 1996.

5. P. Dietz and R. Raman. A Constant Update Time Finger Search Tree. Information
Processing Letters, 52:147–154, 1994.

6. G. Frederickson. Implicit Data Structures for the Dictionary Problem. Journal of
the ACM 30(1):80–94, 1983.

7. G. Gonnet, L. Rogers, and J. George. An Algorithmic and Complexity Analysis of
Interpolation Search. Acta Informatica 13(1):39–52, 1980.

8. A. Itai, A. Konheim, and M. Rodeh. A Sparse Table Implementation of Priority
Queues. In Proc. ICALP’81, Lecture Notes in Computer Science Vol. 115 (Springer-
Verlag 1981), pp. 417–431.

9. A. Kaporis, C. Makris, S. Sioutas, A. Tsakalidis, K. Tsichlas, and C. Zaroliagis.
Improved Bounds for Finger Search on a RAM. Tech. Report TR-2003/07/01,
Computer Technology Institute, Patras, July 2003.

10. D.E. Knuth. Deletions that preserve randomness. IEEE Trans. Softw. Eng. 3:351–
359, 1977.

11. C. Levcopoulos and M.H. Overmars. A Balanced Search Tree with O(1) Worst
Case Update Time. Acta Informatica, 26:269–277, 1988.

12. K. Mehlhorn and A. Tsakalidis. Handbook of Theoretical Computer Science – Vol
I: Algorithms and Complexity, Chapter 6: Data Structures, pp. 303-341, The MIT
Press, 1990.

13. K. Mehlhorn and A. Tsakalidis. Dynamic Interpolation Search. Journal of the
ACM, 40(3):621–634, July 1993.

14. M. Overmars, J. Leeuwen. Worst Case Optimal Insertion and Deletion Methods for
Decomposable Searching Problems. Information Processing Letters, 12(4):168–173.

15. Y. Pearl, A. Itai, and H. Avni. Interpolation Search – A log logN Search. Com-
munications of the ACM 21(7):550–554, 1978.

16. W.W. Peterson. Addressing for Random Storage. IBM Journal of Research and
Development 1(4):130–146, 1957.

17. D.E. Willard. Searching Unindexed and Nonuniformly Generated Files in log logN
Time. SIAM Journal of Computing 14(4):1013–1029, 1985.

18. D.E. Willard. Applications of the Fusion Tree Method to Computational Geometry
and Searching. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms –
SODA’92, pp. 286–295, 1992.

19. A.C. Yao and F.F. Yao. The Complexity of Searching an Ordered Random Table.
In Proc. 17th IEEE Symp. on Foundations of Computer Science – FOCS’76, pp.
173–177, 1976.

	Introduction
	Preliminaries
	The Data Structure
	Analysis of Time and Space Complexity
	A Combinatorial Game of Bins and Balls with Deletions

