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Abstract. We consider the generation of prime order elliptic curves
(ECs) over a prime field Fp using the Complex Multiplication (CM)
method. A crucial step of this method is to compute the roots of a special
type of class field polynomials with the most commonly used being the
Hilbert and Weber ones, uniquely determined by the CM discriminant
D. In attempting to construct prime order ECs using Weber polynomials
two difficulties arise (in addition to the necessary transformations of the
roots of such polynomials to those of their Hilbert counterparts). The
first one is that the requirement of prime order necessitates that D ≡ 3
(mod 8), which gives Weber polynomials with degree three times larger
than the degree of their corresponding Hilbert polynomials (a fact that
could affect efficiency). The second difficulty is that these Weber poly-
nomials do not have roots in Fp. In this paper we show how to overcome
the above difficulties and provide efficient methods for generating ECs of
prime order supported by a thorough experimental study. In particular,
we show that such Weber polynomials have roots in Fp3 and present a
set of transformations for mapping roots of Weber polynomials in Fp3

to roots of their corresponding Hilbert polynomials in Fp. We also show
how a new class of polynomials, with degree equal to their correspond-
ing Hilbert counterparts (and hence having roots in Fp), can be used
in the CM method to generate prime order ECs. Finally, we compare
experimentally the efficiency of using this new class against the use of
the aforementioned Weber polynomials.

1 Introduction

The generation of elliptic curves (ECs) with good security properties has been
one of the central considerations in Elliptic Curve Cryptography. One of the most

� This work was partially supported by the Action IRAKLITOS (Fellowships for Re-
search in the University of Patras) with matching funds from EC and the Greek
Ministry of Education.
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efficient methods that can be employed for the construction of ECs with specified
order is the Complex Multiplication (CM) method [1, 17]. Briefly, the CM method
starts with the specification of a discriminant value D, the determination of the
order p of the underlying prime field and the order m of the EC. It then computes
a special polynomial, called Hilbert polynomial, which is uniquely determined by
D and locates one of its roots modulo p. This root can be used to construct the
parameters of an EC with order m over the field Fp. A major drawback of Hilbert
polynomials is that their coefficients grow very large with D and hence possess
high computational demands. In order to eliminate this drawback, an alternative
class of polynomials with much smaller coefficients, called Weber polynomials,
can be used instead. The issue with Weber polynomials, however, is that their
roots (modulo p) cannot be used to construct directly the parameters of the
EC but they first have to be transformed into the roots of their corresponding
Hilbert polynomials.

The CM method is not by itself adequate for applications that require robust
ECs against cryptanalytic attacks. It turns out that the properties of the order
of an EC play a central role in establishing cryptanalytic robustness. One way to
establish robustness is to generate ECs whose order satisfies a certain number of
properties designed to guard against the currently known most effective attacks
[18, 24, 25]. An equally important alternative to cryptographic strength (see e.g.,
[26]) requires that the order of the generated EC is a prime number. Note that in
certain applications it is necessary to have ECs of prime order [6]. Prime order
ECs defined in various fields were also treated in [2, 16, 20, 23].

In this paper we follow the latter approach and study the use of the CM
method for generating ECs of prime order in Fp. Although ECs with no restric-
tions on their order may be generated more efficiently using a point counting
(such as Schoof’s [28]) algorithm5, the requirement of prime order can severely
change the situation. Point counting algorithms first choose the parameters of
the EC and then compute its order. If this order is found non-prime, then an-
other set of EC parameters is generated and the process is repeated. This can be
seen, approximately, as sampling from the set of ECs of prime order (for a fixed
p). There is well supported theoretical and experimental evidence [11] that this
probability is, asymptotically, cp

log p , where cp is a constant depending on p and
satisfying 0.44 ≤ cp ≤ 0.62. Thus, it appears that prime orders are not especially
favored by the point counting approach, as also noted in [11]. CM, on the other
hand, starts with a prime number (the order of the EC) and then constructs the
parameters thus avoiding this averse prime order probability.

In attempting to construct prime order ECs using Weber polynomials two
additional difficulties arise. The first one is that the prime order requirement
necessitates that D ≡ 3 (mod 8), which in turn results in Weber polynomials
with degree three times larger than the degree of their corresponding Hilbert
polynomial. The second and most crucial difficulty is that such Weber polyno-

5 There are cases where point counting algorithms can be very inefficient compared
to the CM method, e.g., when p is large and the discriminant value is small.
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mials (used for the construction of prime order ECs) do not have roots in Fp for
certain values of p, as it is shown in Section 3.

Our work addresses the difficulties outlined above with an eye to applications
and the practitioner’s needs. We pay particular attention to support our theo-
retical findings with a thorough experimental study, thus shedding more light in
the use of polynomials for the efficient generation of prime order ECs using the
CM method, and providing guidance to the practitioner with respect to the res-
olution of these difficulties. In particular, we make the following contributions:
(i) We show that Weber polynomials defined on values of D ≡ 3 (mod 8) and
used in the CM method for generating ECs of prime order have roots in the
extension field Fp3 and not in Fp. (ii) We present a set of simplified transforma-
tions that map the roots of the Weber polynomials in Fp3 to the roots of their
corresponding Hilbert polynomials in Fp. This implies that the particular Weber
polynomials can be used to generate prime order ECs with the CM method. (iii)
We show how a new class of polynomials can be used in the CM method for
generating prime order ECs. The advantage of these polynomials is that they
have the same degree with their corresponding Hilbert polynomials and hence
have roots in Fp. (iv) We perform a comparative experimental study regarding
the efficiency of the CM method using the aforementioned Weber polynomials
against using the new class of polynomials. Although it may seem that the use
of Weber polynomials is inefficient due to their high degree and the fact that
their roots lie in Fp3 (which requires operations with polynomials of degree 2),
we provide experimental evidence which demonstrates that this is not always
the case.

We would like to note that the case D ≡ 3 (mod 8) can also be useful for
the generation of ECs that do not necessarily have prime order [29] or for the
generation of special curves, such as MNT curves [19, 20]. This makes our analysis
for class polynomials with such discriminants even more useful.

The rest of the paper is organized as follows. In Section 2 we review some basic
definitions and facts about ECs, the CM method, the Hilbert polynomials, and
discuss some of their properties relevant to the generation of ECs. In Section 3
we present properties of Weber polynomials with D ≡ 3 (mod 8) and describe
their use in the CM method. In Section 4 we elaborate on the construction of a
new class of polynomials that can also be used in the CM method. Finally, in
Section 5 we present our experimental results concerning the efficiency of the CM
method using Weber polynomials against using the new class of polynomials.

2 A Brief Overview of Elliptic Curve Theory and
Complex Multiplication

This section contains a brief introduction to elliptic curve theory, to the Com-
plex Multiplication method for generating prime order elliptic curves and to
the Hilbert class field polynomials. Our aim is to facilitate the reading of the
sections that follow. For full coverage of the necessary concepts and terms, the
interested reader may consult [5]. Also, the proofs of certain theorems require
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basic knowledge of algebraic number theory and Galois theory. The interested
reader is referred to [8, 31, 32] for definitions not given here due to lack of space.

2.1 Preliminaries of Elliptic Curve Theory

An elliptic curve defined over a finite field Fp, p > 3 and prime, is denoted by
E(Fp) and contains the points (x, y) ∈ Fp (in affine coordinates) that satisfy the
equation (in Fp)

y2 = x3 + ax + b, (1)

with a, b ∈ Fp satisfying 4a3 + 27b2 �= 0. The set of these points equipped with
a properly defined point addition operation and a special point, denoted by O
and called point at infinity (zero element for the addition operation), forms an
Abelian group. This is the Elliptic Curve group and the point O is its identity
element (see [5, 30] for more details on this group).

The order, denoted by m, is the number of points that belong in E(Fp). The
numbers m and p are related by the Frobenius trace t = p + 1 − m. Hasse’s
theorem (see e.g., [5, 30]) implies that |t| ≤ 2

√
p. Given a point P ∈ E(Fp),

its order is the smallest positive integer n such that nP = O. By Langrange’s
theorem, the order of a point P ∈ E(Fp) divides the order m of the group E(Fp).
Thus, mP = O for any P ∈ E(Fp) and, consequently, the order of a point is
always less than or equal to the order of the elliptic curve.

Two of the most important quantities of an elliptic curve E(Fp) defined
through Eq. (1) are the curve discriminant ∆ and the j-invariant: ∆ = −16(4a3+
27b2) and j = −1728(4a)3/∆. Given a j-invariant j0 ∈ Fp (with j0 �= 0, 1728)
two ECs can be constructed. If k = j0/(1728− j0) mod p, one of these curves is
given by Eq. (1) by setting a = 3k mod p and b = 2k mod p. The second curve
(the twist of the first) is given by the equation

y2 = x3 + ac2x + bc3 (2)

with c any quadratic non-residue of Fp. If m1 and m2 denote the orders of an
elliptic curve and its twist respectively, then m1 + m2 = 2p + 2 which implies
that if one of the curves has order p + 1 − t, then its twist has order p + 1 + t,
or vice versa (see [5, Lemma VIII.3]).

2.2 The Complex Multiplication Method

As stated in the previous section, given a j-invariant one may readily construct
an EC. Finding a suitable j-invariant for a curve that has a given order m can
be accomplished through the theory of Complex Multiplication (CM) of elliptic
curves over the rationals. This method is called the CM method and in what
follows we will give a brief account of it.

By Hasse’s theorem, Z = 4p−(p+1−m)2 must be positive and, thus, there is
a unique factorization Z = Dv2, with D a square free positive integer. Therefore

4p = u2 + Dv2 (3)
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for some integer u that satisfies the equation

m = p + 1 ± u. (4)

The negative parameter −D is called a CM discriminant for the prime p. For
convenience throughout the paper, we will use (the positive integer) D to refer
to the CM discriminant. The CM method uses D to determine a j-invariant.
This j-invariant in turn, will lead to the construction of an EC of order p+1−u
or p + 1 + u.

The method works as follows. Given a prime p, the smallest D is chosen
for which there exists some integer u for which Eq. (3) holds. If neither of the
possible orders p+1−u and p+1+u is suitable for our purposes, the process is
repeated with a new D. If at least one of these orders is suitable, then the method
proceeds with the construction of the Hilbert polynomial (uniquely defined by D)
and the determination of its roots modulo p. Any root of the Hilbert polynomial
can be used as a j-invariant. From this the corresponding EC and its twist can be
constructed as described in Section 2.1. In order to find which one of the curves
has the desired suitable order (m = p + 1 − u or m = p + 1 + u), the method
uses Langrange’s theorem as follows: it repeatedly chooses points P at random
in each EC until a point is found in one of the curves for which mP �= O. This
implies that the curve we seek is the other one. It turns out that the most time
consuming part of the CM method is the construction of the Hilbert polynomial.
These polynomials have very large coefficients and their construction requires
the use of high precision floating point arithmetic with complex numbers.

We now turn to the generation of prime order ECs. If m should be a prime
number, then it is obvious that u should be odd. It is also easy to show that D
should be congruent to 3 (mod 8) and v should be odd, too. In this paper, we
follow a variant of the CM method for the construction of prime order elliptic
curves. We first determine a discriminant D ≡ 3 (mod 8) and then we construct
the two prime numbers p and m. The most trivial way to do this, is by choosing
at random odd integers u and v and then check whether p and m are prime using
Eq. (3) and Eq. (4). Next, a Weber polynomial corresponding to the discriminant
value D is constructed and we locate a root of it. This root, however, cannot
lead to the construction of the j-invariant directly, since j-invariants are roots
of the Hilbert polynomials. Therefore, we must transform this root to a root of
the corresponding (constructed with the same discriminant) Hilbert polynomial.
The necessary transformations are given in Section 3.

2.3 Hilbert Polynomials

Every CM discriminant D defines a unique Hilbert polynomial, denoted by
HD(x). Given a positive D, the Hilbert polynomial HD(x) ∈ Z[x] is defined
as

HD(x) =
∏
τ

(x − j(τ)) (5)

for values of τ satisfying τ = (−β +
√−D)/2α, for all integers α, β, and

γ such that (i) β2 − 4αγ = −D, (ii) |β| ≤ α ≤ √
D/3, (iii) α ≤ γ, (iv)
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gcd(α, β, γ) = 1, and (v) if |β| = α or α = γ, then β ≥ 0. The 3-tuple of integers
[α, β, γ] that satisfies these conditions is called a primitive, reduced quadratic
form of −D, with τ being a root of the quadratic equation αz2 + βz + γ =
0. Clearly, the set of primitive reduced quadratic forms of a given discrimi-
nant is finite. The quantity j(τ) in Eq. (5) is called class invariant and is de-
fined as follows. Let z = e2π

√−1τ and h(τ) = ∆(2τ)
∆(τ) , where ∆(τ) = η(τ)24 =

z
(
1 +

∑
n≥1 (−1)n

(
zn(3n−1)/2 + zn(3n+1)/2

))24

. Then, j(τ) = (256h(τ)+1)3

h(τ) .
Let h be the number of primitive reduced quadratic forms, which determines

the degree (or class number) of HD(x). Then, the bit precision required for the
generation of HD(x) can be estimated (see [17]) by

H-Prec(D) ≈ ln 10
ln 2

(h/4 + 5) +
π
√

D

ln 2

∑
τ

1
α

with the sum running over the same values of τ as the product in Eq. (5). Hilbert
polynomials have roots roots modulo p under certain conditions stated in the
following theorem.

Theorem 1. A Hilbert polynomial HD(x) with degree h has exactly h roots
modulo p if and only if the equation 4p = u2 + Dv2 has integer solutions and p
does not divide the discriminant ∆(HD) of the polynomial.

Proof. Let HK be the Hilbert class field of the imaginary quadratic field K =
Q(

√−D), and let OHK and OK be the rings of algebraic integers of HK and K
respectively.

Let p be a prime such that 4p = u2 + Dv2 has integer solutions. Then,
according to [8, Th. 5.26] p splits completely in HK . Let HD(x) ∈ Z[x] be the
Hilbert polynomial with root the real algebraic integer j(τ). Proposition 5.29 in
[8] implies that HD(x) has a root modulo p if and only if p splits in HK and
does not divide its discriminant6 ∆(HD). But since OHK

pOHK
/Fp is Galois, HD(x)

has not only one root modulo p, but h distinct roots modulo p. �	
There are finitely many primes dividing the discriminant ∆(HD) of the

Hilbert polynomial and infinitely many primes to choose. In elliptic curve cryp-
tosystems the prime p is at least 160 bits. Therefore, an arbitrary prime almost
certainly does not divide the discriminant.

3 The CM Method Using Weber Polynomials

In this section we define Weber polynomials for discriminant values D ≡ 3
(mod 8) and prove that they do not have roots in Fp for certain primes p, but
they do have roots in the extension field Fp3 . We then discuss their efficiency
when used in the CM method, and present a transformation that maps roots of
Weber polynomials in Fp3 into the roots of their Hilbert counterparts in Fp.

6 For a definition of the discriminant of a polynomial see [7].
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3.1 Weber Polynomials and Their Roots in Finite Fields

Weber polynomials are defined using the Weber functions (see [1, 13]):

f(y) = q−1/48
∞∏

r=1

(1 + q(r−1)/2) f1(y) = q−1/48
∞∏

r=1

(1 − q(r−1)/2)

f2(y) =
√

2 q1/24
∞∏

r=1

(1 + qr) where q = e2πy
√−1.

The Weber polynomial WD(x) ∈ Z[x] for D ≡ 3 (mod 8) is defined as

WD(x) =
∏

�

(x − g(�)) (6)

where � = −b+
√−D
a satisfies the equation ay2+2by+c = 0 for which b2−ac = −D

and (i) gcd(a, b, c) = 1, (ii) |2b| ≤ a ≤ c, and (iii) if either a = |2b| or a = c, then
b ≥ 0. Let ζ = eπ

√−1/24. The class invariant g(�) for WD(x) is defined by

g(�) =

⎧⎪⎨
⎪⎩

ζb(c−a−a2c) · f(�) if 2 |/a and 2 |/c

−(−1)
a2−1

8 · ζb(ac2−a−2c) · f1(�) if 2 |/a and 2 | c

−(−1)
c2−1

8 · ζb(c−a−5ac2) · f2(�) if 2 | a and 2 |/c

(7)

if D ≡ 3 (mod 8) and D �≡ 0 (mod 3), and

g(�) =

⎧⎪⎨
⎪⎩

1
2ζ3b(c−a−a2c) · f3(�) if 2 |/a and 2 |/c

− 1
2 (−1)

3(a2−1)
8 · ζ3b(ac2−a−2c) · f3

1 (�) if 2 |/a and 2 | c

− 1
2 (−1)

3(c2−1)
8 · ζ3b(c−a−5ac2) · f3

2 (�) if 2 | a and 2 |/c

(8)

if D ≡ 3 (mod 8) and D ≡ 0 (mod 3).
For these cases of the discriminant (D ≡ 3 (mod 8)), the Weber polynomial

WD(x) has degree three times larger than the degree of its corresponding Hilbert
polynomial HD(x). An upper bound for the precision requirements of Weber
polynomials for both cases of D was presented in [16] and is equal to 3h +
π
√

D
24 ln 2

∑
�

1
α for D �≡ 0 (mod 3) and to 3h + π

√
D

8 ln 2

∑
�

1
α for D ≡ 0 (mod 3). The

sum runs over the same values of � as the product of Eq. (6) and 3h is the
degree of the Weber polynomial (h is the degree of the corresponding Hilbert
polynomial).

Consider the modular function

Φ2(x, j) = (x − 16)3 − jx (9)

where j is a class invariant for the Hilbert polynomial. The three roots of the
equation Φ2(x, j) = 0 are the powers f24, −f24

1 and −f24
2 of the Weber functions.

A transformation (used in the CM method) from roots of Weber polynomials
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to roots of Hilbert polynomials was presented in [16], and is derived from the
modular equation Φ2(x, j) = 0. The transformation for D �≡ 0 (mod 3) is

RH =
(212R−24

W − 16)3

212R−24
W

(10)

and for D ≡ 0 (mod 3) is

RH =
(24R−8

W − 16)3

24R−8
W

(11)

where RW is a root of WD(x) and RH is a root of HD(x). To use these trans-
formations we have to locate RW on a specific field, an issue not addressed in
[16].

In the rest of this section we will show that when u, v are odd numbers and
D ≡ 3 (mod 8), then WD(x) does not have roots modulo p, but its roots belong
to the extension field Fp3 (recall that the order m = p+1±u of the elliptic curve
can be prime only if u is odd, which means that in Eq. (3) v must be odd, too).

Theorem 2. If the equation 4p = u2 + Dv2 has a solution and u, v are odd
integers, then the Weber polynomial WD(x) with degree 3h (D ≡ 3 (mod 8))
has no roots modulo p.

Proof. Given an integer c, let
(

c
2

)
be the Kronecker symbol. From [22, Th. 3.1]

we conclude that if
(

−Dv2

2

)
= −1, then the polynomial Φ2(x, j) (mod p) is

irreducible modulo p. This means that if we could prove that
(

−Dv2

2

)
= −1,

then the equation Φ2(x, j) = 0 (mod p) would have no roots x (mod p) for a
given j (mod p). This j will be a root of Hilbert polynomial modulo p, which
we know from Theorem 1 that always exists. But if there is no x (mod p) that
satisfies the equation Φ2(x, j) = 0 (mod p), then the Weber polynomial cannot
have a root modulo p either. If it had, then according to the transformations
there would also exist an x (mod p) which is a contradiction. We must prove now
that

(
−Dv2

2

)
= −1. Using the Kronecker symbol we know that

(
−Dv2

2

)
= −1

if −Dv2 is odd and −Dv2 ≡ ±3 (mod 8). We will show that Dv2 ≡ 3 (mod 8).
Clearly, since D ≡ 3 (mod 8) = 8d1 + 3 and v = 2v1 + 1 is odd, then Dv2 is
also odd. We have Dv2 = (8d1 + 3)(2v1 + 1)2 = (8d1 + 3)(4v2

1 + 4v1 + 1). That
is, Dv2 ≡ 3(4v2

1 + 4v1 + 1) (mod 8) and because v2
1 + v1 is even then it is easily

seen that Dv2 ≡ 3 (mod 8) which completes the proof. �	

The next theorem establishes the main result of this section.

Theorem 3. If the equation 4p = u2+Dv2 has a solution with u, v odd integers,
then the Weber polynomial WD(x) has h monic irreducible factors of degree 3
modulo p. Thus, the polynomial has 3h roots in the extension field Fp3 .
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Proof. We have proved in Theorem 2 that the Weber polynomial does not have
roots modulo p if u, v are odd numbers and that the polynomial Φ2(x, j) is
irreducible modulo p. This means that Φ2(x, j) = 0 has three roots x ∈ Fp3 for
a root j ∈ Fp of the Hilbert polynomial. According to Eq. (10) and Eq. (11),
x = 212R−24

W if D �≡ 0 (mod 3), and x = 24R−8
W if D ≡ 0 (mod 3). Thus, there

are at least three roots of the Weber polynomial that correspond to a root j ∈ Fp

of the Hilbert polynomial, and which are either in Fp3 or in an extension field of
greater degree (at most 72 if D �≡ 0 (mod 3) and at most 24 if D ≡ 0 (mod 3)).

Let RW,j be a root of the Weber polynomial that corresponds to a root j of
the Hilbert polynomial. Let fj(x) be the minimal polynomial of RW,j (mod p).
The degree of this polynomial will be at least 3, because the root RW,j is at least
in Fp3 . Then, the Weber polynomial can be written as

WD(x) =
∏
j

fj(x) (mod p). (12)

Since the degree of the Weber polynomial is 3h and the roots j modulo p of the
Hilbert polynomial are h (see Theorem 1) we have that every minimal polynomial
fj(x) will have degree 3. Thus, Weber polynomials have h irreducible cubic
factors. Every factor has 3 roots in Fp3 , which means that there are totally 3h
roots in Fp3 . �	

3.2 The Use of Weber Polynomials in the CM Method

In this subsection we will elaborate on the use of Weber polynomials for the
generation of prime order ECs. The idea is that we replace Hilbert polynomials
with Weber polynomials and then try to compute a root of the Hilbert polyno-
mial from a root of its corresponding Weber polynomial. To compute the desired
Hilbert root, we proceed in three stages. First, we construct the corresponding
Weber polynomial. Second, we compute its roots in Fp3 . Finally, we transform
the Weber roots to the desired Hilbert roots in Fp. The first stage is accom-
plished using the definition of Weber polynomials in Section 3.1. To compute a
root of WD(x) in Fp3 , we have to find an irreducible factor (modulo p) of degree
3 of the polynomial. This is achieved using Algorithm 3.4.6 from [7]. The irre-
ducible factor has 3 roots in Fp3 from which it suffices to choose one, in order to
accomplish the third stage.

Suppose that x3 + ax2 + bx + c is an irreducible factor modulo p of the
Weber polynomial. From this irreducible factor, we can compute three roots
(one suffices for the CM method) of the Weber polynomial if we have already
defined the reduction polynomial of the extension field Fp3 . We simply set the
reduction polynomial to be equal to the irreducible factor x3 + ax2 + bx + c and
then a root of the Weber polynomial would be just x.

Let us see an example: if W403(x) = x6−12x5−26x4+4x3+36x2+20x+4 and
p = 722107661880352729711165735009 then a factor of the Weber polynomial
modulo p is x3+530841998355731959331093661138x2+2654209991778659796655
46830567x + 7221076618803527 29711165735007. Note that 403 is not divisible
by 3 and 722107661880352729711165735007 = p − 2 ≡ −2 (mod p).
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The following lemma allows us to determine the constant term of the irre-
ducible factor and consequently to simplify the roots’ transformation as we will
see later.

Lemma 1. Let x3 + ax2 + bx + c be an irreducible factor (modulo p) of the
Weber polynomial with D ≡ 3 (mod 8). Then, the following hold: (i) if D ≡ 0
(mod 3), then c = −1; (ii) if D �≡ 0 (mod 3), then c = −2.

Proof. The constant term of the Weber polynomial is equal to (−1)h for the
first case of D and (−2)h for the second case (see [14]). The Galois group of
the extension HK/K operates on the roots modulo p of HD(x), and therefore
on the cubic irreducible factors of WD(x) (every root of HD(x) corresponds to
three roots of WD(x) and thus to a cubic irreducible factor). Since every element
in this Galois group induces the identity on Fp, all cubic factors of WD(x) will
have the same constant term. Because the constant term of a monic polynomial
is equal to the product of the constant terms of its monic irreducible factors,
it can be easily seen that c = −1 for the first case of D and c = −2 for the
second. �	

We are now ready to present the transformations for mapping a Weber root
in Fp3 to its corresponding Hilbert root in Fp. Suppose that RW = x is a root of
a Weber polynomial WD(x) in the extension field Fp3 . The calculations in the
transformations must be in Fp3 with reduction polynomial x3 + ax2 + bx + c,
since RW is a root in Fp3 .

The transformations may seem quite complicated because of the arithmetic
operations that take place in the extension field, but they can be simplified
due to Lemma 1. Consider the case D �≡ 0 (mod 3) for which an irreducible
factor of the Weber polynomial is equal to x3 + ax2 + bx − 2. Then, R−24

W =
x−24 = ( x2+ax+b

x(x2+ax+b) )
24 = (x2+ax+b

2 )24. This means that 212R−24
W = (x2+ax+b)24

212 .
Substituting it to Eq. (10) we finally have:

RH =
((x2 + ax + b)24 − 216)3

224(x2 + ax + b)24
. (13)

Similarly, for D ≡ 0 (mod 3) the transformation becomes:

RH =
28((x2 + ax + b)8 − 1)3

(x2 + ax + b)8
. (14)

The nominator and the denominator of the two transformations are elements of
Fp3 . However we know that RH is in Fp and we can find its value dividing only
the leading coefficients of these two elements modulo p. To illustrate the above
transformations, consider again the Weber polynomial W403. Let p be a prime
as in the previous example, and let the reduction polynomial be the factor of the
W403(x) presented also in the previous example. Then, ((x2 +ax+b)24−216)3 =
485216670393361675137940525358x2+498390024660218217560914441491x+437
505083747867349301080018378 and (x2+ax+b)24 = 372203635398289746518033
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419220x2+193471851293797158505478806686x+105818622204842691408284289
782. The root RH of the Hilbert polynomial is equal to

485216670393361675137940525358
224372203635398289746518033419220 (mod p) = 188541528108458443856585415294.

4 The CM Method Using a New Class of Polynomials

Even though Weber polynomials have much smaller coefficients than Hilbert
polynomials and can be computed very efficiently, the fact that their degree
for D ≡ 3 (mod 8) is three times larger than the degree of the corresponding
Hilbert polynomials can be a potential problem, because it involves computations
in extension fields. Moreover, the computation of a cubic factor modulo p in a
polynomial with degree 3h is more time consuming than the computation of a
single root modulo p of a polynomial with degree h.

To alleviate these problems, we can use in the CM method a relatively new
class of polynomials which have degree h like Hilbert polynomials. In particular,
two types of polynomials can be constructed in Z[x] using two families of η-
products: ml(z) = η(z/l)

η(z) [21] for an integer l, and mp1,p2(z) = η(z/p1)η(z/p2)
η(z/(p1p2))η(z)

[10], where p1, p2 are primes such that 24|(p1 − 1)(p2 − 1). We will refer to the
minimal polynomials of these products (powers of which generate the Hilbert
class field and are called class invariants like j(τ)) as MD,l(x) and MD,p1,p2(x),
respectively, where D is the discriminant used for their construction.

The polynomials are obtained from these two families by evaluating their
value at a suitably chosen system of quadratic forms. Once a polynomial is
computed, we can use the modular equations Φl(x, j) = 0 or Φp1,p2(x, j) = 0,
in order to compute a root modulo p of the Hilbert polynomial from a root
modulo p of the MD,l(x) or the MD,p1,p2(x) polynomial, respectively. In this
section we will construct polynomials using only the ml family for prime values
of l, in particular for l = 3, 5, 7, 13. The reason is that only for these values of
l the modular equations have degree 1 in j. For all other values of l or for the
mp1,p2 family, the degree in j is at least 2 (which makes the computations more
“heavy”), the coefficients of the modular equations are quite large (which makes
their use less efficient) and moreover, the computation of mp1,p2(z) involves the
computation of four η-products and not two like ml(z).

In order to construct the polynomial MD,l(x) with l = 3, 5, 7, 13, we used
Theorem 2 from [9] which for our purposes boils down to the following statement.

Theorem 4. [9] Let l ∈ {3, 5, 7, 13} and D > 0 a discriminant such that l|D.
Choose the power me

l as specified in Table 1 . Assume Q = [A, B, C] is a primitive
quadratic form of discriminant D with gcd(A, l) = 1, gcd(A, B, C) = 1 and
B2 ≡ −D (mod 4l). If τQ = −B+

√−D
2A , then the minimal polynomial of me

l (τQ)
has integer coefficients and can be computed from an l-system.

An l-system is a system S = {(Ai, Bi, Ci)}1≤i≤h of representatives of the reduced
primitive quadratic forms of a discriminant −D such that B2

i − 4AiCi = −D,
gcd(Ai, l) = 1 and Br ≡ Bs (mod 2l) for all 1 ≤ r, s ≤ h. For a more formal
definition see [27].
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l class invariant

3 m12
3

5 m6
5

7 m4
7

13 m2
13

Table 1. Class invariants for different values of l.

Although the construction of MD,l(x) polynomials is explained in [9, 21, 22],
the required computation of the primitive forms is not provided. In the following,
we provide all the details for computing these forms, which we also used in
our implementation. Possibly there are alternative ways to generate the same
polynomial MD,l(x) with other, equivalent forms.

For the construction of the polynomials MD,l(x), and according to The-
orem 4, the condition Br ≡ Bs (mod 2l) can be replaced by the condition
B2

i ≡ −D (mod 4l) and because D ≡ 0 (mod l), we can write Bi = l + 2lki ≡ l
(mod 2l) for an integer ki ≥ 1. In particular, MD,l(x) =

∏
τQ

(x−me
l (τQ)) where

Q = [Ai, Bi, Ci] is a primitive form satisfying the conditions gcd(Ai, l) = 1,
Bi = l + 2lki and τQ = −Bi+

√−D
2Ai

. The set of forms [Ai, Bi, Ci]1≤i≤h can be
computed from the set of the reduced primitive quadratic forms [α, β, γ] that
are used for the construction of HD(x).

A form [Ai, Bi, Ci] can be computed from a reduced primitive quadratic form
[α, β, γ] using (at most) two transformations from [27, Prop. 3]. The first one
transforms a form [a, b, c] to an equivalent (having the same discriminant −D)
form [a, b + 2ak, c + bk + ak2] for an integer k and the second transforms a
form [a, b, c] to an equivalent form [a + bn + cn2, b + 2cn, c] for an integer n.
In order to compute a form [Ai, Bi, Ci] we first transform a reduced primitive
form [α, β, γ] to a form [α1, β1, γ1] such that β1 and γ1 are divided by l, using
the first transformation. This means that we choose an integer k such that
β1 = β + 2αk ≡ 0 (mod l) and γ1 = γ + βk + αk2 ≡ 0 (mod l). If α ≡ 0
(mod l), we just set α1 = γ and γ1 = α, and we do not apply the transformation
(β1 = β ≡ 0 (mod l), because D ≡ 0 (mod l)). After this transformation, we
use the second transformation from [27] to compute the final form [Ai, Bi, Ci]
from [α1, β1, γ1]. Thus, Ai = α1 + β1n + γ1n

2, Bi = β1 + 2γ1n and Ci = γ1 for
an integer n such that Ai > Bi > Ci.

It is easy to see why this process yields a form that satisfies the desired con-
ditions. The requirement Ai > Bi > Ci exists because our experiments showed
that it is necessary for the proper construction of the polynomial MD,l(x). For
example, for D = 51 the reduced forms are [1, 1, 13], [3, 3, 5] and the correspond-
ing forms [Ai, Bi, Ci] for l = 3 are [67, 63, 15], [11, 9, 3].

The invariants me
l (τ) are related with j(τ) through the modular equation

Φl(me
l (τ), j(τ)) = 0, based on the definitions of Φl(x, j) for the different values

of l given in Table 2.
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l Φl(x, j)

3 (x + 27)(x + 3)3 − jx

5 (x2 + 10x + 5)3 − jx

7 (x2 + 13x + 49)(x2 + 5x + 1)3 − jx

13 (x2 + 5x + 13)(x4 + 7x3 + 20x2 + 19x + 1)3 − jx

Table 2. Modular functions for different values of l.

Theorem 5. A polynomial MD,l(x) has h roots modulo p if and only if the equa-
tion 4p = u2+Dv2 has an integer solution and p does not divide the discriminant
∆(MD,l) of the polynomial.

Proof. It follows the same lines as that of Theorem 1. We know that the class
invariants me

l generate the Hilbert class field, and therefore Proposition 5.29 from
[8] hold. This implies that MD,l(x) has a root modulo p when 4p = u2 + Dv2

has an integer solution, and since OHK

pOHK
/Fp is Galois, the polynomial MD,l(x)

has h distinct solutions modulo p. �	
The polynomials MD,l(x) can be used in the CM method in a more straightfor-
ward way, compared to that of Weber polynomials for the case of prime order
elliptic curves. Since MD,l(x) has roots RM modulo p, we use an algorithm
for their computation (for example Berlekamp’s algorithm [4]) and then we can
compute the roots RH modulo p of the corresponding Hilbert polynomial HD(x)
from the modular equation Φl(RM , RH) = 0.

We finally note that the precision required for the construction of the MD,l(x)
polynomials is approximately 1

l H-Prec(D) [9].

5 Implementation and Experimental Results

All of our implementations were made in ANSI C using the (ANSI C) GNUMP [12]
library for high precision floating point arithmetic and also for the generation and
manipulation of integers of unlimited precision. The implementation includes the
construction of the Hilbert, Weber and MD,l(x) polynomials, algorithms for the
computation of roots modulo p of a polynomial, algorithms for the computation
of a cubic factor of a polynomial modulo p, and of course all the steps of the CM
method for the generation of prime order elliptic curves. All implementations
and experiments have been carried out on a Pentium III (933 MHz) running
Linux and equipped with 256 MB of main memory.

Our experiments first focused on the bit precision and the time requirements
needed for the construction of Weber and MD,l(x) polynomials with D ≡ 3
(mod 8). We also conducted experiments with Hilbert polynomials and we no-
ticed, as expected, that their construction is much less efficient than the con-
struction of Weber or MD,l(x) polynomials for all values of D and l. For this
reason we do not report on these polynomials here (experimental studies re-
garding Hilbert and other polynomials can be found e.g., in [3, 15]). Concerning
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Weber polynomials we used discriminants D �≡ 0 (mod 3). We avoid discrimi-
nants D ≡ 0 (mod 3) because the precision requirements are greater than those
of the case D �≡ 0 (mod 3). We have considered various values of D and h and
report on our experimental results in Figure 1 and Figure 2. We noticed, as the
theory dictates, that the precision required for the construction of Weber poly-
nomials WD(x) is less than the precision required for the construction of MD,l(x)
polynomials for all the values of l that we examined (in Section 4 we explained
why we consider these particular values of l). Among the MD,l(x) polynomials
the least precision is required for the construction of MD,13(x), followed by the
construction of MD,7(x), followed by the construction of MD,5(x). The greatest
requirements in precision are set by the MD,3(x) polynomials.

The same ordering can be observed in the construction time. For Figure 2
(time in seconds) we used the same values of D as in Figure 1 and also in this
figure the differences among the polynomials are very clear. We observed that
the time for the construction of MD,l(x) depends not only on the precision re-
quirements of the polynomials, but also on the convergence rate of η-products.
The greater the l, the slower the convergence. This is why in Figure 2 the differ-
ences do not seem to be analogous with the differences in Figure 1. This favors
Weber polynomials, as the η-products in their construction converge faster than
any of the MD,l(x) polynomials, making their generation even more efficient.

The coefficients of the Weber polynomials are also smaller than the coeffi-
cients of the MD,l(x) polynomials, following the same relative order with pre-
cision and time. However, the disadvantage of Weber polynomials is that their
degree is three times larger than the degree of the MD,l(x) polynomials. There-
fore, the space required for the storage of a Weber polynomial WD(x) can be
larger than the space required for the storage of MD,13(x) or MD,7(x). Ac-
tually, it turns out that MD,l(x) polynomials can be even more advantageous
when it comes to storage requirements as our experiments showed. Suppose that
MD,l(x) = xh + M1x

h−1 + ... + Mh−1x + Mh and h is even. We noticed that
every coefficient Mi of MD,l(x) is divisible by l. Moreover, when l = 13, then
Mh = 13h/2 and Mh−i

Mi
= 13h/2−i for 1 ≤ i ≤ (h/2 − 1). For l = 7, Mh = 7h,

Mh−i

Mi
= 7h−2i; for l = 5, Mh = 53h/2, Mh−i

Mi
= 53h/2−3i; and finally for l = 3 we

have Mh = 33h, Mh−i

Mi
= 33h−6i. Using these properties of the MD,l(x) polyno-

mials, we can reduce the space required for their storage (if someone wants to
store them for subsequent use).

This is not the only advantage of MD,l(x) against WD(x). The large degree
of the Weber polynomials is a disadvantage for the time efficiency of the CM
method, because the time for finding a cubic factor of the polynomial can be
much larger than the time for finding a single root modulo p of a polynomial with
three times smaller degree. In Table 3 we report on the time (in seconds) that is
required for the computation of a cubic factor modulo p of WD(x), denoted by
TW , and the time that is required for the computation of a linear factor modulo
p of the MD,l(x) polynomials denoted by TM , for various values of l. The prime
p has size 160 bits. CW and CM is the time required for the construction of the
WD(x) and the MD,l(x) polynomials, respectively. The degree of WD(x) is 3h.
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Note that CW + TW (resp. CM + TM ) is the time that mostly dominates and
differentiates the use of polynomials (Weber versus MD,l(x)) in the CM method,
since the time for the other steps of the method is practically independent of
the polynomials used.

D h l TW CW TM CM

403 2 13 0.12 0.63 0.01 0.38

1027 4 13 0.40 1.31 0.02 0.36

2035 8 5 1.53 2.35 0.07 1.31

2795 12 13 3.88 3.60 0.13 2.12

4403 20 7 13.12 5.15 0.44 8.71

5603 22 13 16.97 6.94 0.50 8.38

6995 32 5 41.05 9.64 1.72 36.03

22435 32 5 41.05 17.80 1.72 72.94

Table 3. Time for the computation of a cubic factor of Weber polynomials and of a
linear factor of the MD,l(x) polynomials, together with their construction time.

We observe from Table 3 that CW +TW is almost always larger than CM +TM ,
implying that the use of Weber polynomials is more time consuming than the
use of the MD,l(x) polynomials. However, we also observed that in some cases
when D increases, h is of moderate size and l ∈ {3, 5}, the construction of the
MD,l(x) polynomials may become less efficient (cf. last line of Table 3) and the
total time of the CM method with these polynomials can be larger than the time
required by the method when their corresponding Weber polynomials are used.

In conclusion, the type of polynomial that one should use depends on the
particular application. If the main focus is on time or precision regarding the
construction of the polynomials, then Weber polynomials should be preferred. If
the focus is on fast and frequent generation of ECs and which implies storage of
polynomials for subsequent use in the CM method, then the MD,l(x) polynomials
(l �= 3) must be preferred. Finally, if the class polynomials are computed online
with the CM method, then the selection of the proper polynomial depends on
the value of D and h. Notice though, that Weber polynomials can be constructed
for any value of D ≡ 3 (mod 8), while MD,l(x) polynomial add a restriction for
D, demanding that D ≡ 0 (mod l).
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