
Robust Line Planning in case of Multiple Pools
and Disruptions

Apostolos Bessas1,3, Spyros Kontogiannis1,2, and Christos Zaroliagis1,3

1 R.A. Computer Technology Institute, N. Kazantzaki Str., Patras University
Campus, 26500 Patras, Greece

2 Computer Science Department, University of Ioannina, 45110 Ioannina, Greece
3 Department of Computer Engineering and Informatics, University of Patras,

26500 Patras, Greece
Email: mpessas@ceid.upatras.gr, kontog@cs.uoi.gr, zaro@ceid.upatras.gr

Abstract. We consider the line planning problem in public transporta-
tion, under a robustness perspective. We present a mechanism for robust
line planning in the case of multiple line pools, when the line operators
have a different utility function per pool. We conduct an experimen-
tal study of our mechanism on both synthetic and real-world data that
shows fast convergence to the optimum. We also explore a wide range of
scenarios, varying from an arbitrary initial state (to be solved) to small
disruptions in a previously optimal solution (to be recovered). Our ex-
periments with the latter scenario show that our mechanism can be used
as an online recovery scheme causing the system to re-converge to its
optimum extremely fast.

1 Introduction

Line planning is an important phase in the hierarchical planning process of every
railway (or public transportation) network1. The goal is to determine the routes
(or lines) of trains that will serve the customers along with the frequency each
train will serve a particular route. Typically, the final set of lines is chosen by a
(predefined) set of candidate lines, called the line pool. In certain cases, there may
be multiple line pools representing the availability of the network infrastructure
at different time slots or zones. This is due to variations in customer traffic (e.g.,
rush-hour pool, late evening pool), maintenance (some part of the network at
a specific time zone may be unavailable), dependencies between lines (e.g., the
choice of a high-speed line may affect the choice of lines for other trains), etc.

The line planning problem has been extensively studied under cost-oriented
or customer-oriented approaches (see e.g., [3, 4, 7, 9]). Recently, robustness issues
have been started to be investigated. In the robust line planning problem, the
task is to provide a set of lines along with their frequencies, which are robust
to fluctuations of input parameters; typical fluctuations include, for instance,

1 For the sake of convenience, we concentrate in this work on railway networks, but the
methods and ideas developed can be applied to any public transportation network.

2 A. Bessas, S. Kontogiannis, and C. Zaroliagis

disruptions to daily operations (e.g., delays), or varying customer demands. In
[8], a game-theoretic approach to robust line planning was presented that delivers
lines and frequencies that are robust to delays.

A different perspective of robust line planning was investigated in [1]. This
perspective stems form recent regulations in the European Union that introduce
competition and free railway markets. Under these rules the following scenario
emerges: there is a (usually state) authority that manages the railway network
infrastructure, referred to as the Network Operator (NOP), and a (potentially)
large number of Line Operators (LOPs) operating as commercial organizations
which want to offer services to their customers using the given railway network.
These LOPs act as competing agents for the exploitation of the shared infras-
tructure and are unwilling to disclose their utility functions that demonstrate
their true incentives. The network operator wishes to set up a fair cost sharing
scheme for the usage of the shared resources and to ensure the maximum possi-
ble level of satisfaction of the competing agents (by maximizing their aggregate
utility functions). The former implies a resource pricing scheme that is robust
against changes in the demands of the LOPs, while the latter establishes a notion
of a socially optimal solution, which could also be considered as a fair solution,
in the sense that the average level of satisfaction is maximized. In other words,
the NOP wishes to establish an incentive-compatible mechanism that provides
robustness to the system in the sense that it tolerates the agents’ unknown in-
centives and elasticity of demand requests and it eventually stabilizes the system
at an equilibrium point that is as close as possible to the social optimum.

The first such mechanism, for robust line planning in the aforementioned
scenario, was presented in [1]. In that paper, the following mechanism was inves-
tigated (motivated by the pioneering work of Kelly et al. [5, 6] in communication
networks): the LOPs offer bids, which they (dynamically) update for buying fre-
quencies. The NOP announces an (anonymous) resource pricing scheme, which
indirectly implies an allocation of frequencies to the LOPs, given their own bids.
For the case of a single pool of lines, a distributed, dynamic, LOP bidding and
(resource) price updating scheme was presented, whose equilibrium point is the
unknown social optimum – assuming strict concavity and monotonicity of the
private (unknown) utility functions. This development was complemented by an
experimental study on a discrete variant of the distributed, dynamic scheme on
both synthetic and real-world data showing that the mechanism converges re-
ally fast to the social optimum. The approach to the single pool was extended
to derive an analogous mechanism for the case of multiple line pools, where it
was assumed that (i) the NOP can periodically exploit a whole set of (disjointly
operating) line pools and he decides on how to divide the whole infrastructure
among the different pools so that the resource capacity constraints are preserved;
(ii) each LOP may be interested in different lines from different pools; and (iii)
each LOP has a single utility function which depends on the aggregate frequency
that she gets from all the pools in which she is involved.

The aforementioned theoretical framework demonstrated the potential of
converging to the social optimum via a mechanism that exploits the selfishness

Robust Line Planning in case of Multiple Pools and Disruptions 3

of LOPs. A significant issue is the speed or rate of convergence of this mecha-
nism. Since there was no theoretical treatment of this issue, its lack was covered
in [1] for the single pool case via a complementary experimental study. Despite,
however, the significance of the convergence rate issue, the mechanism for the
multiple pool case was not experimentally evaluated in [1].

For the case of multiple line pools, it is often more realistic to assume that
each LOP has a different utility function per pool, since different pools are
expected to provide different profits (e.g., intercity versus regional lines, or rush-
hour versus late-evening lines). Moreover, it seems more natural to assume that
each LOP has a different utility function per pool that depends on the frequency
she gets for that pool, rather than a single utility function that depends on the
total frequency she gets across all pools.

In this work, we continue this line of research by further investigating the
multiple pool case. In particular, we make the following contributions: (1) Con-
trary to the approach in [1], we consider the case where each LOP has a different
utility function for each line pool she is interested in, and show how the approach
in [1] can be extended in order to provide a mechanism for this case, too. (2)
We conduct an experimental study on a discrete variant of the new mechanism
on both synthetic and real-world data demonstrating its fast convergence to the
social optimum. (3) We conduct an additional experimental study, on both syn-
thetic and real-world data, to investigate the robustness of the system in the
case of disruptions that affect the available capacity, which may be reduced (due
to temporary unavailability of part of the network), or increased (by allowing
usage of additional infrastructure during certain busy periods). In this case, we
show that the NOP can re-converge (recover) the system to the social optimum
pretty fast, starting from a previous optimal solution.

Due to space limitations, the reader is referred to the full version [2] for the
missing details and proofs.

2 Multiple Line Pools: Different Utilities per Pool

The exposition in this section follows that in [1]. In the line planning problem,
the NOP provides the public transportation infrastructure in the form of a di-
rected graph G = (V, L), where V is the node set representing train stations and
important railway junctions, and L is the edge set representing direct connec-
tions (of railway tracks) between elements of V . Each edge ` ∈ L is associated
with a capacity c` > 0, which limits the number of trains that can use this edge
in the period examined. A line p is a path in G. We assume that there is set
K of line pools, where each pool corresponds to a different period of the day
and represents a different set of possible routes. We envision the line pools to be
implemented in disjoint time intervals (e.g., via some sort of time division multi-
plexing), and also to concern different characteristics of the involved lines (e.g.,
high-speed pool, regular-speed pool, local-trains pool, rush-hour pool, night-shift
pool, etc.). The capacity of each resource (edge) refers to its usage (number of
trains) over the whole time period we consider (e.g., a day), and if a particular

4 A. Bessas, S. Kontogiannis, and C. Zaroliagis

pool consumes (say) 50% of the whole infrastructure, then this implies that for
all the lines in this pool, each resource may exploit at most half of its capacity.
It is up to the NOP to determine how to split a whole operational period of the
railway infrastructure among the different pools, so that (for the whole period)
the resource capacity constraints are not violated.

There is also a set P of LOPs, who choose their lines from K. We assume
that each LOP p ∈ P is interested only in one line in per pool (we can always
enforce this assumption by considering a LOP interested in more than one routes
as different LOPs distinguished by the specific route). Each line pool and the
preferences of LOPs to lines in it are represented by a routing matrix R(k) ∈
{0, 1}|L|×|P |, k ∈ K. Each row R`,?(k) corresponds to a different edge ` ∈ L,
and each column R?,p(k) corresponds to a different LOP p ∈ P , showing which
edges comprise her line in pool k.

Each LOP p ∈ P acquires a frequency of trains that she wishes to route over
her paths in R?,p(k), k ∈ K, such that no edge capacity constraint is violated
by the aggregate frequency running through it by all LOPs and pools. A utility
function Up,k : R≥0 7→ R≥0 determines the level of satisfaction of LOP p ∈ P in
pool k ∈ K for being given an end-to-end frequency xp,k > 0. Having different
utility functions per pool instead of a single utility function across all pools, is
more generic and hence more realistic, since a LOP p can indeed have different
valuations for different periods of a day (rush-hour pool vs night-shift pool)
and/or different types of trains (high-speed pool vs local-trains pool). These
utility functions are assumed to be strictly increasing, strictly concave, non-
negative real functions of the end-to-end frequency xp,k allocated to LOP p ∈ P
in pool k ∈ K. The aggregate satisfaction level Up of LOP p ∈ P across all
pools is given by the sum of the individual gains she has in each pool, Up(xp) =
Up(xp,1, . . . , xp,k) =

∑
k∈K Up,k(xp,k) , where xp = (xp,k)k∈K is the vector of

frequencies that p gets for all the pools. The utility functions are private to the
LOP; she is not willing to share them for competitiveness reasons, not even with
the NOP. This has a few implications on the necessary approach to handle the
problem.

The NOP, on the other hand, wishes to allocate to each LOP a frequency
vector x̂p =

∑
k∈K x̂p,k such that the cumulative satisfaction of all the LOPs

is maximized, while respecting all the edge capacity constraint. To achieve this,
the NOP divides the whole railway infrastructure to the pools, using variables
fk, k ∈ K that determine the proportion of the total capacity of the edges that is
assigned to pool k. Hence, the NOP wishes to solve the following strictly convex
optimization problem:

max
∑

p∈P

Up(xp) =
∑

p∈P

∑

k∈K

Up,k (xp,k)

s.t.
∑

p∈P

R`,p(k) · xp,k ≤ c` · fk, ∀(`, k) ∈ L×K

∑

k∈K

fk ≤ 1 ; x, f ≥ 0

(MSC-II)

Robust Line Planning in case of Multiple Pools and Disruptions 5

Clearly, the NOP cannot solve this problem directly for (at least) two rea-
sons: (i) the utility functions are unknown to him; (ii) the scale of the problem
can be too large (as it is typical with railway networks) so that it can be solved
efficiently via a centralized computation. The latter is particularly important
when the whole system is already at some equilibrium state and then suddenly
a (small, relative to the size of the whole problem) perturbation in the prob-
lem parameters occurs. Rather than having a whole new re-computation of the
new optimal solution from scratch, it is particularly desirable that a dynamical
scheme allows convergence to the new optimal solution, starting from this warm
start (of the previously optimal solution). All the above reasons dictate searching
for a different solution approach, that has to be as decentralized as possible.

We adopt the approach in [1] to design a mechanism that will be run by
the NOP in order to solve the above problem. In particular, rather than having
the NOP directly deciding for the frequencies of all the LOPs in each pool, we
first let each LOP make her own bid for frequency in each pool. Then, the NOP
considers the solution of a convex program which is similar, but not identical
to (MSC-II) using a set of (strictly increasing, strictly concave) pseudo-utilities.
Our goal is to exploit the rational (competitive) behavior of the LOPs, in order
to assure that eventually the optimal solution reached for this new program is
identical to that of (MSC-II), as required.

In particular, each LOP p ∈ P announces (non-negative) bids wp,k ≥ 0 (one
per pool), which she is committed to spend for acquiring frequencies in the pools.
Then, the NOP replaces the unknown utility functions with the pseudo-utilities
wp,k log(xp,k) in order to determine a frequency vector that maximizes the ag-
gregate level of pseudo-satisfaction. Observe that these used pseudo-utilities are
also strictly increasing, strictly concave functions of the LOPs’ frequencies. This
means that NOP wishes to solve the following (strictly convex) optimization
problem that is completely known to him:

max
∑

p∈P

∑

k∈K

wp,k log(xp,k)

s.t.
∑

p∈P

R`,p(k) · xp,k ≤ c` · fk, ∀(`, k) ∈ L×K

∑

k∈K

fk ≤ 1 ; x, f ≥ 0

(MNET-II)

This problem can of course be solved in polynomial time, given the bid vector
of the LOPs w = (wp,k)(p,k)∈P×K , and let (x̄, f̄) be its optimal solution. From
the KKT-conditions of this program it follows that at optimality the NOP must
assign frequency x̄p,k = wp,k

µ̄p,k
, where µ̄p,k is the aggregation of Lagrange dual

values Λ̄p,k along the path requested by p in pool k, and is interpreted as the
(path) per-unit price µ̄p,k for acquiring frequency x̄p,k at a total cost of wp,k.
Now, (x̄, f̄) is the optimal solution for any bid vector declared by the LOPs,
and in particular it also holds for the true bid vector that the LOPs would really
wish to afford. Also from the KKT-conditions of (MSC-II) and (MNET-II), we

6 A. Bessas, S. Kontogiannis, and C. Zaroliagis

can easily observe that they would be identical iff U ′
p,k(x̄p,k) = wp,k

x̄p,k
. Our next

step is to somehow assure that this is indeed the case. To this direction, we
exploit the rational behavior of the LOPs: Each LOP wishes to maximize her
own aggregate level of satisfaction, therefore, she would declare a bid vector that
would actually achieve this.

In what follows, we assume that the LOPs are price takers meaning that
each of them considers the prices announced by the NOP as constants, with no
hope of affecting them by their own bid vector. This property is important in the
following analysis, and is realistic when there exist many LOPs, each controlling
only negligible fractions of the total flow (or bidding process) in the system. The
following theorem (whose proof can be found in [2]) guarantees the existence of
a mechanism for this problem.

Theorem 1. Given a transportation network G = (V,L), a set of line pools K
and a set P of selfish, price-taking LOPs, each having a private utility function
for each pool with parameter the frequency that is allocated to her in the particular
pool, there is a mechanism (a pair of a frequency allocation mechanism and a
resource pricing scheme) that computes in polynomial time the optimal solution
of the sum of the utility functions of the players, while respecting the capacities
of the edges.

This polynomially tractable mechanism, based on the solvability of (MNET-II),
is totally centralized and rather inconvenient for a dynamically changing (over
time), large-scale railway system. The following lemma (whose proof can be
found in [2]) is crucial in deriving a dynamic system for solving (MSC-II).

Lemma 1. For any (fixed) vector f of capacity proportions that completely di-
vides the railway infrastructure among the pools, the optimal value of (MSC-II)
exclusively depends on the optimal vector Λ̄ of the per-unit-of-frequency prices
of the resources.

The above lemma suggests the following mechanism.

1. For every line pool k ∈ K, solve an instance of the single-pool case, using the
decentralized mechanism in [1], obtaining the optimal solution (x?,k,Λ?,k).

2. The NOP calculates the cost of each pool and sets the variable ζ(t) to the
average pool cost: ζ(t) = 1

|K|
∑

k∈K cT ·Λ?,k(t). Then, he updates the capac-
ity proportion vector f and assigns a larger percentage of the total capacity
to the most “expensive” line pools, so that their cost decreases. This update
is described by the following differential equations:

∀k ∈ K, ḟk(t) = max{0, cT ·Λ?,k(t)− ζ(t)}. (1)

Note that, at the end, the vector f must be normalized, such that
∑

k∈K fk =
1 (the proportion vector must completely divide the infrastructure at all
times). This is done by dividing each fk(t) by

∑
k∈K fk(t).

Roughly speaking, the convergence of the above mechanism for a specific
capacity proportion vector f is guaranteed by the convergence of the single-pool

Robust Line Planning in case of Multiple Pools and Disruptions 7

algorithm. When the |K| single-pool instances are solved, the NOP updates the
vector f , so that the expensive pools get cheaper. The goal is that all pools should
have the same cost. When this happens, we know for the optimal solution of both
(MNET-II) and (MSC-II) (x̄, f̄) and the accompanying Lagrange multipliers,
(Λ̄, ζ̄), that:

– U ′
p,k(x̄p.k) = w̄p,k

x̄p,k
, due to the fact that each LOP computes its bid w̄p,k by

solving the convex optimization problem {max
∑

k∈K(Up,k(x̄p,k)−wp,k); wp,k ≥
0, ∀k ∈ K}.

– All the remaining KKT conditions, which are identical for the KKT systems
of (MSC-II) and (MNET-II), are satisfied in the limit, due to the proper
choice of NOP’s updating scheme for the vector f allocating the infrastruc-
ture’s capacity to the pools. More details can be found in [2].

Hence, (x̄, f̄) is the optimal solution of both (MSC-II) and (MNET-II), and
thus the proposed mechanism solves (MSC-II). The next theorem summarizes
the preceding discussion.

Theorem 2. The above dynamic scheme of resource pricing, LOPs’ bid updat-
ing and capacity proportion updating assures the monotonic convergence of the
(MNET-II) problem to the optimal solution. The algorithm may start from any
initial state of resource prices, LOPs’ bids and capacity proportion vector.

3 Experimental Study of the Multiple-Line Pool Cases

In this section we present the experimental results for the multiple-line pool case
where the LOPs have different utilities per pool. We have implemented a discrete
version of the decentralized mechanism, whose pseudocode follows.

fk(0) = 1
|K| ;

repeat
t = t + 1;
for all k ∈ K do

Solve an instance of the single-pool case for each line pool k;
end for
costk(t) = cT ·Λ?,k(t);
ζ =

∑
k∈K costk

|K| ;
for all k ∈ K do

ḟk(t) = max{0,costk(t)−ζ(t)}
ζ(t) ;

fk(t) = fk(t− 1) + 0.1 · ḟk(t);
end for
total f =

∑
k∈K fk(t);

for all k ∈ K do
fk(t) = fk(t)

total f ;
end for

until equal costs(cost(t))

8 A. Bessas, S. Kontogiannis, and C. Zaroliagis

The algorithm was implemented in C++ using the GNU g++ compiler (ver-
sion 4.4) with the second optimization level (-O2 switch) on. Experiments were
performed on synthetic and real-world data.

Synthetic data consisted of grid graphs having a number of 7 nodes on the
vertical axis and a number of nodes in [120, 360] along the horizontal axis; i.e.,
the size of the grid graphs varied from 7× 120 to 7× 360. The capacity of each
edge was randomly chosen from [10, 110). Four line pools were defined. In each
pool, there were three LOPs, each one interested in a different line. Those lines
had the first edge ((0, 3), (1, 3)) in common. The next edges of each line were
randomly chosen each time.

Real-world data concern parts of the German railway network (mainly inter-
city train connections), denoted as R1 (280 nodes and 354 edges) and R2 (296
nodes and 393 edges). The capacities of the edges were in [8, 16]. The total num-
ber of lines varies from 100 up to 1000, depending on the size of the networks.
For each network, we defined four line pools. The second, third and fourth pool
differed from the first in about 10% of the lines (the new lines in each pool were
randomly selected from the available lines in each network).

In the experiments we measured the number of iterations needed to find the
correct vector f of capacity proportions (we did not concentrate on the solutions
of the single-pool case, used as a subroutine, since this case was investigated in
[1]). We investigated the following four scenarios:

S1: Up,1(xp,1) = 104√xp,1 and Up,2(xp,2) = 104√xp,2, ∀p ∈ P .
S2: Up,1(xp,1) = 3

4 · 104 · √xp,1 and Up,2(xp,2) = 4
5 · 104 · √xp,2, ∀p ∈ P .

S3: Up,1(xp,1) = 104 · √xp,1 and Up,2(xp,2) = 1
2 · 104 · √xp,2, ∀p ∈ P .

S4: Up,1(xp,1) = 104 · √xp,1 and Up,2(xp,2) = 1
4 · 104 · √xp,2, ∀p ∈ P .

(a)

#Lines S1 S2 S3 S4

100 9 33 127 178
200 12 33 127 178
300 19 29 128 178

(b)

#Lines S1 S2

100 33 52
200 26 49
300 1 40
400 6 34
500 1 37

Table 1. Number of updates of f for different utility functions and number of lines
per pool (|K| = 2) for R1 (a) and R2 (b).

We report on experiments with the R1 network and two line pools for all four
scenarios, and on R2 for scenarios S1 and S2 (similar results hold for the other
scenarios). Table 1 shows the results for 100, 200 and 300 lines per pool for R1,
and for 100 to 500 lines per pool for R2. For S1 (same utility functions), we
observe a small number of necessary updates to the capacity proportion vector

Robust Line Planning in case of Multiple Pools and Disruptions 9

f , until the system reaches the optimum. The main reason for this is the use
of the same utility function for every pool by the LOPs, because the algorithm
starts with the initial values fk = 1

|K| and the optimal values in this case are
quite close to these initial values. For the other scenarios with different utility
functions per pool (S2, S3, S4), we observe a larger number of the updates
required. We also observe that the more different the utility functions of each
LOP in the two pools are, the larger the number of updates required to reach
the optimum.

Another interesting observation in the case of the different utility functions
per line pool, is that the number of updates of f is almost equal. This is due
to the fact that the difference in utility functions across line pools has a more
significant effect on the required number of updates than the difference in lines
among the pools (in other words, more steps are required to reach the optimal
values due to the different utility functions than due to the different costs of the
line pools).

In conclusion, the number of updates required by our mechanism to converge
(to the optimal values of vector f) depends largely on the exact parameters of
the system of differential equations (1).

4 Experimental Study of Disruptions in the Network

We turn now to a different experimental study. We assume that the network is
currently operating at optimality and that a few disruptions occur. These dis-
ruptions affect the capacity of some edges. This can be due to technical problems
leading to reducing the capacity of those edges, or to increasing their capacity
for a particular period to handle increased traffic demand (e.g., during holidays,
or rush hours) by “releasing” more infrastructure.

We examine the behavior of the algorithms for the single and multiple pool
cases in such situations. We investigated three disruption scenarios:

D1: Reducing the capacity of a certain number of edges (chosen among the con-
gested ones).

D2: Increasing the capacity of a certain number of edges (chosen among the
congested ones).

D3: Reducing the capacity of a certain number of edges, while increasing the
capacity of an equal number of a different set of edges (chosen among the
congested ones).

We start from a known optimal solution to the problem. Then, we add disrup-
tions to a few edges and apply the algorithm. The relative and absolute error
for the differential equations were set to 0.1.

These scenarios were tested on grid graphs and on the R1 network (similar
results hold for R2). For the grid graphs, the lines were chosen randomly, but
all of them shared the same first edge. The number of lines in each pool were 10
and the capacities of the edges were chosen randomly in [4, 20].

10 A. Bessas, S. Kontogiannis, and C. Zaroliagis

(a)

Disruption p D1 D2 D3

10%

120 1292 340 9983
180 1235 395 550
240 317 453 407
300 4005 556 1337
360 163 8484 542

50%

120 403 480 1022
180 248 1116 875
240 409 498 533
300 3966 1284 1180
360 751 658 712

(b)

Disruption #lines D1 D2 D3

10%
100 10335 90085 464
200 32466 2806 5033
300 4171 276 5208

50%
100 8409 1057 1506
200 1042 1109 4314
300 5430 974 1058

Table 2. (a) Required number of updates of Λ for grid graphs with sizes 7×p, when the
algorithm starts from a previous optimal state, until the system reaches the equilibrium
point after the disruptions under scenarios D1, D2, and D3. (b) Required number of
updates of Λ for R1, when the algorithm starts from a previous optimal state, until
the system reaches the equilibrium point after the disruptions under scenarios D1, D2,
and D3.

Single pool case. For this case, we chose randomly, among the congested ones,
4 edges in the case of grid graphs and 10 edges in the case of R1. Their capacity
was reduced (or increased) by 10% and 50%. In the experiments we measured
the number of updates required for finding the optimal values of Λ (resource
prices per-unit-of-frequency).

The number of iterations required for finding the optimal values of Λ for grid
graphs and R1, when we start from a previous optimal solution, is presented in
Tables 2(a) and 2(b). For comparison, the number of the required updates of Λ
when we start from a random initial state is given in Tables 3(a) and 3(b). We
observe the significantly less number of updates required when we start from a
previous optimal solution. This is due to the fact that the disruptions caused are
not very big, and hence the new optimal solution is quite close to the previous
one. There are, however, one or two exceptions; i.e., we observe in these cases a
smaller number of updates when we start from a random initial solution. This
happens, because the algorithms for solving differential equations are arithmetic
methods that depend greatly on the exact parameters given. This results in a
few pathological cases such as these. One can conclude, though, that in general
the use of the previous optimal solution leads to a smaller number of required
updates for Λ.

Multiple pool Case. We created two pools for these experiments. In the case
of grid graphs, the lines in each pool were chosen randomly, and in the case
of R1 there was a 10% difference in the lines between the two pools. In these
experiments we measured the number of updates of the bids of the LOPs (bid

Robust Line Planning in case of Multiple Pools and Disruptions 11

(a)

Case of Disruption p #Updates of Λ

10%

120 6701
180 6643
240 7835
300 6813
360 5854

50%

120 7381
180 7246
240 6468
300 6197
360 7617

(b)

#Lines #Updates of Λ

100 12393
200 6641
300 7817

Table 3. (a) Number of updates of Λ for grid graphs of size 7× p, when the algorithm
starts from a random initial state. (b) Number of updates of Λ for R1, when the
algorithm starts from a random initial state.

vector w). In none case there was a need to update the capacity proportion
vector f .

The results are shown in Tables 4(a) and 4(b). One can see that only rarely
there is a need to update the bid vector w. Especially for the R1 network, we
had to introduce disruptions of 90% of the original capacity to get the bid vector
to be updated. Hence, the algorithm reaches the optimal solution quite fast. The
important observation is that, starting from the previous optimal solution, we
avoid the update of the capacity proportion vector f , which is the most expensive
operation.

5 Conclusions

We have studied a variant of the robust multiple-pool line planning problem
defined in [1], where the LOPs have different utility functions per pool. We have
shown that a dynamic, decentralized mechanism exists for this problem that
eventually converges to the optimal solution.

We have also studied the above mechanism experimentally, showing that the
exact behavior of the algorithm greatly depends on the exact input parameters;
however, the convergence is in general quite fast.

Moreover, we studied the case that disruptions take place in the network. We
have seen that in most cases it is much better to take advantage of the previous
(optimal) solution to bootstrap the algorithm.

12 A. Bessas, S. Kontogiannis, and C. Zaroliagis

(a)

Disruptions p D1 D2 D3

10%

120 0 0 0
180 0 0 0
240 0 0 0
300 0 0 0
360 0 0 0

50%

120 0 2 1
180 0 2 0
240 0 0 0
300 0 1 2
360 0 2 2

(b)

Disruption #Lines D1 D2 D3

10%
100 0 0 0
200 0 0 0
300 0 0 0

50%
100 0 0 0
200 0 0 0
300 0 0 0

90%
100 0 3 0
200 0 2 2
300 0 0 0

Table 4. (a) Required number of updates of w for grid graphs of sizes 7×p for scenarios
D1, D2, D3, when the algorithm starts from a previous optimal state, so that the system
returns to an equilibrium point after a disruption. (b) Required number of updates of
w for R1 for scenarios D1, D2, D3, when the algorithm starts from a previous optimal
state, so that the system returns to an equilibrium point after a disruption.

References

1. A. Bessas, S. Kontogiannis, and C. Zaroliagis, “Incentive-Compatible Robust Line
Planning”, In Robust and Online Large-Scale Optimization, Chapter 4, Springer
2009, pp. 85-118.

2. A. Bessas, S. Kontogiannis, and C. Zaroliagis, “Robust Line Planning in case
of Multiple Pools and Disruptions”, http://arxiv.org/abs/1101.2770. January
2011.

3. H. Dienst, “Linienplanung im spurgeführten Personenverkehr mit Hilfe eines
heuristischen Verfahrens”, PhD thesis, Technische Universität Braunschweig, 1978.

4. J. Goossens, C. van Hoesel, and L. Kroon, “A branch and cut approach for solving
line planning problems”, Transportation Science 38 (2004), pp. 379393.

5. F. Kelly, “Charging and rate control for elastic traffic”, European Transactions on
Telecommunications, 8 (1997), pp. 33-37.

6. F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication networks:
shadow prices, proportional fairness and stability”, Journal of the Operational Re-
search Society, 49 (1998), pp. 237-252.

7. A. Schöbel and S. Scholl, “Line Planning with Minimal Traveling Time”, In
Proc. 5th Workshop on Algorithmic Methods and Models for Optimization of Rail-
ways – ATMOS 2005.

8. A. Schöbel and S. Schwarze, “A Game-Theoretic Approach to Line Planning”,
in Proc. 6th Workshop on Algorithmic Methods and Models for Optimization of
Railways – ATMOS 2006.

9. S. Scholl, “Customer-oriented line planning”, PhD thesis, Technische Universität
Kaiserslautern, 2005.

