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Algorithms are presented for the all-pairs min-cut problem in bounded tree-
width, planar, and sparse networks. The approach used is to preprocess the input
n-vertex network so that afterward, the value of a min-cut between any two vertices
can be efficiently computed. A tradeoff is shown between the preprocessing time
and the time taken to compute min-cuts subsequently. In particular, after an
Ž .O n log n preprocessing of a bounded tree-width network, it is possible to find the

value of a min-cut between any two vertices in constant time. This implies that for
Ž 2 .such networks the all-pairs min-cut problem can be solved in time O n . This

algorithm is used in conjunction with a graph decomposition technique of Freder-
ickson to obtain algorithms for sparse and planar networks. The running times
depend upon a topological property, g , of the input network. The parameter g

Ž . Ž .varies between 1 and Q n ; the algorithms perform well when g s o n . The value
Ž 2 .of a min-cut can be found in time O n q g log g and all-pairs min-cut can be

Ž 2 4 .solved in time O n q g log g for sparse networks. The corresponding running
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Ž . Ž 2 3 .times for planar networks are O n q g log g and O n q g log g , respectively.
The latter bounds depend on a result of independent interest; outerplanar net-
works have small ‘‘mimicking’’ networks that are also outerplanar. Q 1998 Aca-

demic Press

1. INTRODUCTION

Network flows are of fundamental importance in computer science,
engineering, and operations research, to name a few areas. The textbook

w xby Ahuja et al. 1 is an exhaustive reference on the subject. A central
problem in network flows is that of computing an s-t min-cut. We are

Ž .given a directed network, i.e., a directed graph with nonnegative capaci-
ties on its edges, and two distinguished vertices s and t. An s-t cut in this
network is a partition of the vertices into two parts, one containing s and
the other containing t. The capacity of the cut is the sum of the capacities
of the edges going from the part containing s to the part containing t. An
s-t min-cut is a cut of minimum capacity among all s-t cuts.

An s-t flow in a network is an assignment of a value, less than or equal
to the capacity, to each edge such that the net flow out of each node
except s and t is zero, where the net flow out of a node is the sum of flows
on edges leaving the node minus the sum of flows on edges entering the
node. It follows that the net flows out of s and t sum to zero. An s-t
max-flow is a flow that maximizes the net flow out of s, which is called the

w xvalue of an s-t max-flow. The max-flow min-cut theorem 12 states that
the capacity of an s-t min-cut in a network is equal to the value of an s-t
max-flow.

In this paper, we are concerned with the all-pairs min-cut problem
Ž .APMC problem, for brevity . The problem is to compute the value of an
s-t min-cut for each pair of vertices s, t in the network. This problem has

w xapplications in statistical data security 15 . Since the value of an s-t
min-cut can be computed by solving an s-t max-flow problem, the naive

Ž .solution to the APMC problem solves n n y 1 max-flow problems on
w xn-vertex networks. It was shown by Gomory and Hu 17 that in undirected

networks, the APMC problem can be solved by solving n y 1 well-chosen
max-flow problems. Thus, the APMC problem on an undirected network

ŽŽ . Ž .. Ž .takes O n y 1 F n, m time, where F n, m is the time required to solve
a max-flow problem on an n-vertex, m-edge network. For directed net-
works, the method of Gomory and Hu does not apply, and nothing better

Ž Ž 2 Ž .. .than the naive solution taking O n F n, m time is known.
The time taken to compute a max-flow when nothing is known about the

Ž � 3 4. w xstructure of the input network is O min n rlog n, nm log n 10, 20 .
However, one can do better when the structure of the input network is
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known. Recently, it was shown that the max-flow problem in the special
case of undirected planar networks, where the source and the sink are on

Ž . w xthe same face, can be solved in O n time 18 . The same time bound holds
for the max-flow problem in directed or undirected bounded tree-width

w xnetworks 16 . The tree-width is a parameter that intuitively indicates how
Žclose the structure of the network is to a tree see Section 2.3 for a formal

. Ždefinition . The class of bounded tree-width networks includes among
.others outerplanar networks, series-parallel networks, and networks with

w xbounded bandwidth or cutwidth 4, 7 . Thus giving better algorithms for
this class of networks is an important step in the development of better

Ž .algorithms for sparse networks, i.e., networks with O n edges. For sparse
Ž 2 .networks, in general, the best max-flow algorithm runs in time O n log n .

For the APMC problem in the undirected case, substituting the values of
Ž . Ž 3 . Ž 2 .F n, m yields running times of O n log n for sparse networks and O n

for bounded tree-width networks. For directed networks, the correspond-
Ž 4 . Ž 3.ing running times are O n log n and O n , respectively. From now on,

we consider only directed networks.
The starting point of this paper is a new algorithm for the APMC

Ž 2 .problem in bounded tree-width networks that runs in O n time, improv-
ing upon the previous algorithm for directed networks by a factor of n.
The approach used differs from previous approaches in that, instead of
computing a number of separate max-flows from scratch, we preprocess

Ž .the network so that, subsequently, the value of an s-t min-cut or max-flow
can be efficiently computed for any pair of vertices s and t. We show a
tradeoff between the amount of preprocessing required and the time
required to compute the value of an s-t min-cut subsequently. The

Ž Ž ..tradeoff is that after O nI n preprocessing, the value of an s-t min-cutk
Ž . Ž .can be computed in O k time, for any integer k G 1. The function I n ,k

defined formally in Section 2.4, decreases rapidly as k increases; for
Ž . u v Ž .example, I n s log n and I n s log* n. If the preprocessing is re-1 2
Ž .stricted to O n , then the value of an s-t min-cut can be computed

Ž Ž .. Ž Ž .in O a n time where a n is the inverse Ackermann function; see Sec-
.tion 2.4 .

We use the algorithm for bounded tree-width networks to develop an
algorithm for sparse networks; the latter algorithm is based on a decompo-
sition of the original network into networks of bounded tree-width. Freder-

w xickson 14 showed how to decompose a sparse graph into a number of
Žedge-disjoint outerplanar subgraphs, called hammocks. An outerplanar

.graph has tree-width 2. The number of hammocks obtained, g , depends
Ž .on the topological properties of the graph and varies between 1 and Q n .
ŽWe give an algorithm that computes the value of an s-t min-cut or

. Ž 2 .max-flow in a sparse network in time O n q g log g . Thus, this algo-
Ž 2 . w xrithm is always competitive with the O n log n -time algorithm 20 and
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Ž .does better if g s o n . This leads to an algorithm that solves the APMC
Ž 2 4 .problem in time O n q g log g on a sparse network.

The algorithms use the construction of a small network that ‘‘mimics’’
w xthe flow behavior of a large network. This idea was developed in 16 ,

where it is shown that a network G with q terminals has a mimicking
2 q Žnetwork of size 2 . In the case where G is outerplanar, we show Section

.4 that it has a mimicking outerplanar network that is a minor of G and
2 qq2 Žhas size q 2 . This leads along with the above-mentioned approach for

.sparse networks to faster algorithms for planar networks. We give an
Ž .algorithm that computes the value of an s-t min-cut or max-flow in an

Ž .n-vertex planar network in O n q g log g time, which compares favorably
Ž . w xwith the O n log n time algorithm of 23 . We also show that the APMC

Ž 2 3 .problem can be solved in O n q g log g time.
The above algorithms output the value of a max-flow or min-cut. In the

case where the actual min-cut is desired, we show how to output the edges
crossing a min-cut in additional time linear in the size of the output
Ž .Section 6 .

Ž .Necessary and sufficient conditions called external flow inequalities for
w xrealizable flows in multiterminal networks are derived in 16 . An impor-

w xtant lemma in 16 shows how to combine the flow inequalities of a number
of subnetworks to obtain a single set of flow inequalities for the combined

Ž .network. The proof uses linear programming. We give Section 7 a simple
and direct proof of the same result that avoids linear programming and
leads to a slightly faster computation of these inequalities.

The structure of the algorithms for bounded tree-width networks is
w xderived from an algorithm used to solve shortest path queries 8 . The

hammock decomposition technique has been used in shortest path prob-
Ž w x.lems see, e.g., 11, 13, 14 . To our knowledge, this is the first application

of this technique to a different problem.

2. PRELIMINARIES

2.1. Flows in Multiterminal Networks

Ž .A network is a directed graph G s V, E with a nonnegative real
capacity c associated with each edge e g E. The terminals of G are thee
elements of a distinguished subset, Q, of its vertices. A flow in G is an
assignment of a nonnegative real value f F c to each edge e such thate e
the net flow out of each nonterminal vertex is zero, where the net flow out
of a vertex is the sum of flows on edges leaving the vertex minus the sum

Ž .of flows on edges entering the vertex. An external flow x s x , . . . , x is1 <Q <

< <an assignment of a real value x to each terminal a g Q, 1 F p F Q . Ap p
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realizable external flow is an external flow such that there exists a flow in
Ž .which the net flow out of each terminal a is x . A cut S, S is a partitionp p

of the vertices of G into two subsets S and S s V y S; S is called the
Ž .defining subset of the cut. The capacity of the cut S, S is the sum of

capacities of edges going from vertices in S to vertices in S. For a subset R
Ž .of Q, an R-separating cut is a cut S, S where Q l S s R. A minimum

R-separating cut is an R-separating cut of minimum capacity.
The sum of the net flows out of the terminals in R is called the R-̈ alue

< <of a flow f and will be denoted by f . A maximum R-flow is a flow of
� 4 � 4maximum R-value. If Q s s, t , an s-t max-flow is a maximum s -flow,

� 4and its value is the s -value of the flow. An s-t min-cut is a minimum
� 4s -separating cut. The max-flow min-cut theorem states that the value of
an s-t max-flow is equal to the capacity of an s-t min-cut.

In a network that can be decomposed into edge disjoint subnetworks,
external flows in the subnetworks can be ‘‘added’’ to yield an external flow
in the network. Let G be the edge disjoint union of G and G . Let Q1 2 1
and Q be the terminal sets of G and G , respectively, and let the2 1 2
common vertices of G and G be terminals in both subnetworks, that is,1 2
Ž . Ž .V G l V G s Q l Q . Let Q s Q j Q be the terminal set of G.1 2 1 2 1 2

Ž1. � Ž1. 4 Ž2. � Ž2. 4For external flows x s x : ¨ g Q , x s x : ¨ g Q , define their¨ 1 ¨ 2
Ž1. Ž2. � 4sum, denoted as x [ x , to be the external flow x s x : ¨ g Q , where¨

x s x Ž1. if ¨ g Q y Q , x s x Ž2. if ¨ g Q y Q , and x s x Ž1. q x Ž2. if¨ ¨ 1 2 ¨ ¨ 2 1 ¨ ¨ ¨
¨ g Q l Q . Then we have1 2

LEMMA 2.1. Let G, G , and G be defined as abo¨e. Then if x Ž1. and x Ž2.
1 2

are realizable external flows in G and G , respectï ely, then x Ž1. [ x Ž2. is a1 2
realizable external flow in G, and if x is a realizable external flow in G, then
there exist realizable external flows x Ž1. in G and x Ž2. in G such that1 2
x s x Ž1. [ x Ž2..

Proof. Let f and f be the flows that yield external flows x Ž1. and x Ž2.
1 2

in G and G . By taking the union of these flows in G, which is possible1 2
since the individual flows involve disjoint edge sets, we obtain a flow in G,
and the resulting external flow is exactly x Ž1. [ x Ž2.. On the other hand, the
flow corresponding to any external flow x in G induces a flow in G and a1
flow in G , which yield external flows x Ž1. and x Ž2. such that x s x Ž1. [ x Ž2..2

2.2. Mimicking Networks

Ž .Let G be a network with terminal set Q. A network M G with terminal
set Q9 is a mimicking network for G if there exists a bijection between Q
and Q9 such that every realizable external flow in G is also realizable in
Ž .M G , and vice versa.
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w xIn 16 , it is shown that for any network G, there exists a mimicking
network with 22 q

vertices, where q is the number of terminals of G. The
w x qmimicking network in 16 is constructed by finding 2 cuts in G, namely, a

minimum R-separating cut for each R : Q. Those vertices of G that are
on the same side of all of these cuts form equivalence classes. Induction on
q shows that there can be at most 22 q

equivalence classes. The network
Ž .M G is constructed by replacing each equivalence class with a single

Ž .vertex. The edge between two vertices of M G in a given direction has a
capacity equal to the sum of the capacities of the edges in G between the
corresponding equivalence classes, taking direction into account. For a

Ž .given R : Q, a minimum R-separating cut or a maximum R-flow can be
computed by the standard method of introducing a new source s*, con-
nected to each vertex in R with edges of infinite capacity, and a new sink
t* to which each vertex in Q y R is similarly connected, and computing an
s*-t* max-flow in the transformed network.

However, the standard method for computing minimum R-separating
cuts may not preserve the structural properties of G; for example, the
transformed network may not be planar, while G is planar. We give an
alternative method for computing a maximum R-flow by computing a
number of s-t max-flows in networks with the same structural properties as
G. This will lead to efficient algorithms for planar networks in Section 5.

We first review some concepts from network flows. Let f be a flow in a
Ž . Ž .network H s V , E . We may assume that if edge i, j exists in H,H H

Ž . Ž .then so does j, i , since we can always insert j, i with zero capacity, if it
does not exist, without changing the topology of H. The residual capacity re

Ž . Ž .of an edge e s i, j is defined as r s c y f q f , where e9 s j, i . Thee e e e9

Ž . Ž . Ž .residual network H f of H for the flow f is defined as H f s V , E ,H H
where the capacity of edge e is r . An i-j augmenting path in the residuale

Ž .network H f is a directed path from i to j consisting of edges with
positive capacity. It is well known that f is an s-t max-flow in H if and

Ž . Žonly if there is no s-t augmenting path in H f see, e.g., Theorem 6.4 in
w x.1 . A routine generalization yields

Fact 2.1. Let H be a network with terminal set Q and let R : Q.
Then a flow f is a maximum R-flow iff there is no a-a9 augmenting path in

Ž .the residual network H f for any a g R, a9 g Q y R.

We wish to find a maximum R-flow in network G with terminal set Q,
for some R : Q. Intuitively, the following procedure should work: select a
vertex s of R and compute maximum flows from s to every terminal in
Q y R. Every successive maximum flow is computed in the residual
network left by the previous computation. Then, select the next vertex s9
from R and do the same; the network in which the first maximum flow for
s9 is computed is the residual network left by the last computation
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performed for s. In this manner, process each of the vertices in R. The
flow obtained by adding up the individual flows is a maximum R-flow.
While the above is intuitively clear, we have not found a proof in the
literature. We include a proof below.

Ž . Ž . Ž .Formally, let s , t , s , t , . . . , s , t be a lexicographic ordering of1 1 2 2 p p
Ž .the pairs in R = Q y R . Define G s G. For i s 1, . . . , p, compute an0

Ž .s -t max-flow f i in G and define G to be the residual network ofi i iy1 i
Ž .G for flow f i . Call this procedure Lex-Max-R-Flow.iy1

Ž . Ž . Ž . i Ž .Let f i be the flow through edge e in f i . Define g i s Ý f j .e e js1 e
� Ž . 4 Ž .It is easy to verify that for each i, g i , e g E specifies a flow g i , ande

Ž . Ž .G is the residual network of G for flow g i . Let g be the flow g p .i

LEMMA 2.2. The flow g is a maximum R-flow in G.

Proof. We shall prove the lemma by showing that the above procedure
for computing a maximum R-flow in G is equivalent to finding a minimum
cost flow in a transformed network G9.

Ž .Recall that in the classical minimum cost flow problem, we are given a
Ž . � 4network N s U, A with terminal set s, t ; each edge e in N is associ-

Ž .ated in addition to its capacity c with a cost w per unit of flow. The coste e
Ž .of a flow f is Ý w f . A flow is minimum cost min-cost if among alleg A e e

flows with the same value it has the minimum cost. The min-cost flow
problem is to find an s-t max-flow of minimum cost.

< < < <Let r s R and q s Q . Consider a new network G9 constructed as
follows. Introduce a new source s* and a new sink t* to G and edges of
infinite capacity from s* to every s g R, 1 F k F r, and from everyk
t g Q y R, 1 F l F q y r, to t*. Associate with all edges in G a zero cost.l

� 4Let d s max r, q y r . For the rest of the edges in G9 associate the
following costs: w U s kd, for all 1 F k F r, and w s l, for allŽ s , s . Ž t , t*.k l

1 F l F q y r.
Now, we can find a min-cost flow in G9 by augmenting flow along a

w xminimum cost path 21, Theorem 8.12 , where the cost of a path is the sum
of the costs of its edges. By our choice of edge costs it follows that this
method for computing a min-cost flow in G9 will simulate the procedure

Ž .Lex-Max-R-Flow. Hence, it is easy to verify that i the maximum amount
of flow that can be augmented along min-cost s*-t* paths in G9 that

Ž . < Ž . < Ž . Ž .contain the pair s , t is equal to f i ; and ii all pairs s , t arei i i i
processed in the same lexicographic order as in the procedure Lex-Max-
R-Flow, i.e., there is no min-cost s*-t* augmenting path in G9 containing a

Ž .pair s , t , for any j - i. Consequently, the computed min-cost flow in G9j j
< <has value g . Furthermore, there is no s*-t* augmenting path in G9, which

implies that there is no a-a9 augmenting path in G, for any a g R,
a9 g Q y R, which by Fact 2.1 proves the lemma.
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We have thus proved that a maximum R-flow, and hence a minimum
Ž 2 .R-separating cut, in network G can be computed by doing O q max-flow

Ž 2 . Ž .computations in G, since there are O q pairs in R = Q y R . Since
there are at most 2 q different R’s, we have

LEMMA 2.3. A mimicking network of size 22 q
for a network G with q

Ž 2 q Ž .. Ž .terminals can be computed in time O q 2 F G , where F G is the time
required to compute an s-t max-flow in G.

Suppose we are given the mimicking networks of a number of networks.
A number of pairs are specified, each pair consisting of two terminals
belonging to different networks. We are asked to combine the different
networks by identifying the specified pairs of terminals. Finally, we are
given a subset of all of the terminals, and asked to find the mimicking
network of the combined network at this new set of terminals. Note that in
the combined network, the set of terminals of each subnetwork is an
attachment set for that subnetwork, where an attachment set for a subnet-
work is a set of vertices whose deletion disconnects the subnetwork from
the rest of the network.

LEMMA 2.4. Let G s Dm G , where the G ’s are edge-disjoint, and letis1 i i
Ž .G ha¨e attachment set C . Gï en the mimicking networks M G for each Gi i i i

at terminals Q satisfying C : Q , and a set QX : Q s Dm Q , we cani i i is1 i
Ž .compute the mimicking network M G for G at terminals Q9 in time

Ž 2 q Ž m 2 qi.3. < < < <O q 2 ? Ý 2 , where q s Q and q s Q .is1 i i

Proof. Let G9 be obtained by combining the appropriate terminals of
Ž .the mimicking networks M G . By repeated applications of Lemma 2.1,i

an external flow at terminals Q is realizable in G9 iff it is the sum of
Ž .realizable external flows in each M G at Q . Similarly, an external flow ati i

terminals Q is realizable in G iff it is the sum of realizable external flows
Ž .in each G at Q . Since the set of realizable flows of G and M G ati i i i

terminals Q are the same, it follows that the sets of realizable flows of Gi
and G9 at Q are the same. Hence, G9 is a mimicking network for G at
terminals Q.

Now, compute the mimicking network of G9 at terminals Q9, using
Ž 3. ŽLemma 2.3 and computing max-flows with an O n algorithm see, e.g.,

w x. Ž .1 . This mimicking network is the desired M G . The lemma follows.

2.3. Tree-width

Ž .A tree decomposition of a directed or undirected graph G s
Ž Ž . Ž .. Ž . Ž Ž . Ž ..V G , E G is a pair X, T , where T s V T , E T is a tree, X is a

� Ž .4 Ž . Ž .family X : i g V T of subsets of V G that cover V G , and thei
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following conditions hold:

v Ž . Ž . Ž . Ž .edge mapping ; ¨ , w g E G , there exists an i g V T with ¨ g Xi
and w g X .i

v Ž . Ž .continuity ; i, j, k g V T , if j lies on the path from i to k in T ,
Ž . � Ž .then X l X : X , or equivalently, ;¨ g V G , the nodes i g V T : ¨ gi k j

4X induce a connected subtree of T.i

< <The width of the tree decomposition is max X y 1. The tree-widthig V ŽT . i
of G is the minimum width over all possible tree decompositions of G. To
avoid confusion, we shall use the terms ‘‘node’’ and ‘‘arc’’ to refer to the
vertices and edges of T , respectively.

w xBodlaender 6 gave a linear-time algorithm to compute a constant width
w xtree decomposition of a graph with constant tree-width. In 5 a linear-time

Ž .algorithm is given to convert a tree decomposition of constant width t
into another one of tree-width 3t q 2, in which the tree is binary. We call
such a tree decomposition a binary tree decomposition.

Ž .Let G be an n-vertex graph of constant tree-width and let X, T be its
tree decomposition of constant width. The edge mapping condition ensures
that the endpoints of each edge in G appear together in some set X g X,i
belonging to node i of T. Thus, in a sense, each edge is represented in at
least one node of T. For our purposes, we need to explicitly associate each
edge of G with exactly one node of T. We will, therefore, compute an

Ž . Ž .augmenting function h: E G ª V T , satisfying the property that both
endpoints of an edge are present in the set belonging to the node that the

Ž . Ž . � 4edge is mapped to by h. More precisely, ; ¨ , w g E G , ¨ , w : X .hŽ¨ , w .
Any augmenting function will suffice for our purposes. It is easy to
compute one such function, by doing a traversal of T and assigning
Ž . Ž . � 4 Ž . Ž . Ž .h ¨ , w s i for each i g V T , if ¨ , w : X , ¨ , w g E G and h ¨ , wi

has not yet been assigned a value. This takes time proportional to
< < 2 Ž .Ý X , which is O n , since the tree decomposition is of constantig V ŽT . i

Ž . Ž .width. The resulting tree decomposition with the values h ¨ , w , ; ¨ , w g
Ž .E G , is called an augmented tree decomposition. The discussion above is

summarized as the following result.

PROPOSITION 2.1. Gï en an n-̈ ertex graph G of constant tree-width t, we
Ž .can compute in O n time an augmented binary tree decomposition of G of

Ž .width O t .

2.4. Tree Products
Ž1.Ž . Ž . Ž i.Ž . Ž Ž iy1.Ž ..For a function g let g n s g n ; g n s g g n , i ) 1. Define

Ž . u v Ž . � Ž j. Ž . 4 Ž .I n s nr2 and I n s min j ¬ I n F 1 , k G 1. The functions I n0 k ky1 k
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Ž . u v Ž .decrease rapidly as k increases; in particular, I n s log n and I n s1 2
Ž . � Ž . 4log* n. Define a n s min j ¬ I n F j .j

w xThe following theorem was proved in 2, 9 .

THEOREM 2.1. Let ? be an associatï e operator defined on a set S, such
that for q, r g S, q ? r can be computed in constant time. Let T be a tree with

Ž .n nodes such that each arc is labeled with an element from S. Then i for
Ž Ž ..each integer k G 1, after O nI n preprocessing, the composition of labelsk

Ž . Ž . Ž .along any path in the tree can be computed in O k time; and ii after O n
preprocessing, the composition of labels along any path in the tree can be

Ž Ž ..computed in O a n time.

The above theorem will be used in the next section to efficiently
Ž .compute min-cuts or max-flows in bounded tree-width networks by

exploiting the tree-like structure of these networks.

3. BOUNDED TREE-WIDTH NETWORKS

In this section we shall show that computing min-cuts in a bounded
tree-width network is as easy as computing products of arc values along
paths in a tree. We show this by first defining a value for every arc of the
tree decomposition of the network and an associative operator on these
values. We then show that computing min-cuts reduces to computing
products of these values along paths in the tree decomposition.

Ž .Let G be a network of bounded tree-width and X, T its augmented
binary tree decomposition. For a subtree T 9 of T , we define the subgraph
G9 spanned by T 9 as follows. The vertices of G9 are the vertices in the sets

Ž .associated with the nodes of T 9, i.e., V G9 s D X . The edges ofig V ŽT 9. i
G9 are those edges that the augmenting function maps to nodes in T 9, i.e.,
Ž . � Ž . Ž . Ž .4E G9 s e g E G : h e g V T 9 . It is easy to check that node-disjoint

Žsubtrees span edge-disjoint subgraphs. In fact, it is only to ensure this
.property that we introduce the augmenting function.

� Ž . Ž . 4Define a set U s P s M , M , M : ; i, j g V T , i / j , where M ,i j i j i j i
Ž . Ž .M , and M are defined as follows. For i, j g V T let path i, j denotej i j

the unique path from i to j in T. Deleting the first and last arcs on this
path breaks up T into three components: T and T , the ones containing ii j

Ž .and j, respectively, and the remaining component T . If path i, j is ani j
arc, then the first and last arcs on the path are the same; consequently, the
component T is empty. The nodes in T that are adjacent to i and j arei j i j
denoted n and n , respectively. Then, M and M are the mimickingi j i j
networks for the subgraphs spanned by T and T at terminals X and X ,i j i j
respectively, and M is the mimicking network for the subgraph spannedi j
by T at terminals X j X . If T s B, then M s B.i j n n i j i ji j
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Ž . Ž X X X .Let P s M , M , M and P9 s M , M , M . Then, we say that P1 2 3 1 2 3
and P9 are equal, denoted by P ( P9, iff ;1 F i F 3 the mimicking
networks M and M X have the same terminal set and the same set ofi i
realizable external flows.

Ž .Define the following operator ? on U. For i, j, l, k g V T ,

P if j s l and path i , k includes node jŽ .i kP ? P (i j lk ½ B otherwise.

It follows easily from the definition that ? is associative: If a, b, c, d are
Ž . Ž .nodes appearing in that order on a simple path in T , then P ? P ?ab bc

Ž .P ( P ? P ( P and P ? P ? P ( P ? P ( P . If a, b, c, dcd ac cd ad ab bc cd ab b d ad
Ž . Ž .are not on a simple path in T , then P ? P ? P ( P ? P ? P (ab b d cd ab bc cd

B. In general, the product P ? P ??? ? P ( P if i , . . . , i is ai i i i i i i i 1 m1 2 2 3 my1 m 1 m

path in T.
Now, we can proceed to show how an s-t min-cut can be computed. The

Ž .main idea is as follows. Take the product of the arc values in path i, j ,
where s g X and t g X . This product returns three mimicking networksi j
having in total a constant number of terminals that include s and t.
Combining these mimicking networks using Lemma 2.4 and retaining the
appropriate set of terminals gives us a new mimicking network on which
the required s-t min-cut can be computed using a standard algorithm.

We start by filling in the missing parts of the above idea, namely, how
arc values are computed and how the product of two values is evaluated.
This is done in the next two lemmas, where we show that the arc values
can be efficiently computed in a linear-time preprocessing step and that
the product of any two values can be computed in constant time. We begin
with the latter.

Ž .Suppose we have computed P for every x and y such that x, y is anx y
arc in T. Let i, j, k be nodes of T such that j is an internal node of

Ž .path i,k . Then, given P and P , the computation P ( P ? P can bei j jk ik i j jk
Ž .done in O 1 time, as the following lemma shows. The main idea is to

combine the mimicking networks of the subgraphs of G spanned by the
tree components incident on j and retain the appropriate set of terminals.

Ž .LEMMA 3.1. Let G be a network and let X, T be its augmented binary
Ž . Ž .tree decomposition of constant width. Gï en P , ; x, y g E T , and P , Px y i j jk

Ž .for some i, j, k g V T , P ? P can be computed in constant time.i j jk

Ž .Proof. If j is not an internal node in path i, k , there is nothing to
Ž .prove since in this case P ? P ( B, by definition . Therefore, supposei j jk

Ž .that j is an internal node in path i, k ; see Fig. 1. Since T is binary, j has
at most one neighbor x apart from its neighbors y and z on the path from
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FIG. 1. Computation of P .i j

i to k. Let T be the component of T containing x, obtained by deletingx
Ž . Ž .the arc j, x . Let n and n be the neighbors of i and k in path i, k .i k

The value P consists of the three mimicking networks M , M , andi k i k
M , for the subgraphs spanned by T , T , and T , respectively. The formeri k i k ik
two are already available as part of the values P and P . Hence we needi j jk
to compute only M . The component T is the union of components T ,i k ik i j
T , T , and node j, which are pairwise node-disjoint. By supposition, wejk x
have the mimicking network for the subgraph spanned by T , as part of thex

Žvalue P . The mimicking networks for the subgraphs spanned by T atj x i j
. Ž .terminals X j X and T at terminals X j X are available in then y jk z ni k

values P and P . The mimicking network for the subgraph spanned by ji j jk
at terminals X can be computed using Lemma 2.3. From the continuityj
property of tree decompositions, it follows that the set of terminals for
each of the subgraphs is an attachment set for the subgraph and that the
final set of terminals desired, namely X j X , is a subset of all of then ni k

terminals. Combining the above mimicking networks by using Lemma 2.4
yields M . Since the total number of terminals is constant, the claimedi k
result follows.

Ž .We now show how to compute P for each arc i, j in T. Root T at anyi j
Ž .node. For a node i, let S be the subtree rooted at i. Consider an arc i, ji

such that i is a child of j. Then P consists of two values M and M ,i j i j
where M is the mimicking network for the subgraph spanned by S , withi i
terminals X , and M is the mimicking network for the subgraph spannedi j
by T y S , with terminals X . We compute P in two phases. In the firsti j i j
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Ž .phase we compute M for each arc i, j with i a child of j. In the secondi
phase, we compute M for each such arc.j

Ž .During the first phase, suppose we are at an arc i, j , with i a child of j.
Suppose also that we have computed the mimicking networks M and Ml r

Ž .for the at most two arcs connecting i to its children. Then, to obtain M ,i
use Lemma 2.4 to combine the mimicking networks M , M and thel r
mimicking network for the subgraph spanned by i, retaining the terminals
X . A postorder traversal of T with this operation performed at each arci
completes the first phase.

Ž .During the second phase, suppose we are at arc i, j , with i a child of j.
ŽLet p and c be the parent of j and the sibling of i, respectively if they

.exist . Suppose we have already computed M , the mimicking network forp
the subgraph spanned by T y S . In the first phase, we have computed M ,j c
the mimicking network for the subgraph spanned by the subtree rooted at
c. Then, use Lemma 2.4 to combine M , M and the mimicking networkp c
for the subgraph spanned by j, retaining terminals X . This yields M , thej j
mimicking network for the subgraph spanned by T y S . A preorderi
traversal of T with this operation performed at each arc completes the
second phase.

Each time Lemma 2.4 is invoked, it combines a constant number of
networks, each with a constant number of terminals, hence taking constant
time. Since the lemma is invoked twice for each arc, we have proved the
following result.

Ž .LEMMA 3.2. Let G be an n-̈ ertex network and let X, T be its aug-
Ž .mented binary tree decomposition of constant width. Then, in time O n we

Ž . Ž .can compute P for all arcs a, b g E T .ab

We are now ready for our main lemma.

Ž .LEMMA 3.3. Let G be an n-̈ ertex network and let X, T be its aug-
mented binary tree decomposition of constant width. For each integer k G 1,

Ž Ž ..after O nI n preprocessing, we can find the mimicking network for G atk
Ž . Ž . Ž .terminals X j X in time O k , for any i, j g V T . Furthermore, after O ni j

Ž Ž ..preprocessing, we can find this mimicking network in time O a n .

Ž .Proof. For each arc a, b of T , compute P using Lemma 3.2. Useab
Theorem 2.1 to preprocess T , with the P values associated with its arcs,ab
so that queries asking for the product of P values along paths in T can be
answered. A query for the product on the path from i to j returns the

Ž .value P s M , M , M . Combine these three mimicking networks usingi j i j i j
Lemma 2.4, with the desired set of terminals being X j X . This yields thei j
mimicking network for G with these terminals. The claimed bounds follow
easily by those of Theorem 2.1 and Lemma 3.1.
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We can now prove the main result of this section.

THEOREM 3.1. Let G be an n-̈ ertex network of constant tree-width. For
Ž Ž ..each integer k G 1, after O nI n preprocessing, we can find the ¨alue of ank

Ž . Ž . Ž .s-t min-cut or max-flow in time O k , for each s, t g V G . Furthermore,
Ž . Žafter O n preprocessing, we can find the ¨alue of an s-t min-cut or
. Ž Ž ..max-flow in time O a n .

Proof. First, compute a constant-width augmented binary tree decom-
Ž . Ž .position X, T of G using Proposition 2.1. Preprocess G and X, T using

Lemma 3.3.
Ž .Let s g X and t g X , for some i, j g V T . By Lemma 3.3, a singlei j

query returns the mimicking network for G at terminals X j X . Nowi j
Ž .simply compute the value of an s-t min-cut or max-flow in this mimicking

network. Since the size of the mimicking network is constant, the entire
computation after the query takes constant time, implying the time bounds
in the theorem.

To solve the APMC problem in a bounded tree-width network, simply
Ž .apply Theorem 3.1 with k s 2, i.e., perform O n log n preprocessing so

that an s-t min-cut can be computed in constant time. Thus the APMC
problem can be solved by querying for s-t min-cuts, for each pair s, t in the
network. This proves the following result.

COROLLARY 3.1. The all-pairs min-cut problem can be sol̈ ed for bounded
Ž 2 .tree-width networks in time O n .

4. MIMICKING NETWORKS OF OUTERPLANAR
NETWORKS

w xIn Section 2.2, we described the method of 16 to compute a mimicking
network with 22 q

vertices for a network with q terminals. In this section
we give an algorithm that finds a mimicking network of an outerplanar

2 qq2 Žnetwork. The mimicking network constructed has size q 2 i.e., it is
exponentially smaller than the one constructed using the general approach

w x. Žof 16 , and it is a minor of the original network i.e., it can be obtained
from the original network by contracting edges, deleting edges, and delet-

w x.ing isolated vertices 19, 22 . The ability to construct mimicking networks
that are minors of the original outerplanar networks permits us to con-
struct planar mimicking networks for planar networks in Section 5. In the
following, when we speak of an undirected path or cycle, we are referring
to a path or cycle ignoring the direction of the edges of the network. We
first consider the case of biconnected networks. The general case is based
on the biconnected one and is treated later.
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4.1. The Biconnected Case

Let G be a biconnected outerplanar network with terminal set Q. Then,
G has an undirected Hamiltonian cycle. Throughout, we work with a fixed
embedding of G, and the boundary of this embedding is the Hamiltonian
cycle. Let 1, 2, . . . , n be the numbering of vertices of G in clockwise order

w xalong the boundary of this embedding. Let i, j denote the interval of
vertices in clockwise order along the boundary from vertex i to vertex j,

w x � 4i.e., i, j denotes the set i, i q 1, . . . , j of vertices, if i F j, and it denotes
� 4i, i q 1, . . . , n, 1, . . . , j , if i ) j. A chain is the set of vertices determined

w xby some interval i, j .
The main idea of our approach is the following. We show that every

minimum R-separating cut, R : Q, divides the vertices of G into at most
2 q y 2 chains. Since there are 2 q such possible subsets R, we have a total

Ž . qof at most 2 q y 2 2 chains in G. The vertex-sets resulting by taking the
Žintersection of all of these chains determine the equivalence classes and

.the size of the mimicking network; outerplanarity is preserved by contract-
ing edges whose endpoints belong to the same equivalence class and
replacing multiple edges by single edges. We start with some basic defini-
tions and results.

Any coloring of the vertices of G with green and red colors defines a
cut, namely, the cut separating the green vertices from the red ones. For a

Ž .subset R : Q of terminals, let S, S be a minimum R-separating cut. We
color the vertices of S green and those of S red. A green unit is defined to
be a maximal chain of green vertices, and a red unit is defined analogously.
Define the support of a green unit to be a green terminal such that some
Ž .and therefore every vertex in the unit has an undirected path, consisting
only of green vertices, to this terminal. Similarly, define the support of a
red unit. We say a green unit is unsupported if no vertex in the unit has an
undirected path, consisting only of green vertices, to a green terminal.
Define an unsupported red unit analogously. A collection of unsupported
units is connected if there is an undirected path, not including a vertex
from any supported unit, between any two units of the collection.

PROPOSITION 4.1. The cut obtained by changing the color of any maximal
monochromatic connected collection of unsupported units is also a minimum
R-separating cut.

Proof. Assume that the color of the connected collection is green. By
the maximality of the collection, there is no edge from the collection to
any other unsupported green unit, and because the units are unsupported,
there is no edge to any supported green unit. Hence, the capacity of the
cut obtained by changing the color of the collection to red is not more
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Ž .than the capacity of the minimum R-separating cut S, S . Interchanging
the roles of red and green yields the proposition.

PROPOSITION 4.2. In any minimum R-separating cut in G in which there
are no unsupported units, the number of units is at most 2 q y 2, where q is
the number of terminals.

Proof. Construct an undirected graph H from the undirected version
of G, by contracting each edge between two vertices belonging to the same
unit, and replacing multiple edges in the resulting graph by single edges.
These operations preserve the outerplanarity of the graph. Each unit of G
corresponds to a vertex in H, and the colors of the units induce a coloring
of the vertices of H. The vertices of H corresponding to the units of G
that contains a terminal are called special. The outerplanar embedding of
G naturally induces an embedding of H, and we work with this embed-
ding. The following properties of H are easily verified:

Ž .i H is outerplanar.
Ž .ii The outer face of H is a Hamiltonian cycle, and the colors of

successive vertices on this cycle alternate.
Ž .iii There are at most q special vertices, and at least one special

vertex of each color.
Ž .iv Every vertex of H has a path, consisting only of vertices of the

same color, to a special vertex of the same color.

Ž . Ž .We claim that any graph with properties i ] iv has at most 2 q y 2
vertices, for q G 2. Consider a counterexample to the claim with the
minimum value of q. Since the counterexample has at least 2 q y 1 ) q
vertices, there is a nonspecial vertex. Without loss of generality, assume

Ž .that there is a red nonspecial vertex. Property iv implies that there is a
Ž .nonspecial red vertex that has an edge to a special red vertex. Property ii

implies that the path between these two vertices along the Hamiltonian
cycle in either direction includes a green vertex. Contradicting this edge

Ž .splits the Hamiltonian cycle of ii into two smaller cycles CC and CC ,1 2
which share exactly one red vertex. Designate this vertex as special.
Consider the two subgraphs induced by the vertices on the two cycles.
Each of them contains a green vertex and hence must contain a special

Ž .green vertex. If not, i implies that the corresponding green vertices in H
Ž .violate iv . It is now easily verified that both of the subgraphs satisfy

Ž . Ž .i ] iv for some smaller values of q.
Ž . Ž .Let p resp. t denotes the number of vertices resp. special vertices ini i

ŽCC , i s 1, 2. Then, p q p G 2 q y 1 and t q t F q q 1 the commoni 1 2 1 2
.vertex is counted twice in both sums . Since H is a counterexample with

the minimum value of q, we have that p F 2 t y 2 and p F 2 t y 2.1 1 2 2
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Ž . Ž .But 2 q y 1 F p q p F 2 t q t y 4 F 2 q q 1 y 4 s 2 q y 2, a con-1 2 1 2
tradiction. Consequently, either p ) 2 t y 2 or p ) 2 t y 2, i.e., one of1 1 2 2
the two subgraphs is a counterexample with a smaller value of q, contra-
dicting the minimality of q. Thus the claim holds.

The proposition follows, since the number of units in G is the same as
the number of vertices in H.

We now give an algorithm that finds a minimum R-separating cut
satisfying the hypothesis of Proposition 4.2. We first find a minimum
R-separating cut using our algorithm given in Section 2.2 and color the
units induced by this cut. Then, for each terminal, we find the units that it
supports, using a standard graph traversal algorithm. Consider a maximal

Ž .contiguous along the Hamiltonian cycle group of unsupported units, and
Ž .assume that one of the supported units bordering it is green. Mark each

of the units in the group, and mark every unsupported unit in each
maximal connected collection of unsupported units that includes a unit
from the group. Color all of the marked units green, inducing a new
R-separating cut. By Proposition 4.1, this is also a minimum R-separating
cut. The green units become larger by absorbing the neighboring new

Žgreen units, and all of the marked units are now supported by the
.terminal that supports the bordering green unit . Perform an analogous

operation if the bordering units are red. Continue this process until no
unsupported units remain.

Maximal contiguous groups can be identified by a walk around the
boundary of the embedding, and units can be marked by a standard graph
traversal. Note that an edge is traversed once, by exactly one traversal.
Thus the total time for all traversals is linear. The time taken by the
algorithm is dominated by the q graph traversals done from the q termi-
nals, and the time taken to find a minimum R-separating cut, which is
Ž 2 .O q n , where n is the number of vertices in G. We can now prove the

following:

LEMMA 4.1. For any n-̈ ertex biconnected outerplanar network G with
Ž .terminal set Q, there is a mimicking network M G of G at terminals Q such

Ž . qq1 < <that M G is outerplanar and has at most q2 ¨ertices, where q s Q .
Ž . Ž 2 q . Ž .M G can be constructed in O q 2 n time. The undirected ¨ersion of M G

is a minor of the undirected ¨ersion of G.

Proof. Recall the procedure described in Section 2.2 to construct a
mimicking network. It finds a minimum R-separating cut for each R : Q
and then replaces each equivalence class of vertices that have not been
separated by any cut by a single vertex. When we find R-separating cuts by
the algorithm above, each cut divides the vertices into at most 2 q y 2
chains, by Proposition 4.2. This can be viewed as marking at most 2 q y 2
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Žedges on the boundary of the embedding the edges that delimit the
. qchains . Doing this for each of the 2 possible subsets R corresponds to

Ž . qmarking at most 2 q y 2 2 edges on the boundary of the embedding. The
equivalence classes of vertices not separated by any cut are exactly the
maximal groups of vertices without any marked edge between two vertices

Ž . qin the same group. Since at most 2 q y 2 2 edges have been marked,
there are at most this many equivalence classes.

The mimicking network is constructed by contracting the edges between
every two vertices belonging to the same equivalence class, and replacing
multiple edges by a single edge of capacity equal to the sum of the
capacities of the edges it replaces. As before, outerplanarity is preserved.
The running time of the algorithm follows by Lemma 2.3 and Theorem 3.1
Ž .an outerplanar network has tree-width 2 .

4.2. The General Case

We now consider the case of general outerplanar networks. Recall that
a biconnected component of a graph is a maximal induced subgraph with
the property that deleting any vertex from the subgraph does not discon-
nect it. It follows that two biconnected components have at most one
vertex in common, called an articulation ¨ertex.

There are two easy approaches to dealing with a nonbiconnected outer-
planar network. As we shall see, however, both of them are inadequate for
our purposes; namely, in Section 5 we want to construct mimicking
networks for planar and sparse networks using the hammock decomposi-

w xtion 14 , which decomposes a planar or sparse graph into a number of
Ž .edge-disjoint outerplanar subgraphs called hammocks , each of which is

Žconnected with the rest of the graph via at most four vertices called
.attachment ¨ertices . For this reason, we want to construct mimicking

networks for the hammocks and then combine them using Lemma 2.4 to
obtain a mimicking network for a planar or sparse network. Our goal is to
find a uniform way to handle outerplanar networks regardless of whether
they are hammocks or not.

Ž .The first easy approach is to add an appropriate number of edges with
zero capacity to eliminate the articulation vertices. This approach may fail
for a planar network G in the case where an articulation vertex ¨ of a

Žhammock H is also an attachment vertex of H i.e., it is incident to edges
.not belonging to H . Now, insertion of additional edges may destroy the

planarity of G. This problem can be handled by the second approach,
which is based on the observation that a nonbiconnected outerplanar
graph can be obtained from a biconnected one by contracting edges. This
means that we can replace an articulation vertex ¨ shared by k bicon-

Ž .nected components k G 2 with k vertices ¨ , ¨ , . . . , ¨ and connect0 1 ky1
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Ž . Ž .them in a ring-like fashion with edges ¨ , ¨ of infinitei mod k Ž iq1.mod k
capacity, 0 F i F k y 1. By appropriately dividing the edges incident to ¨
among the new vertices ¨ , ¨ , . . . , ¨ , we can preserve both the outer-0 1 ky1
planarity of H and the planarity of G. Moreover, if ¨ is a terminal, then
we can designate one of ¨ , ¨ , . . . , ¨ as a terminal, and hence the total0 1 ky1
number of terminals remains the same. This approach, however, may fail
in the case where ¨ is an attachment vertex of H, since it may increase the
number of attachment vertices from 4 to 4k, a quantity that may not be
bounded by a constant. And this rules out the application of Lemma 2.4,
because either the terminal set Q of a subnetwork is nonconstant or itsi
attachment set C is no longer a subset of Q .i i

For all the above reasons, we have chosen to follow a different ap-
proach, which is described in the rest of this section. The main idea is to
divide the given outerplanar network G into appropriate groups of bicon-
nected components such that a group is either a single biconnected

Ž .component containing at least one terminal ‘‘singleton’’ , or a sequence of
biconnected components containing no terminals and such that every
articulation vertex is shared by at most two biconnected components
Ž .‘‘pipe’’ . We then find mimicking networks for these groups and join them
at the corresponding articulation vertices to get a mimicking network
for G.

We start by discussing some structural properties of nonbiconnected
graphs. It is well known that the biconnected components of a graph have
a ‘‘tree’’ structure, in the sense that any simple path between two fixed
vertices must pass through the same set of articulation vertices in the same
order. Select any biconnected component and call it the root. Define the
children of the root to be those components that share an articulation
vertex with the root, and define the parent of these components to be the
root. Inductively, define the children of any component B that has a
parent to be those components that share an articulation vertex with B

Žbut not with B’s parent if a component shares an articulation vertex with
both B and B’s parent, then all three components share the same

.articulation vertex . Construct a graph with one vertex for each bicon-
nected component and an edge between each vertex and its parent. This
graph will be a tree, which we call the tree of biconnected components. A
leaf component is a biconnected component corresponding to a leaf in this
tree. The degree of a component is the degree of the vertex corresponding

Žto it in the tree. As for tree decomposition, we shall use ‘‘nodes’’ resp.
. Ž .‘‘arcs’’ to refer to the vertices resp. edges of the tree of biconnected

components.

THEOREM 4.1. For any n-̈ ertex outerplanar network G with terminal set
Ž . Ž .Q, there is a mimicking network M G of G at terminals Q such that M G is
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2 qq2 < <outerplanar and has at most q 2 ¨ertices, where q s Q . Moreo¨er,
Ž . Ž 2 q . Ž .M G can be constructed in O q 2 n time. The undirected ¨ersion of M G

is a minor of the undirected ¨ersion of G.

Proof. We assume G is connected; if not, we simply work with each of
the connected components of G separately. For reasons of clarity of
notation, we will refer to the terminals of G as sockets. In the following,
when we speak of the biconnected components of G, we are referring to
the biconnected components ignoring the direction of the edges. When we
speak of flows, however, we take the direction of edges into account.

We transform G into a new graph G9 as follows. Consider the tree of
biconnected components of G. Consider a leaf component that contains
no sockets, except for its articulation vertex. We contract all edges of this

Ž .leaf component i.e., we delete the leaf component , and its articulation
vertex denotes the contracted component. We repeat this process in the
remaining graph until every leaf component in the tree of biconnected
components contains a socket. The resulting graph is the graph G9. We
claim that a mimicking network for G9 is also a mimicking network for G.

Let G0 be the graph obtained from G by removing one such leaf
component B with articulation vertex ¨. To prove that a mimicking
network for G0 is also a mimicking network for G, it suffices to show that
for any subset R of the sockets, the minimum R-separating cuts in G and
G0 have the same capacity, or, equivalently, the maximum R-flows in G
and G0 have the same value. This is immediate since B y ¨ has no
sockets, which implies that the net flow into B y ¨ is always zero. The
claim is thus proved.

Partition the nodes of the tree of biconnected components of G9 into
Žgroups as follows. When we refer to a node containing a socket, we mean

.that the biconnected component corresponding to it contains a socket.
ŽFirst assign each socket to exactly one of the nodes containing it the

reason for this is to assign sockets that are articulation vertices to one of
.the components that share it . Now, place each node containing a socket

into a group by itself. Place in a group by itself each node of degree at
least 3 that is not yet in any group. Finally, each maximal connected set of
nodes that are not yet in any group is put together in a single group. This
last type of group is called a pipe. Thus the nodes of the tree of
biconnected components of G9 are partitioned into two types of groups,
namely, singleton groups and pipes. It is easy to check that if components
B , . . . , B correspond to the nodes in a pipe, one can label the left and1 p
right articulation vertices of component B with l and r such thati i i
r s l for 1 F i - p. Articulation vertices l and r are called the endi iq1 1 p
¨ertices of the pipe. The only vertices in these components that could be
sockets are the end vertices.
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The mimicking network for G9 is obtained by constructing, for each
group, the mimicking network of the corresponding biconnected compo-
nent, and then joining the mimicking networks at the corresponding
articulation vertices.

The mimicking network of a singleton group is computed by invoking
Lemma 4.1 with terminals as the articulation vertices and sockets con-
tained in the group.

The mimicking network of a pipe H is computed as follows. The
terminals are the end vertices, where the articulation vertices of the
components B , . . . , B of H are labeled as before. Fix an embedding for1 p
each component B , and label the vertices of this component in clockwisei
order along the boundary of the embedding, starting with the left articula-

Ž .tion vertex l . For i s 1, . . . , p y 1, define pred i to be the predecessori
vertex of the right articulation vertex r in component B . For i s 2, . . . , p,i i

Ž .define succ i to be the successor vertex of the left articulation vertex l ini
component B . Now, construct a biconnected outerplanar network H*i

Ž Ž . Ž ..from the pipe H by introducing new edges pred i , succ i q 1 of zero
capacity. Figure 2 illustrates an example for a pipe with four components.
ŽThe embeddings of some components B in H may have to be flipped toi
get an outerplanar embedding of H*, i.e., interchange the embedding of

w xthe vertices in the chain l , r with the embedding of the vertices in thei i
w x .chain r , l , except for l and r . Using Lemma 4.1 compute the mimick-i i i i

Ž .FIG. 2. a A pipe H consisting of four biconnected components. We have that u s r s l ,1 1
Ž . Ž . Ž . Ž . Ž .x s pred 1 , y s succ 2 , ¨ s r s l s pred 3 , z s pred 2 , w s r s l s succ 3 , and z92 3 3 4

Ž . Ž .s succ 4 . b The new biconnected network H*. The embedding of B had to be flipped.4
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ing network of H* at terminals l and r . This mimicking network has at1 p
Žmost four vertices Lemma 4.1 implies, when q s 2, a bound of 16 on the

number of vertices; but it is clear from the proof of the lemma that the
Ž . .correct bound is 2 2 q y 2 s 4, when q s 2 . Transform this mimicking

network into a mimicking network of the pipe H as follows. If, for all i,
Ž . Ž . Ž .either a pred i and succ i q 1 belong to different equivalence classes,

Ž . Ž . Ž .or b pred i and succ i q 1 belong to the same equivalence class and
vertex r also belongs to this class, then we are done by taking thei
mimicking network of H* as the mimicking network of H. Otherwise,
consider an equivalence class, corresponding to a vertex of this mimicking

Ž . Ž .network, such that both pred i and succ i q 1 belong to this class and
vertex r does not. Split the equivalence class into two classes, onei

Ž .containing pred i and all of the vertices of the class that belong to
Ž .components B , . . . , B , and the other containing succ i q 1 and the1 i

remaining vertices of the class. The capacity of an edge joining a new class
with some other class is equal to the sum of the capacities of the edges in
H between these two equivalence classes. We perform, the splitting
operation for all such equivalence classes, and the resulting network is a
mimicking network for the pipe H at the end vertices. The correctness of
this procedure follows from the following observation, whose proof is
immediate by the definition of equivalence classes. Splitting an equiva-
lence class, corresponding to a vertex of a mimicking network of any
network, still results in a mimicking network. Consequently, the mimicking
network of H thus constructed has at most eight vertices.

The mimicking network of G9, which is obtained by joining the mimick-
ing networks of singleton groups and pipes, is also a mimicking network
Ž . Ž .M G of G, as proved earlier. The network M G is outerplanar, since

each equivalence class created in its construction is a connected subgraph
of G. Constructing the tree of biconnected components and forming the
groups can be done in linear time. Observing that the sum of the number

Ž .of vertices in all components is O n , we have the claimed time bound for
the construction.

Ž .It remains to bound the size of M G . Let l be the number of leaves of
the tree of biconnected components of the graph G9. Then, the number of
nodes of degree at least 3 is at most l y 2. Consequently, the number of

Ž .singleton groups formed is at most q q l y 2 , where the first term is the
contribution of nodes containing sockets and the second term of nodes of
degree at least three. It is easy to argue that the number of pipes is at most
2 l y 3. Since each leaf contains a distinct socket, the number l of leaves is
at most the number q of sockets. Thus the number of singleton groups
formed is at most 2 q y 2, and the number of pipes is at most 2 q y 3.

The number of articulation vertices of any component is bounded by its
degree, which is bounded by q y i, where i is the number of sockets it
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contains, since all arcs leaving a node must lead to leaves containing
distinct sockets. Thus the number of terminals in the mimicking network
of any group is at most q. The number of vertices in the mimicking
network of a singleton group is at most q2 qq1, by Lemma 4.1, and the
number of vertices in the mimicking network of a pipe is at most eight.
Hence, the total number of vertices in the mimicking network is at most
Ž . qq1 Ž . 2 qq22 q y 2 q2 q 2 q y 3 ? 8 F q 2 . This completes the proof of the
theorem.

5. SPARSE AND PLANAR NETWORKS

Our algorithms for sparse and planar networks are based on the so-called
w xhammock decomposition. Frederickson 14 shows how to decompose a

sparse graph G into g outerplanar subgraphs, called hammocks, each of
which is connected to the rest of the graph via at most four vertices, called

Ž .attachment ¨ertices. The parameter g is O g q p , where g is the genus of
G and p is the minimum number of faces that cover all vertices of G, over
all possible cellular embeddings into an orientable surface of genus g.
Note that g q p is the minimum possible number of hammocks in such a

Ž .decomposition. It is known that g can vary between 1 and Q n . The
w xalgorithm in 14 runs in linear time and does not require an embedding to

be provided with the input. In this section, we give algorithms whose
Ž .running times depend on g , and which perform well when g s o n . The

Ž .idea is to decompose the given sparse or planar network G into ham-
mocks, construct mimicking networks for the hammocks and then combine

Ž .them by retaining the appropriate terminals by using Lemma 2.4 to
obtain a mimicking network for G. Then, by using standard algorithms, we

Ž .can compute min-cuts or max-flows in G.
Let G be a sparse network that is decomposed into hammocks

Ž .H , . . . , H . Let A be the set of at most four attachment vertices of H ,1 g r r
Ž1 F r F g . We now show how to preprocess G so that s-t min-cuts or

. Ž . Ž .max-flows can be efficiently found. Let s g V H and t g V H . Definei j
� 4G to be the network obtained by replacing each hammock H , k f i, j ,i j k

Ž .by its constant size mimicking network at terminals A . The terminals ofk
Ž .G are A j A . Note that G has O g vertices and edges. Construct Gi j i j i j i j

and find the mimicking network for G at terminals A j A . Find thei j i j
� 4mimicking network for H at terminals s j A and for H at terminalsi i j

� 4 Žt j A . If i s j, then find the mimicking network for H at terminalsj i
� 4 .s, t j A . Combining these networks yields a mimicking network for Gi

� 4 Ž .at terminals s, t j A j A . Now the value of an s-t min-cut or max-flowi j
can be found by using a standard algorithm. Note that the mimicking
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network is of constant size. The correctness of the approach follows by
Lemma 2.4.

To estimate the time complexity, finding mimicking networks for the
Ž .hammocks at the appropriate terminals by using Theorem 4.1 takes O n

Ž . Ž .time over all hammocks . Now, constructing G takes O g time, andi j
Ž 2 .finding its mimicking network takes O g log g time, when we apply

Ž . Ž .Lemma 2.3 with a max-flow algorithm for which F G s O nm log n on
Ž w x.an n-vertex, m-edge network G see, e.g., 1 . The remaining computation

takes constant time. We summarize the above discussion:

Ž .THEOREM 5.1. The ¨alue of an s-t min-cut or max-flow in an n-̈ ertex
Ž 2 .sparse network G can be computed in time O n q g log g , where g is the

number of hammocks of G.

If G is a planar network, the use of Theorem 4.1 in the above procedure
ensures that G is a minor of G, and is therefore planar. Now the timei j

Ž .required to compute the mimicking network for G is O g log g , byi j
w x Žapplying Lemma 2.3 with the max-flow algorithm in 23 for which

Ž . Ž . .F G s O n log n for an n-vertex planar network G . It follows that

Ž .THEOREM 5.2. The ¨alue of an s-t min-cut or max-flow in an n-̈ ertex
Ž .planar network G can be computed in time O n q g log g , where g is the

number of hammocks of G.

To solve the APMC problem, preprocess the H ’s, 1 F r F g , usingr
Ž < < < <. Ž .O H ? log H time, so that for any s, t g V H the mimicking networkr r r

� 4for H at terminals s, t j A can be found in constant time. For eachr r
� 4i, j g 1, 2, . . . , g , construct G and find its mimicking network. Now fori j

Ž . Ž . Ž .each s, t g V G , such that s g V H and t g V H , find the mimickingi j
� 4 � 4 Žnetwork for H at terminals s j A and for H at terminals t j A . Ifi i j j

� 4 .i s j, then find the mimicking network for H at terminals s, t j A .i i
Combine these mimicking networks with the mimicking network for Gi j
and find the value of an s-t min-cut, as before. Once the H ’s have beenr
preprocessed and the mimicking networks for the G ’s found, computingi j
an s-t min-cut takes constant time for each pair s, t. Hence, the following
result has been established.

ŽTHEOREM 5.3. The all-pairs min-cut problem for an n-̈ ertex planar resp.
. Ž 2 3 . Ž Ž 2 4 ..sparse network G can be sol̈ ed in O n q g log g resp. O n q g log g

time, where g is the number of hammocks of G.

Remark. For the case of sparse networks, we do not necessarily need
Theorem 4.1 to compute mimicking networks for the hammocks. Instead,
we can make use of the fact that outerplanar networks have tree-width 2,
and find mimicking networks for the hammocks at the desired terminals by
adding the attachment vertices of a hammock to every set X of thei
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Ž .augmented tree decomposition X, T associated with the hammock and
w xby using Lemmas 3.2 and 3.3. This approach is described in 3 .

6. OUTPUTTING THE EDGES CROSSING AN s-t
MIN-CUT

In this section we outline an extension of the methods in Sections 2.2, 3,
4, and 5 that allows us to output the edges crossing an s-t min-cut in time
linear in the number of edges in the cut.

The essential feature is the computation of supplementary information
Ž .when a mimicking network is computed. Let G be a network and let M G

be its mimicking network, as computed by the method described in Section
2.2, or, if G is outerplanar, by the method given in Section 4. In both

Ž .constructions, each vertex of M G represents a subset of the vertices of
Ž . Ž .G, and each edge u, ¨ of M G represents a subset of the edges of G,

namely, the edges between the subsets of vertices of G represented by u
Ž . Ž .and ¨ . During the construction of M G , for each edge e of M G we

Ž .compute a value trace e , which is a list of the edges of G that e
Ž .represents. It is easily verified that distinct edges of M G represent

disjoint subsets of edges of G.
For every mimicking network we compute, we will also compute the

trace information associated with their edges. For edges of the input
network, the trace value of an edge is simply the edge itself. For reasons of
efficiency, which will become clear later, we have one special condition: if

Ž . Ž .an edge e of M G represents a single edge e9 of G, then trace e is
Ž .defined to be the same as trace e9 . In other words, instead of being a
Ž . Ž .singleton list containing e, trace e is the same list as trace e9 . This

condition ensures that except for edges of the original input network, the
trace value of each edge is a list with at least two elements. Regarding the
elements in the trace value of an edge as the children of the edge, we have
that each edge e is the root of a tree defined by the trace values, whose
leaves are edges of the input network. We call this tree the trace subtree of
e. It is not hard to see that the leaves of the trace subtree are exactly those
edges of the input network that e represents. Furthermore, the condition
above ensures that every nonleaf vertex in the trace subtree has at least
two children.

Consider the method used in Section 3 to compute an s-t min-cut in a
network G of bounded tree-width. Then, as in the proof of Theorem 3.1,

Ž .we compute a mimicking network M G of constant size, whose terminals
include s and t, for the input network G. We compute an s-t min-cut in
Ž .M G , which corresponds to an s-t min-cut in G in the natural way. Each
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Ž .edge crossing the cut in M G represents a subset of edges crossing the
cut in G, i.e., the leaves of the trace subtree of the edge. Any standard tree
traversal algorithm will output the leaves of the trace subtree in time
linear in the size of the tree, which is linear in the number of leaves, since
each nonleaf vertex has at least two children. Doing this for each edge

Ž .crossing the cut in M G outputs in linear time all of the edges crossing
the cut in G. This yields the following result.

THEOREM 6.1. Let G be an n-̈ ertex network of constant tree-width. For
Ž Ž ..each integer k G 1, after O nI n preprocessing, we can output the edgesk

Ž .crossing an s-t min-cut in time O k q L , where L is the number of edges
Ž .crossing the cut. Furthermore, after O n preprocessing, we can output the
Ž Ž . .edges crossing an s-t min-cut in time O a n q L .

Consider the method used in Section 5 to compute the value of an s-t
min-cut in a planar or sparse network. The final step in the method
consists of finding a min-cut in a mimicking network of constant size. From
this, the edges that cross the min-cut in the mimicking network can easily
be found. Now, as above, the trace information associated with each of
these edges can be output in time linear in the number of edges crossing
the min-cut in the original network. Thus, we have

THEOREM 6.2. Let G be an n-̈ ertex sparse or planar network. Let T be
the time taken to compute an s-t min-cut in G by the appropriate algorithm in

Ž .Section 5. Then, the edges crossing the cut can be output in time O T q L ,
where L is the number of edges crossing the cut.

7. CHARACTERIZATION OF FLOWS IN
MULTITERMINAL NETWORKS

w xIn 16 necessary and sufficient conditions are derived for an external
flow to be realizable:

Žw x. Ž .LEMMA 7.1 16 . An external flow x , . . . , x is realizable in a network1 q
� 4 Ž . Ž .G with terminals Q s a , . . . , a , iff i Ý x s 0 and ii Ý x F1 q a g Q p a g R rp r

b , ;R : Q, where b is the minimum capacity of an R-separating cut.R R

Thus the realizable external flows of a network with q terminals can be
characterized by the above system of 2 q linear inequalities, where each

Ž .inequality is represented by the pair R, b . A system of inequalities for aR
network G, of the form as in Lemma 7.1, is called the external flow
inequalities of G at terminals Q. The external flow inequalities can be
obtained by computing the capacities of minimum R-separating cuts in G,
for every R : Q.
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Suppose we wish to combine several networks by identifying terminals,
w xin a manner similar to that in Lemma 2.4. In 16 the following lemma is

proved, by combining the external flow inequalities of the given networks
using linear programming methods. We give a simpler proof avoiding

w xlinear programming. We note that the proof in 16 results in an algorithm
with running time exponential in the square of the total number of
terminals, whereas our proof results in a time that is exponential in the
total number of terminals.

LEMMA 7.2. Let G s Dm G , where the G ’s are edge-disjoint, and letis1 i i
C be the attachment set of G . Assume that C is a subset of the terminals Qi i i i
in G , for all i. Gï en the external flow inequalities for each G at terminals Q ,i i i
and a set Q9 : Q s Dm Q of terminals, we can compute the external flowis1 i

Ž q. < <inequalities for G at terminals Q9 in time O q2 , where q s Q andi i
q s q q ??? qq .1 m

Proof. By repeated applications of Lemma 2.1, each realizable external
flow in G, at terminals Q, is the sum of realizable external flows in each Gi
at terminals Q . Let R : Q, and define R s Q l R. Let the realizablei i i
external flow, x, that maximizes Ý x be the sum of external flows x Ž i.,r g R r
for each i. Then, in G , the flow x Ž i. must maximize Ý x Ž i., and fromi r g R ri

the external flow inequalities of G , the value of x Ž i. is b . Hence, we havei R i

Ý x s Ým Ý x Ž i. s Ým b .r g R r is1 r g R r is1 Ri i

Now, given the external flow inequalities for G at terminals Q , thei i
algorithm used to compute the external flow inequalities of G at terminals
Q is simple. For each R : Q, compute R s Q l R. Find the m inequali-i i
ties of the form Ý x F b , in the flow inequalities of the G ’s, andr g R r R ii i

create an inequality Ý x F Ým b for G. This yields the externalr g R r is1 R i

flow inequalities for G at terminals Q. The entire computation can be
Ž q. Ždone using standard methods in time O q2 . The above argument is

w xdifferent from the argument in 16 , and results in better running time.
w xThe rest of the proof is similar to what is done in 16 , and is included for

.completeness.
To find the external flow inequalities of G at terminals Q9 : Q, we have

to drop some terminals}this corresponds to setting all variables x , wherei
a g Q y Q9, to zero, in the inequalities for G at terminals Q. To see this,i
observe that the set of all realizable flows in G with terminals Q9 is
precisely that subset of all realizable flows in G with terminals Q in which
the net flow out of any terminal in Q y Q9 is zero. Set the variables
corresponding to vertices in Q y Q9 to zero. The resulting collection of
inequalities describes the realizable external flows in G at terminals Q9.
We only have to remove the redundant inequalities. Consider a fixed
R : Q9. In the collection of inequalities, there will be an inequality of the
form Ý x F ??? for each set P : Q, satisfying P l Q9 s R. Froma g R rr
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each such set of inequalities we retain only one inequality with the
minimum right-hand side, since all of the others are redundant. Doing this
for every R : Q9 yields the desired set of inequalities. Once again, using

qŽ .standard methods, this computation can be done in time O q2 .

8. CLOSING REMARKS

We presented efficient algorithms for the all-pairs min-cut problem on
bounded tree-width, planar, and sparse networks. The constants in the
running time of the algorithms are not small, since they depend on the size
of the mimicking networks. For example, in the algorithm for networks of
tree-width t, the constant is 22 O Ž t .

. Designing practical algorithms for the
APMC problem on sparse networks remains an important open question.
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