
Int. J. Inf. Secur. (2007) 6:47–63
DOI 10.1007/s10207-006-0009-3

REGULAR CONTRIBUTION

Efficient generation of secure elliptic curves

Elisavet Konstantinou · Yannis C. Stamatiou ·
Christos Zaroliagis

Published online: 29 November 2006
© Springer-Verlag 2006

Abstract In many cryptographic applications it is
necessary to generate elliptic curves (ECs) whose order
possesses certain properties. The method that is usu-
ally employed for the generation of such ECs is the
so-called Complex Multiplication method. This method
requires the use of the roots of certain class field poly-
nomials defined on a specific parameter called the dis-
criminant. The most commonly used polynomials are
the Hilbert and Weber ones. The former can be used
to generate directly the EC, but they are characterized
by high computational demands. The latter have usu-
ally much lower computational requirements, but they
do not directly construct the desired EC. This can be
achieved if transformations of their roots to the roots of

This work was partially supported by the IST Programme of EC
under contract no. IST-2001-33116 (FLAGS), and by the Action
IRAKLITOS (Fellowships for Research in the University of
Patras) with matching funds from ESF (European Social Fund)
and the Greek Ministry of Education.

E. Konstantinou · Y. C. Stamatiou · C. Zaroliagis
R.A. Computer Technology Institute,
Patras University Campus, N. Kazantzaki Str,
Patras 26500, Greece

E. Konstantinou
Department of Information and Communication Systems
Engineering, University of the Aegean, Samos 83200, Greece
e-mail: ekonstantinou@aegean.gr

Y. C. Stamatiou
Department of Mathematics, University of Ioannina,
Ioannina 45110, Greece
e-mail: istamat@cc.uoi.gr

C. Zaroliagis (B)
Department of Computer Engineering and Informatics,
University of Patras, Patras 26500, Greece
e-mail: zaro@ceid.upatras.gr

the corresponding (generated by the same discriminant)
Hilbert polynomials are provided. In this paper we pres-
ent a variant of the Complex Multiplication method that
generates ECs of cryptographically strong order. Our
variant is based on the computation of Weber polyno-
mials. We present in a simple and unifying manner a
complete set of transformations of the roots of a Weber
polynomial to the roots of its corresponding Hilbert
polynomial for all values of the discriminant. In addition,
we prove a theoretical estimate of the precision required
for the computation of Weber polynomials for all values
of the discriminant. We present an extensive experimen-
tal assessment of the computational efficiency of the
Hilbert and Weber polynomials along with their pre-
cision requirements for various discriminant values and
we compare them with the theoretical estimates. We fur-
ther investigate the time efficiency of the new Complex
Multiplication variant under different implementations
of a crucial step of the variant. Our results can serve as
useful guidelines to potential implementers of EC cryp-
tosystems involving generation of ECs of a desirable
order on resource limited hardware devices or in sys-
tems operating under strict timing response constraints.

Keywords Public key cryptography · Elliptic curve
cryptosystems · Complex Multiplication · Weber
polynomials

1 Introduction

Elliptic curve cryptography (ECC) has gained an
increasing popularity over the years, as it emerges as
a fundamental and efficient technological alternative
for building secure public key cryptosystems. This stems

48 E. Konstantinou et al.

from the fact that elliptic curves (ECs) give rise to alge-
braic structures that offer a number of distinct advan-
tages (smaller key sizes and highest strength per bit)
over more customary algebraic structures used in vari-
ous cryptographic applications (e.g., RSA). The use of
smaller parameters for a given level of cryptographic
strength results in faster implementations, less storage
space, as well as reduced processing and bandwidth
requirements. These characteristics make ECC suitable
for software as well as for hardware implementations.
The latter is of particular importance, since (under cer-
tain circumstances) it involves devices with limited
resources such as cell phones, PDAs, and Smartcards.

One of the fundamental issues in ECC is the gener-
ation of ECs suitable for use in various cryptographic
applications ranging from simple data encryption to
more advanced uses such as primality testing and factor-
ing. A common requirement of all such applications is
that the order of the EC should possess certain proper-
ties, which gives rise to the problem of how such ECs can
be generated. For example, it may be required that the
order possesses three well-known conditions [6, Sec. V.7]
that ensure the robustness of the produced EC against
some of the best-known attacks (when considering data
encryption or electronic signatures), or it may be neces-
sary that the order has small prime factors (smoothness
property, required in primality testing) [2]. Moreover, in
certain applications, a vast number of such ECs may be
required to be generated and this should be done as fast
as possible. A typical example is the ECPP algorithm
for primality proving [2].

Another application domain that motivates our
research concerns implementations of EC-based
cryptosystems in computing devices with limited
resources, or in systems operating under strict timing
response constraints. Two specific scenarios in this
framework involve: (i) The development of a proactive
cryptosystem (e.g., in the sense of [15]) in networks of
resource limited hardware devices (e.g., microcontrol-
ler chips) working on some highly critical—with respect
to security—task and which for that reason are fre-
quently requested to refresh their security parameters.
The requested reconfiguration of EC parameters should
be done locally in a periodic manner or upon receipt of
a “reconfigure” signal and not by transmitting the new
EC parameters to them. (ii) A wireless and web-based
environment in which millions of client devices con-
nect to secure servers [13]. Clients may be frequently
requested to choose different key sizes and EC parame-
ters depending on vendor preferences, security require-
ments, and processor capabilities. The large number of
client connections/transactions along with the (possibly
frequent) change of security parameters by the vendor

(e.g., due to evolving market conditions and corporate
policies) calls for strict timing response constraints not
only on the server but also on the client side.

A frequently employed method for generating ECs
with predetermined order, possessing certain desirable
properties, is the Complex Multiplication (CM) method.
This method was used by Atkin and Morain [2] for the
construction of ECs with good properties in the con-
text of primality proving, while the method was also
adapted to give rise to curves with good security prop-
erties by Spallek [34] and Lay and Zimmer [22] inde-
pendently. Furthermore, a number of works appeared
that compared variants of the CM method and pre-
sented experimental results regarding its construction
efficiency; see [3,9,25] for the most representative ones.
Briefly, the CM method takes as input a number rep-
resenting the order of the finite field upon which the
EC will be defined and determines a specific parame-
ter, called the CM discriminant D. The EC of the desir-
able order is generated by constructing certain class field
polynomials based on D and finding their roots. The con-
struction and the location of the roots (modulo the finite
field’s order) of these polynomials are perhaps the most
crucial steps in the whole process. The most commonly
used class field polynomials are the Hilbert (original
version of the CM method) and the Weber polynomials.
Their main differences are: (i) the coefficients of Hilbert
polynomials grow excessively large as the discriminant
D increases, while for the same discriminant the Weber
polynomials have much smaller coefficients and thus are
easier and faster to construct; (ii) the roots of the Hilbert
polynomial construct directly the EC, while the roots of
the Weber polynomial have to be transformed to the
roots of its corresponding Hilbert polynomial in order
to construct the EC.

The use of Hilbert polynomials in the CM method
requires high precision in the arithmetic operations
involved in their construction, resulting in a consider-
able increase of computing resources. This makes them
not appropriate for fast and frequent generation of ECs.
To overcome the shortcomings of Hilbert polynomials,
two alternatives have been recently proposed: either to
compute them off-line and store them for subsequent
use (see e.g., [29]), or to use Weber polynomials for
certain values of D (see e.g., [4,3,18,22,35]) and pro-
duce the required Hilbert roots from them. Although
the former approach tackles adequately the efficient
construction of ECs, there may still be problems with
storing and handling several Hilbert polynomials with
huge coefficients, especially on cryptographic hardware
devices with limited resources. These problems can be
addressed by the second approach. However, the known
studies treat only certain values of D; for example, the

Efficient generation of secure elliptic curves 49

case of D ≡ 7 (mod 8) and not divisible by 3 is treated
in [4,3,18,22], while the cases of D �≡ 3 (mod 8) and
D �≡ 0 (mod 3) were treated in [20,35]. To the best
of our knowledge, the other cases of D [i.e., D ≡ 3
(mod 8) and D ≡ 0 (mod 3)] have not been treated
before.

Starting from the fact that it is desirable to work with
Weber polynomials in various applications that require
the fast and frequent generation of ECs, we present a
variant of the CM that follows the second approach and
provide a complete set of transformations of Weber to
Hilbert roots that cover all possible values of D. We
also investigate the theoretical and experimental bit-
precision requirement for the construction of Hilbert
and Weber polynomials in order to demonstrate the
superiority of the latter, and we present a new approx-
imate bound of the bit-precision required for the con-
struction of Weber polynomials for all possible values
of D. Our experiments show that this bound is close
to the actual precision needed. Combining the theory
behind Weber polynomials and our experiments, we can
also indicate values of D leading to Weber polynomi-
als with smaller computational requirements compared
with other members of this family of polynomials. To the
best of our knowledge, no general theoretical treatment
exists which gives the required root transformations for
all possible values of the discriminant D. We believe that
our effort to present an exhaustive list of root transfor-
mations and an estimate of the precision requirements
of Weber polynomials in a simple, unifying exposition
will be useful to designers and implementers of ECC
applications.

Besides the construction of the Weber polynomials,
another important step of the CM method is the deter-
mination of the order p of the underlying prime field
and the construction of the order m of the EC. This
step is independent of the computation of Hilbert or
Weber polynomials. We consider two different methods
for implementing this step in our new CM variant. The
first method to compute p and m is to use Cornacchia’s
algorithm [8]. The second method is to generate p and
m at random.

Our second contribution in this paper is a compar-
ative experimental study (Sect. 5) regarding these two
methods for the computation of p and m. In our experi-
ments, we used a large number of ECs and many differ-
ent values of discriminant D. Our study revealed that
the method based on Cornacchia’s algorithm is dramat-
ically slower than the method of generating p and m at
random. It is worth mentioning that our findings coin-
cide with those in [3], where a similar comparative exper-
imental study was conducted with the help of the LiDIA
library [23].

The rest of the paper is organized as follows. In Sect. 2,
we briefly state some basic definitions and results from
EC theory and we review some necessary concepts from
number theory. In Sect. 3, we present the basic CM
method and our variant, while in Sect. 4 we elaborate on
the construction of Hilbert and Weber polynomials, the
transformation of Weber roots to Hilbert roots and the
new approximate bound for the bit-precision require-
ments of Weber polynomials. In Sect. 5 we discuss our
experimental results. We conclude in Sect. 6. Prelimi-
nary parts of this work appeared in [20,21].

2 Preliminaries

In this section we review some basic concepts regarding
ECs and their definition over finite fields. We also briefly
review the theory of quadratic fields and forms, which
is necessary for the construction of Hilbert and Weber
polynomials. The interested reader may find additional
information in [6,14,32,36]. We also assume familiarity
with elementary number theory (see e.g., [7]).

2.1 Elliptic curve theory

An EC E(Fp) over a finite field Fp, where p > 3 and
prime, is the set of points (x, y) ∈ Fp × Fp (represented
by affine coordinates) which satisfy the equation

y2 = x3 + ax + b (1)

and a, b ∈ Fp are such that 4a3 + 27b2 �= 0. The set
of solutions (x, y) of Eq. (1) together with a point O,
called the point at infinity, and a special addition opera-
tion define an Abelian group, called the EC group. The
point O acts as the identity element (details on how the
addition is defined can be found in e.g., [6,14,32,36]).

The order m of an EC is the number of the points in
E(Fp). The expression t = p + 1 − m (which measures
the difference between m and p) is called the Frobenius
trace t. Hasse’s theorem (see e.g., [6,14,32]) states that
|t| ≤ 2

√
p which gives upper and lower bounds for m

based on p

p + 1 − 2
√

p ≤ m ≤ p + 1 + 2
√

p. (2)

The order of a point P is the smallest positive integer n
for which nP = O. Application of Langrange’s theorem
(see e.g., [7]) on E(Fp), gives that the order of a point
P ∈ E(Fp) always divides the order of the EC group, so
mP = O for any point P ∈ E(Fp), which in turn implies
that the order of a point cannot exceed the order of the
elliptic curve.

50 E. Konstantinou et al.

Two important quantities associated with E(Fp) are
the curve discriminant � and the j-invariant, defined by

� = −16(4a3 + 27b2) (3)

and

j = −1728(4a)3

�
. (4)

Given j0 ∈ Fp (j0 �= 0, 1728), two ECs of j-invariant j0
can be easily constructed. The first EC is of the form
defined by Eq. (1) and can be constructed by setting
a = 3k mod p, b = 2k mod p, where k = j0

1728−j0
mod p.

The second EC, called the twist of the first, is defined as

y2 = x3 + ac2x + bc3 (5)

where c is a quadratic non-residue in Fp. If m1 is the
order of an EC and m2 is the order of its twist, then
m1 + m2 = 2p + 2, i.e., if one curve has order p + 1 − t,
then its twist has order p+1+ t, or vice versa [6, Lemma
VIII.3].

The security of elliptic curve cryptosystems is based
on the difficulty of solving the discrete logarithm prob-
lem (DLP) on the EC group. To ensure intractability
of solving this problem by all known attacks, the group
order m should obey the following conditions (see [6,
Chap. V] and [14, Chap. 4]):

1. m must have a sufficiently large prime factor (larger
than 2160).

2. m must not be equal to p.
3. For all 1 ≤ k ≤ 20, it should hold that pk �≡ 1

(mod m).

The first condition excludes the application of types
of methods like the Pohlig–Hellman [27] one to solve
DLP, the second condition excludes the application of
the anomalous attack [28,31,33], while the third condi-
tion excludes the MOV attack [24] and the Frey–Rück
attack [11]. If the order of an EC group satisfies the
above conditions, we call it suitable.

We would also like to note that sometimes there exists
a fourth security requirement regarding the degree h of
the class field polynomial. To the best of our knowledge,
such requirement is only posed by the German Infor-
mation Security Agency, which requires that h should
be greater than 200. The reason is that there are few
ECs produced from class field polynomials with smaller
degrees and which may be amenable to specific attacks.
However, no such attacks are known to date and this
requirement does not seem to be part of the security
requirements in any international security standard [4].
Despite this fact, we have taken into consideration such
large values of h in our experimental study.

2.2 Quadratic fields and forms

Let ξ be an algebraic integer (algebraic number sat-
isfying some monic1 polynomial equation with integer
coefficients), and let f and h be polynomials over Q.
Then, the collection of all numbers of the form f (ξ)/h(ξ),
h(ξ) �= 0, constitutes a field denoted by Q(ξ) and called
the extension of Q by ξ . If ξ is a root of an irreducible qua-
dratic polynomial over Q, then Q(ξ) is called a quadratic
field. Additional information on algebraic numbers and
quadratic fields can be found in [26].

Let D be a positive integer, which is not divisible by
any square of an odd prime and which satisfies D ≡ 3
(mod 4) or D ≡ 4, 8 (mod 16). The quantity −D < 0 is
called a fundamental discriminant. The subset of alge-
braic integers in Q(

√−D) forms a ring which is denoted
by O. A quadratic form of −D is a 3-tuple of integers
[a, b, c] such that b2 − 4ac = − D. The form is called
primitive if gcd(a, b, c) = 1, and reduced if {|b| ≤ a ≤ c}
and {b ≥ 0 whenever c = a or |b| = a}.

There is a natural correspondence between a
quadratic form

[
a, b, c

]
and the root τ of the quadratic

equation az2 + bz + c = 0 with Im(τ) > 0: −D is the
discriminant of τ and τ = (−b + √−D)/2a. It can
be proved that the set of primitive reduced quadratic
forms of −D, denoted by H(−D), is finite. Moreover, it
is possible to define an operation that gives to H(−D)

the structure of an Abelian group whose neutral ele-
ment is called the principal form. The order of H(−D)

is denoted by h(−D), or simply h if −D is clear from
the context. The principal form is equal to [1, 0, D/4]
if D ≡ 0 (mod 4), and to [1, 1, (D + 1)/4] if D ≡ 3
(mod 4). In this case, the root of the quadratic equation,
denoted by τ ∗, is τ ∗ = √−D/2 if D ≡ 0 (mod 4), and
τ ∗ = (−1 + √−D)/2 if D ≡ 3 (mod 4).

For notational simplicity, we will use (the positive
integer) D to refer to the fundamental discriminant
throughout the paper.

3 The Complex Multiplication method

The theory of Complex Multiplication (CM) of ECs over
the rationals can be used to generate ECs of a suitable
order m, resulting in the so-called CM method. The CM
method computes j-invariants from which, as explained
in Sect. 2.1, it is easy to construct the EC. The method is
based on the following idea (for more details see [6,16]).

Hasse’s theorem implies that Z = 4p − (p + 1 − m)2

is positive. This in turn implies that there is a unique
factorization Z = Dv2, where D is a square free positive
integer. Consequently,

1 A polynomial is called monic if its leading coefficient is 1.

Efficient generation of secure elliptic curves 51

4p = u2 + Dv2 (6)

for some integer u satisfying

m = p + 1 ± u. (7)

D is actually a fundamental discriminant which is used
by the CM method in order to determine a j-invariant
and construct an EC of order p + 1 − u or p + 1 + u.

The method starts with a prime p and then chooses
the smallest D along with an integer u to satisfy Eq. (6).
Then, it checks whether p + 1 − u and/or p + 1 + u is
suitable. If neither is suitable, the process is repeated.
Otherwise, a so-called Hilbert polynomial (see Sect. 4)
has to be constructed (based on D) and its roots have
to be found. A root of the Hilbert polynomial is the j-
invariant we are seeking. The EC and its twist are then
constructed as explained in Sect. 2.1. Since only one of
the ECs has the required suitable order, the particular
one can be found using Langrange’s theorem by picking
random points P in each EC until a point is found in
some curve for which mP �= O. Then, the other curve is
the one we are seeking.

A major problem of the CM method is the construc-
tion of the Hilbert polynomials which require high pre-
cision floating point and complex arithmetic that makes
their computation very expensive.

To overcome this problem, a variant of the CM
method was proposed in [29]. It takes as input a CM
discriminant D ≡ 3 (mod 8), and subsequently calcu-
lates p and m, where the only condition posed on m is
that it should be a prime. The prime p is found by picking
randomly odd u and v of appropriate sizes first, and then
checking if (u2 + Dv2)/4 is prime. An important aspect
of the variant concerns the computation of the Hilbert
polynomials: since they depend only on D (and not on
p), they can be constructed in a preprocessing phase
and stored for later use. Hence, the burden of their con-
struction is excluded from the generation of the EC. In
the rest of the section, we will describe a variant of the
Complex Multiplication method that generates ECs of
suitable order, and we will elaborate on a crucial step of
this variant.

3.1 A variant of the CM method

In this subsection, we describe an alternative to the var-
iant in [29] with which some similarities are shared:
the variant we use takes also as input a CM discrimi-
nant D [not necessarily congruent to 3 (mod 8)], and
then computes p and m. The differences are that the
variant presented in this paper uses Weber instead of
Hilbert polynomials, computes u and v using a different
approach (for example, it uses Cornacchia’s algorithm

[8]), and requires m to be suitable, as defined in Sect. 2.1.
Actually, the order m of the ECs that we generate is
of the form m = nq, where n is a small integer and
q is a large prime (larger than 2160). A similar variant
is also presented in [3] using mainly Hilbert polynomi-
als. However, Weber polynomials are the default choice
of our variant, since they require much less precision
and, as our experiments show, result in much more effi-
cient computation of ECs. (Hilbert polynomials can be
equally used as well.) The polynomials, like in [29], can
be constructed in a preprocessing phase.

In the following, we shall give the main steps of this
variant. In order to facilitate the discussion of the experi-
ments in Sect. 5, we will also include the choice of Hilbert
polynomials in the description.

Preprocessing phase

1. Choose a discriminant D.
2. Construct the Weber (or the Hilbert) polynomial

using the discriminant D.

Main phase

3. Specify a prime p such that the Diophantine equa-
tion (6) has a solution (u, v), where u, v are integers.
The prime number p will be the order of the under-
lying finite field Fp.

4. Having found a solution (u, v), the possible orders of
the elliptic curve are m = p+1−u and m = p+1+u.
Check if (at least) one of them is suitable. If none is
suitable, then return to Step 3. Otherwise, m is the
order of the EC that we will generate and proceed
to the next step.

5. Compute the roots (modulo p) of the Weber (or
Hil-bert) polynomial. This is accomplished using
Berle-kamp’s algorithm [5]. Transform the roots of
the Weber polynomial (if it has been chosen) to
the roots of the corresponding Hilbert polynomial
(constructed using the same D).

6. Each Hilbert root represents a j-invariant. Con-
struct the two ECs as described in Sect. 2.1
[cf. Eqs. (1) and (5)].

7. Determine which one of the two ECs is of a suitable
order: repeatedly pick random points P on each EC,
until a point is found for which mP �= O. Then, we
are certain that the other curve is the one we seek.

3.2 Solving the Diophantine equation

A crucial step of our CM variant is Step 3, which con-
cerns the solution of the Diophantine equation 4p =
u2+Dv2, where p is a prime number and u, v are integers.

52 E. Konstantinou et al.

Solving the Diophantine equation is necessary, since D
and the polynomial are determined a priori. (The alter-
native approach of choosing first p and m, and subse-
quently compute D can be rather slow for constructing
the polynomial, because D may be very large.)

In order to solve the Diophantine equation when a
suitable order is required, we can use two alternative
approaches (analyzed also in [3]). The most straightfor-
ward one is to randomly generate pairs (u, v) and then
check if the number p that is constructed is a prime
number. If it is, then we move to the next step of the CM
method checking the two possible orders m for suit-
ability. Otherwise, we generate another pair (u, v) and
continue the same process. The second approach is to
use Cornacchia’s algorithm [8]. This algorithm solves
a slightly different equation, namely the equation p =
x2+Dy2, having as inputs a prime p and the discriminant
D. However, it is trivial to convert Eq. (6) into this form.
If a solution is found for the Diophantine equation, then
we proceed to the next step of the CM method setting
u = 2x. Otherwise, another prime p is chosen and we
again apply Cornacchia’s algorithm.

4 Hilbert and Weber polynomials

The most complicated part of the CM method is the con-
struction of the polynomials (Weber or Hilbert). In this
section we shall elaborate more on these polynomials
and discuss their strengths and limitations. In particular,
in the following subsections we describe the construc-
tion of the Hilbert and Weber polynomials; we provide
the transformations of the Weber roots to the Hilbert
roots and we present an approximate bound for the bit-
precision requirements of Weber polynomials.

4.1 Construction of polynomials

The CM discriminant D is the only input in the con-
struction of Hilbert and Weber polynomials, denoted
by HD(x) and WD(x), respectively. Let τk be the root
corresponding to a reduced positive primitive quadratic
form [ak, bk, ck] ∈ H(−D). Then the class equation of
the ring of algebraic integers O ⊂ Q(

√−D), or Hilbert
polynomial, is defined by

HD (x) =
h∏

k=1

(x − j(τk)). (8)

Since the Hilbert polynomial is the class equation of O,
it clearly has integer coefficients. The quantity j(τk), for
τk ∈ O, is called a class invariant of O. In particular, for
any τ ∈ O, j(τ) is defined as

j(τ) = (256θ(τ) + 1)3

θ(τ)
,

where q =e2πτ
√−1, θ(τ) = �(2τ)

�(τ)
, and

�(τ) = q

⎛

⎝1 +
∑

n≥1

(−1)n(
qn(3n−1)/2 + qn(3n+1)/2)

⎞

⎠

24

.

The class invariants j(τk) (which are the roots of HD(x))
generate a field over Q(

√−D) called the Hilbert class
field. Alternative generators of the class field can be pro-
vided by singular values of other functions. Such func-
tions are powers of the Weber functions which generate
the Weber polynomials.

Weber [37] considered the explicit construction of the
Hilbert class field using other modular functions g(z).
When g(τ�) and j(τ), for τ�, τ ∈ O, generate the same
field over Q(

√−D), g(τ�) is also called a class invariant
of O, and its minimal polynomial WD(x) is called the
reduced class equation or the Weber polynomial. Weber
polynomials are defined using the Weber functions (see
[2,16])

f (τ) = q−1/48
∞∏

m=1

(1 + qm−1/2)

f1(τ) = q−1/48
∞∏

m=1

(1 − qm−1/2)

f2(τ) = √
2 q1/24

∞∏

m=1

(1 + qm).

Then, the Weber polynomial WD(x) is defined as

WD(x) =
h′∏

�=1

(x − g(τ�)) (9)

where g(τ�) (a class invariant of WD(x)) is an expres-
sion—depending on the value of D—of the Weber func-
tions, τ� ∈ O satisfies the equation a�z2 + 2b�z + c� = 0
and corresponds to a primitive reduced quadratic form
[a�, 2b�, c�] for which 4b2

�−4a�c� = −4d, where d = D/4
if D ≡ 0 (mod 4), and d = D if D ≡ 3 (mod 4) and (i)
gcd(a�, b�, c�) = 1, (ii) |2b�| ≤ a� ≤ c�, and (iii) if either
a� = |2b�| or a� = c�, then b� ≥ 0. In particular, g(τ�) is
constructed using the following equation given in [16]:

g(τ�) =
[

N exp

(
−π

√−1KLb�

24

)

2−I/6 (fJ(τ�))
K

]G

(10)

where J ∈ {0, 1, 2}, f0(τ�) = f (τ�), G = gcd(D, 3), I, K ∈
[0, 6], and L, N are positive integers. The precise values
of these parameters depend on certain, rather tedious,

Efficient generation of secure elliptic curves 53

conditions among a�, c� and D that encompass the var-
ious cases of the mathematical definition of the Weber
polynomials; the interested reader can find all the details
in [16]. The degree h′ of WD(x) can be either h or 3h.

We would like to mention that the possible class
invariants for a given discriminant D are potentially
infinite, giving rise to different class polynomials and
consequently to the problem of which one to use (for
details see [9,10,30]). A comparison of many possible
class invariants for a given D was made in [9] using
as criterion the height2 of their minimal polynomials,
since it is computationally easier to use invariants that
produce polynomials of small height. In particular, it is
shown in [9] that Weber polynomials are among the best
choices between all possible polynomials.

To get an idea on the size of coefficients of Hilbert
and Weber polynomials as well as on their space require-
ments for storing them off-line, we give an example for
D = 472.

W472(x) = x6 − 12x5 − 22x3 − 12x − 1

H472(x) = x6 − 438370860938320369278668592000x5

+ 290243510038159955925726906822209766336 · 106 · x4

− 662197893286495898646518596497687462912 · 1010 · x3

+ 89663269021650272593765224657345386704896 · 1012 · x2

+ 7782762847555792408664371720856640749568 · 1015 · x

+ (8476837240896000000)3.

As this example shows, the memory required for the
storage of Hilbert polynomials is considerably larger
than that required by the Weber polynomials.

4.2 Transformation of the Weber roots to Hilbert roots

In this section, we will describe a complete set of trans-
formations of the roots of the Weber polynomials to the
roots of the corresponding (generated by the same D)
Hilbert polynomials. The transformations will be given
for all possible values of discriminant D.

In order to explain the transformations that will fol-
low, we need two relations. From the definition of the
Weber functions and the class invariant j(τ) that gener-
ates the Hilbert polynomials, the following relations can
be readily obtained:

f (τ)f2

(−1 + τ

2

)
= ζ−2

48 eπ
√−1/24

√
2 (11)

j(τ) = (A − 16)3

A
, (12)

where A ∈ {f 24(τ), −f 24
1 (τ), −f 24

2 (τ)} and ζ48 is the 48th
root of unity.

2 The logarithm of the largest coefficient of the polynomial.

Table 1 Class invariants for
D �≡ 0 (mod 3)

d mod 8 Class invariant

1 f 2(
√−d)/

√
2

2 or 6 f 2
1 (

√−d)/
√

2
3 f (

√−d)

5 f 4(
√−d)/2

7 f (
√−d)/

√
2

Table 2 Class invariants for
D ≡ 0 (mod 3)

d mod 8 Class invariant

1 f 6(
√−d)/(2

√
2)

2 or 6 f 6
1 (

√−d)/(2
√

2)

3 f 3(
√−d)/2

5 f 12(
√−d)/23

7 f 3(
√−d)/(2

√
2)

Recall from Sect. 4.1 that the Weber polynomial
WD(x) is generated by its class invariants g(τ�) which are
also roots of the polynomial. The real roots of WD(x),
for all values of D, are given by the class invariants
presented in Tables 1 and 2. There are ten cases of
discriminant D that define ten different class invari-
ants. Recall from Sect. 2.2 that D is either 3 (mod 4)

or 4, 8 (mod 16) and that d = D/4 if D ≡ 0 (mod 4),
and d = D if D ≡ 3 (mod 4). This in turn implies that
d ≡ 3, 7 (mod 8) if D ≡ 3 (mod 4), while d ≡ 1, 2, 5, 6
(mod 8) when D ≡ 4, 8 (mod 16). The ten class invar-
iants split into two groups of five each, depending on
whether D �≡ 0 (mod 3) or D ≡ 0 (mod 3). Tables 1 and
2 give the details.

The fact that the class invariants of Tables 1 and 2
are indeed real roots of the Weber polynomial WD(x)

can be verified using the IEEE Standard P1363 [16]
and Eq. (10). In particular, the principal form for the
case of Weber polynomials is equal to [1, 0, d]. Then, the
class invariant that corresponds to a real root is equal to
g([1, 0, d]) = g(

√−d). For example, for D ≡ 3 (mod 8)

and D ≡ 0 (mod 3), following [16] and Eq. (10), we get
that N = 1, J = 0, I = 2 and G = 3. Therefore, the class
invariant is g(

√−d) = f 3(
√−d)/2. All the other nine

cases can be similarly verified.
As we mentioned in Sect. 3, it is necessary for the

CM method to obtain the roots modulo a prime p of
the Hilbert polynomial and we want to achieve this
by using the roots (modulo p) of Weber polynomials.
Hence, there must be a way to compute a root modulo
p of the Hilbert polynomial HD(x) from a root mod-
ulo p of the corresponding Weber polynomial WD(x). It
can be shown that if we can find a transformation T()

of a real root g(τ�) of the Weber polynomial to a real
root j(τk) of the corresponding Hilbert polynomial, then

54 E. Konstantinou et al.

the same transformation will hold for the roots of the
polynomials modulo p.

We have earlier mentioned that the class invariants
given in Tables 1 and 2 represent the real roots of the
Weber polynomials. We shall refer to all these values
by F(

√−d), where F depends on the value of D. It is
also known that the class invariant j(τ ∗) of HD(x) is
a real root when τ ∗ corresponds to a principal form.
Hence the goal is to find a transformation T() such that
j(τ ∗) = T(F(

√−d)).
The idea is as follows. From Eq. (12) we know that

if one of f 24(τ ∗), −f 24
1 (τ ∗), −f 24

2 (τ ∗) can be calculated,
then j(τ ∗) can also be computed. The problem now is
reduced to finding one of f 24(τ ∗), −f 24

1 (τ ∗), −f 24
2 (τ ∗)

from F(
√−d). When D ≡ 0 (mod 4), then τ ∗ = √−d,

and finding f 24(
√−d), or −f 24

1 (
√−d), or −f 24

2 (
√−d)

from F(
√−d) is straightforward. When D ≡ 3 (mod 4)

however, then τ ∗ = −1+√−d
2 , and finding

f 24(−1+√−d
2

)
or −f 24

1

(−1+√−d
2

)
or −f 24

2

(−1+√−d
2

)
from

F(
√−d) is more complicated (actually, we have to use

Eq. (11) for these cases).
An interesting case of D is when D ≡ 3 (mod 8)

[for both D �≡ 0 (mod 3) and D ≡ 0 (mod 3)]. For
these two cases the degree of the Weber polynomial
is three times larger than the degree of the correspond-
ing Hilbert polynomial. If the number of distinct roots
of the Weber polynomial is exactly three times the
number of the roots of the corresponding Hilbert poly-
nomial, the transformations that will be presented sub-
sequently, map three roots of the Weber polynomial
into the same root of the Hilbert polynomial. Obvi-
ously, when the number of distinct roots of the Weber
polynomial is equal to the number of distinct roots of
the Hilbert polynomial, one root of the Weber poly-
nomial is mapped to exactly one root of the Hilbert
polynomial.

In the following, we present the details for the ten
different cases of D of the transformation of a real root
RW of a Weber polynomial to a real root RH of the
corresponding Hilbert polynomial.

1. D ≡ 7 (mod 8) and D �≡ 0 (mod 3). From Table 1,

the class invariant in this case is f (
√−d)√

2
= RW . Since

d ≡ 3 mod 4, we have that τ ∗ = (−1 + √−d)/2.
Using Eq. (11), we get

f2(τ
∗) = f2

(
−1+√−d

2

)

=ζ−2
48 e

π
√−1
24

√
2f −1(

√
−d)⇒

f2(τ
∗) = ζ−2

48 e
π

√−1
24 R−1

W ⇒ −f 24
2 (τ ∗) = R−24

W = A.

Thus, from Eq. (12) we obtain

RH = (A − 16)3

A
= (R−24

W − 16)3

R−24
W

.

2. D ≡ 3 (mod 8) and D �≡ 0 (mod 3). For this case,
the degree of the Weber polynomial is three times
larger than the degree of the corresponding Hilbert
polynomial.
Since d=D ≡ 3 (mod 8), we have that τ ∗ = −1+√−d

2 ,
and from Table 1 the class invariant is f (

√−d) = RW .
According to Eq. (11) we have

f2(τ
∗) = f2

(
−1 + √−d

2

)

= ζ−2
48 e

π
√−1
24

√
2f −1(

√
−d) ⇒

−f 24
2 (τ ∗) = 212R−24

W = A.

Hence, by Eq. (12)

RH = (A − 16)3

A
= (212R−24

W − 16)3

212R−24
W

.

3. D/4 ≡ 2, 6 (mod 8) and D �≡ 0 (mod 3). For this
value of D = 4d, we have that τ ∗ = √−d, and the
class invariant is f 2

1 (
√−d)/

√
2 = RW (see Table 1).

Then,

f 2
1 (τ ∗)= f 2

1 (
√

−d)=√
2RW ⇒−f 24

1 (τ ∗)=−26R12
W =A

which by Eq. (12) gives

RH = (A − 16)3

A
= (−26R12

W − 16)3

−26R12
W

= (26R12
W + 16)3

26R12
W

.

4. D/4 ≡ 1 (mod 8) and D �≡ 0 (mod 3). For this value
of D = 4d, we have that τ ∗ = √−d, and the class
invariant is f 2(

√−d)/
√

2 = RW (see Table 1). Thus,

f 2(τ ∗) = f 2(
√

−d) = √
2RW ⇒ f 24(τ ∗) = 26R12

W = A

which by Eq. (12) gives

RH = (A − 16)3

A
= (26R12

W − 16)3

26R12
W

.

5. D/4 ≡ 5 (mod 8) and D �≡ 0 (mod 3). For this value
of D = 4d, we have that τ ∗ = √−d, and the class
invariant is f 4(

√−d)/2 = RW . Thus,

f 4(τ ∗) = f 4(
√

−d) = 2RW ⇒ f 24(τ ∗) = 26R6
W = A

Efficient generation of secure elliptic curves 55

By Eq. (12), we get

RH = (A − 16)3

A
= (26R6

W − 16)3

26R6
W

.

6. D ≡ 7 (mod 8) and D ≡ 0 (mod 3). As Table 2 dic-
tates, the class invariant in this case is f 3(

√−d)

2
√

2
= RW .

Since d = D ≡ 3 mod 4, we have that τ ∗ = (−1 +√−d)/2. From Eq. (11), we get

f2(τ
∗) = f2

(
−1 + √−d

2

)

= ζ−2
48 e

π
√−1
24

√
2f −1(

√
−d) ⇒

−f 24
2 (τ ∗) = 212f −24(

√
−d) = R−8

W = A.

Hence, by Eq. (12) we get

RH = (A − 16)3

A
= (R−8

W − 16)3

R−8
W

.

7. D ≡ 3 (mod 8) and D ≡ 0 (mod 3). Again from

Table 2, the class invariant in this case is f 3(
√−d)
2 =

RW . The degree of the Weber polynomial, as in the
case D≡3 (mod 8) and D �≡0 (mod 3), is three times
larger than the degree of the corresponding Hilbert
polynomial. For the particular value of D, we have
that τ ∗ = (−1 + √−d)/2. From Eq. (11) we get

f2(τ
∗) = f2

(
−1 + √−d

2

)

= ζ−2
48 e

π
√−1
24

√
2f −1(

√
−d) ⇒

−f 24
2 (τ ∗) = 212f −24(

√
−d) = 24R−8

W = A

which, by Eq. (12), leads to

RH = (A − 16)3

A
= (24R−8

W − 16)3

24R−8
W

.

8. D/4 ≡ 2, 6 (mod 8) and D ≡ 0 (mod 3). From
Table 2 the class invariant is f 6

1 (
√−d)/(2

√
2) = RW ,

while for the particular D we have that τ ∗ = √−d.
Then,

f 6
1 (τ ∗) = f 6

1 (
√

−d) = 2
√

2RW ⇒ −f 24
1 (τ ∗) = −26R4

W = A

and by Eq. (12)

RH = (A − 16)3

A
= (−26R4

W − 16)3

−26R4
W

= (26R4
W + 16)3

26R4
W

.

9. D/4 ≡ 1 (mod 8) and D ≡ 0 (mod 3). From Table 2
the class invariant is f 6(

√−d)/(2
√

2) = RW , while
for the particular D we have that τ ∗ = √−d. Thus,

Table 3 Transformations for D �≡ 0 (mod 3)

D RH

D ≡ 7 (mod 8)

(
R−24

W −16
)3

R−24
W

D ≡ 3 (mod 8)

(
212R−24

W −16
)3

212R−24
W

D/4≡2, 6(mod 8)

(
26R12

W+16
)3

26R12
W

D/4 ≡ 1 (mod 8)

(
26R12

W−16
)3

26R12
W

D/4 ≡ 5 (mod 8)

(
26R6

W−16
)3

26R6
W

f 6(τ ∗)= f 6(
√

−d)=2
√

2RW ⇒ f 24(τ ∗)=26R4
W = A

and by Eq. (12)

RH = (A − 16)3

A
= (26R4

W − 16)3

26R4
W

.

10. D/4 ≡ 5 (mod 8) and D ≡ 0 (mod 3). From Table 2,
the class invariant for this case is f 12(

√−d)/23 = RW .
For the particular D, we have that τ ∗ = √−d. Hence,

f 12(τ ∗) = f 12(
√

−d) = 23RW ⇒ f 24
0 (τ ∗) = 26R2

W = A

and by Eq. (12)

RH = (A − 16)3

A
= (26R2

W − 16)3

26R2
W

.

The previous discussion is summarized in the follow-
ing theorem.

Theorem 1 Suppose RW is a real root of a Weber poly-
nomial WD(x) and RH is a real root of the corresponding
Hilbert polynomial HD(x). Then, RW can be transformed
to RH using the equations from Tables 3 and 4 depending
on the value of the discriminant D.

4.3 Precision requirements for the construction
of polynomials

In this section we focus on the precision required for the
construction of Weber polynomials. For reasons of com-
parison and completeness, we note that a very accurate
estimation of the bit precision of Hilbert polynomials
made in [22] gives an upper bound of 3.32(H +h/4+5),

56 E. Konstantinou et al.

Table 4 Transformations for D ≡ 0 (mod 3)

D RH

D ≡ 7 (mod 8)

(
R−8

W −16
)3

R−8
W

D ≡ 3 (mod 8)

(
24R−8

W −16
)3

24R−8
W

D/4≡2, 6(mod 8)

(
26R4

W+16
)3

26R4
W

D/4 ≡ 1 (mod 8)

(
26R4

W−16
)3

26R4
W

D/4 ≡ 5 (mod 8)

(
26R2

W−16
)3

26R2
W

where 	H = 0.3(π
√

D
ln 2

∑h
k=1

1
ak

) and ak is the first inte-
ger of the related reduced, primitive quadratic forms.
Our experiments showed that this bound is remarkably
accurate.

Let 	W = π
√

D
ln 2

∑h′
�=1

1
a�

, where h′ is the number of
terms of the product in Eq. (9) and a� is the first inte-
ger of the corresponding reduced, primitive form. The
bit precision required for the construction of the Weber
polynomial is upper bounded by v0+	W (see, e.g., [35]),
where v0 is a positive constant that handles round-off
errors (typically v0 = 33). This estimate of precision
can be, however, much larger than the actual precision
required by the Weber polynomials. For the case of D ≡
7 (mod 8) and not divisible by 3, a better upper bound of
3.32(1+(H+h/4+5)/47) is provided in [22]. Moreover,
in [3] a more accurate precision bound of 0.015	H is
given for the same values of D. However, these precision
estimates cannot be used for other cases of D. The next
theorem gives a new precision estimate that covers all
values of discriminant D.

Theorem 2 The bit precision required for the construc-
tion of Weber polynomials for various values of the dis-
criminant D is upper bounded by

c1h + π
√

d
c2 ln 2

c1h∑

�=1

1
a�

,

where the sum runs over the same values of � as the prod-
uct of Eq. (9) (i.e., h′ = c1h) and the constants c1 and c2
are given by

c1 =
{

3 if D ≡ 3 (mod 8)

1 if D �≡ 3 (mod 8)
(13)

c2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

24 if D ≡ 3, 7 (mod 8) ∧ D �≡ 0 (mod 3)

8 if D ≡ 3, 7 (mod 8) ∧ D ≡ 0 (mod 3)

6 if D/4 ≡ 5 (mod 8) ∧ D �≡ 0 (mod 3)

2 if D/4 ≡ 5 (mod 8) ∧ D ≡ 0 (mod 3)

12 if D/4 ≡ 1, 2, 6 (mod 8) ∧ D �≡ 0 (mod 3)

4 if D/4 ≡ 1, 2, 6 (mod 8) ∧ D ≡ 0 (mod 3).

(14)

Proof Consider the case D �≡ 3 (mod 8). From the proof
of Proposition (B4.4) in [17], assume that the Weber
polynomial is written in the form WD(x) = xh +
wh−1xh−1 +· · ·+ w1x + w0. It turns out that |wi| ≤ 2hM,
where M = ∏

� max(1, |g(τ�)|). This means that the bit
precision required for the coefficient wi is log2(|wi|) ≤
h+ log2 M ≤ h+∑

� log2(|g(τ�)|). Therefore, the bit pre-
cision required for the construction of the whole polyno-
mial (i.e., the construction of its coefficients) is at most
h + ∑

� log2(|g(τ�)|) and thus c1 = 1. For the case D ≡ 3
(mod 8), the degree of WD(x) is equal to 3h. Arguing
as above, we conclude that the bit precision is at most
3h+∑

� log2(|g(τ�)|), which gives c1 = 3. To conclude the
proof, it suffices to estimate the precision requirements
for the computation of g(τ�).

The precision required by each g(τ�) is related to the
precision required by f (τ�), f1(τ�) or f2(τ�) as evidenced
by Tables 1 and 2. We observe that, in general, g(τ�)

is equal to one of these functions raised to a constant
power K and multiplied by a small constant, which we
can safely ignore in the following computations as it
will affect the final estimate only by a very small addi-
tive constant. This implies that the precision needed for
g(τ�) is approximately K times the precision needed for
f (τ�), f1(τ�) or f2(τ�). Since the latter are related to j(τ�)

through Eq. (12), it turns out that an estimate for the
precision of j(τ�) yields an estimate for the precision of
g(τ�).

Equation (12) implies that the precision needed for
j(τ�) is approximately 48 times the precision needed for
f (τ�), f1(τ�) or f2(τ�). Consequently, log2 |g(τ�)| ≈ K

48 log2
|j(τ�)|. Using the expansion of j in terms of its Fourier
series [6], we obtain that |j(τ�)|≈|e−2πτ�

√−1|=e2π
√

d/a� .
Therefore, the bit precision that is required for the com-
putation of j(τ�) is log2 |j(τ�)| ≈ 2π

√
d

a� ln 2 and, consequently,
the precision required for g(τ�) is given by log2 |g(τ�)| ≈
K
48 log2 |j(τ�)| = 2Kπ

√
d

48a� ln 2 = Kπ
√

d
24a� ln 2 . This, in turn, results in

the total bit precision requirements for the computation
of the Weber polynomial, which is c1h + Kπ

√
d

24 ln 2
∑

�
1
α�

.

We turn now to the computation of c2 = 24
K . For

the case d = D ≡ 3 (mod 8) and D ≡ 0 (mod 3), the
precision required by g(τ�) is approximately three times
the precision required by f (τ�), f1(τ�) or f2(τ�) as it is
evident from Table 2. Consequently, c2 = 24

3 = 8. The
rest of the cases follow similarly, thus completing the
proof of the theorem. ��

Theorem 2 suggests a natural ranking of the bit pre-
cision requirements based on the different values of
D. For example, the case D ≡ 3, 7 (mod 8) and D �≡
0 (mod 3) requires less precision than the other cases
and this implies that these values of D are better for

Efficient generation of secure elliptic curves 57

implementations. This ranking is verified by the experi-
ments described in Sect. 5.

5 Implementation and experimental results

In this section, we discuss some issues regarding the
implementation of our variant of the Complex Multi-
plication method and our experimental results concern-
ing its time and space efficiency. As mentioned in the
Sect. 1, one of our main concerns was to investigate
the efficiency of implementing CM variants in resource-
limited hardware devices (e.g., embedded systems). For
that reason and for reasons of proper comparison, we
have made all of our implementations in a unified frame-
work using the same language and software libraries.
Since the vast majority of language tools developed for
such devices are based on ANSI C, we have made all of
our implementations in this language using the (ANSI
C) GNU Multiple Precision (GNUMP) [12] library for
high precision floating point arithmetic and also for
generating and manipulating integers of unlimited pre-
cision. Our implementation is also part of a software
library for ECC that we build [19]. The library is
available from http://www.ceid.upatras.gr/faculty/zaro/
software/ecc-lib/. Note that there are highly efficient
and optimized C++ libraries (e.g., LiDIA [23]), which
however result in executables of a few MB, that may be
prohibitive for resource-limited hardware devices.

As a first step, we implemented the basic algebraic
operations for EC arithmetic. We then turned our atten-
tion to the most demanding step of the CM method,
which was the construction of the Hilbert and Weber
polynomials. They both require high-precision complex
and floating point arithmetic with the greater demands
placed, of course, by Hilbert polynomials. Also, the oper-
ations involved required the implementation of func-
tions such as cos(x), sin(x), exp(x), ln(x), arctan(x) and√

x. Since the basic complex number algebraic opera-
tions (addition, multiplication, exponentiation, and
squaring) as well as a high precision floating point imple-
mentation of the above functions did not exist in
GNUMP, we had to implement them from scratch. For
the implementation of the particular functions we used
their Taylor series expansion. As a starting point for the
construction of the Hilbert polynomials, we used the
code given in [38] which we considerably modified in
order to support high precision floating point arithme-
tic. For the construction of the Weber polynomials we
implemented the functions described in the IEEE Stan-
dard P1363 [16], adopting a slightly different way for
producing the coefficients α, β, γ described in the stan-
dard. For the computation of the roots of polynomials

Table 5 Construction of Weber and Hilbert polynomials

D h Weber polynomial Hilbert polynomial

Bit precision Time (s) Bit precision Time (s)

228 4 12 0.08 129 0.73
1, 384a 10 16 0.14 417 7.22
2,487 20 24 0.26 897 69.74
3,092 26 24 0.32 961 110.26
3,967 33 16 0.37 1,217 219.94
5,060 40 24 0.55 1,505 537.71
6, 744a 44 97 0.95 1,601 699.08
9, 924a 52 161 1.97 2,049 1,365.29
39,608 100 129 2.74 4513 20,679.00

a Coefficients of Hilbert polynomials do not have trailing decimal
zeros

modulo a prime, we used the code given in [38], which
we had to modify in order to handle correctly prime
numbers of arbitrary precision.

Our experiments were carried out on a Pentium III
(933 MHz) with 256 MB of main memory, running
Linux, and using the ANSI C gcc-2.95.2 compiler (along
with the GNUMP library). All reported times are aver-
ages over 1,000 ECs per value of the discriminant D. For
the size of the field’s order, we considered two values,
namely 192 and 224 bits. The Weber (resp. Hilbert) ver-
sion of our code (excluding dynamically called libraries)
had size 124 KB (resp. 110 KB) including the code for
the generation of the polynomials; exclusion of the latter
(i.e., when polynomials are computed off-line) reduces
the code size to 72 KB. The small size of our code makes
it suitable for memory limited devices. In fact, our code
has been successfully ported to Windows CE, which is
one of the most commonly used operating systems for
PDAs. Details can be found in [1].

5.1 Construction of Hilbert and Weber polynomials

In this section we consider experiments regarding the
construction of Hilbert and Weber polynomials. Our
experiments are focused on the bit precision and the
time requirements needed for the construction of the
polynomials.

We have considered various values of D and h and
made several experiments. We observed a big difference
in favor of Weber polynomials both w.r.t. precision and
time. Figure 1 illustrates the approximate (theoretical)
estimate of the bit precision required for the construc-
tion of Weber and Hilbert polynomials, as discussed in
Sect. 4.3, and the actual precision, i.e., the minimal pre-
cision required for their actual construction during the
experiments . In particular, the degree h of the polyno-
mials ranges from 4 to 52 as the discriminant D increases
from 228 to 9924.

58 E. Konstantinou et al.

Fig. 1 Actual and
approximate bit precision for
the construction of Hilbert
and Weber polynomials

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
it

pr
ec

is
io

n
D

Approximated precision for Hilbert polynomials
Actual precision for Hilbert polynomials

Approximated precision for Weber polynomials
Actual precision for Weber polynomials

As it is evident from Fig. 1, there is a large differ-
ence in the required precision between the two types
of polynomials. We also observe that the approximate
precision estimates are very close to the actual preci-
sion used in the implementation. For Hilbert polyno-
mials the approximation from [22] was used, while for
Weber polynomials that of Theorem 2. The difference
is reflected also in the time requirements for the con-
struction of polynomials and grows considerably large
for bigger values of D and h as it is indicated in Table 5.
For example, when D = 39, 608 and h = 100 the time
required for the construction of the Weber polynomial is
only 2.74 s, while the time needed for the construction of
the corresponding Hilbert polynomial is approximately
5 h and 45 min. In Table 5, we also report on the bit
precision requirements for the construction of the two
types of polynomials for the different values of D and
h considered. In conclusion, the construction of Hilbert
polynomials is very inefficient both in space and time.

We further observed that some Hilbert polynomi-
als have many trailing zeros in their coefficients. These
polynomials have an advantage compared to the rest of
Hilbert polynomials, because they can be more com-
pactly stored. Moreover, it is easier for an implementer
to verify that a polynomial is correctly computed if it
is known that its coefficients have trailing zeros. We
noticed that the trailing zeros appear for polynomials
with D �≡ ±1 (mod 5).

Regarding the precision requirements of Weber poly-
nomials and their theoretical estimates, representative
results are reported in Figs. 2 and 3, where we pres-
ent the approximate versus the actual bit precision for
Weber polynomials with even discriminant D, distin-
guishing between those divisible by 3 (Fig. 2) and those
which are not divided by 3 (Fig. 3). The degree h of the
polynomials ranges from 4 to 52 and the discriminant D

from 228 to 9924. We observe that all the estimates of the
precision are larger than the actual precision. However,
for all cases of D, the estimate of precision is very close
to the actual one for polynomials with small h (h < 20,
corresponding to D < 2, 500 approximately). Similar
observations hold for odd values of the discriminant D
(see Fig. 4). As it was mentioned in Sect. 4.3, a better
approximate precision was given in [3] for the case of
D ≡ 7 (mod 8) and not divisible by 3.

Figures 2, 3 and 4 also indicate that there is a ranking
in the precision requirements for various values of D. It
can be seen, for instance, that the case of D/4 ≡ 1, 2, 6
(mod 8) and D �≡ 0 (mod 3) requires less precision than
the case D/4 ≡ 5 (mod 8) and D �≡ 0 (mod 3), which
in turn is better than the case D/4 ≡ 1, 2, 6 (mod 8) and
D ≡ 0 (mod 3). The worst case is D/4 ≡ 5 (mod 8)

and D ≡ 0 (mod 3). Note also that a similar ranking is
implied by the estimates provided by Theorem 2. More-
over, notice from Table 5 that the precision required for
the construction of the Weber polynomial W9924(x) is
larger than the precision required for the construction
of W39608(x), even though the latter has degree approx-
imately two times larger than the former. The reason is
that D = 9, 924 is divisible by 3, while D = 39, 608 is
not.

The difference in the precision requirements for the
various values of discriminant D is reflected in the time
requirements for the construction of the polynomials as
illustrated in Fig. 5, which summarizes all possible cases
of D. The degree h of the polynomials ranges from 50 to
150 and D from 10,766 to 69,396. The ranking among the
different values of the discriminant appears in this case,
too. The ranking between the two groups of D (divided
or not divided by 3) is the same as the one observed
for the precision: the worst case is D/4 ≡ 5 (mod 8),
followed by the case of D/4 ≡ 1, 2, 6 (mod 8), while

Efficient generation of secure elliptic curves 59

Fig. 2 Actual and
approximate bit precision for
the construction of Weber
polynomials with even D,
which is divisible by 3

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
it

pr
ec

is
io

n
D

Approx. Prec. [D/4 cong. 5 mod 8]
Approx. Prec. [D/4 cong. 1,2,6 mod 8]

Actual Prec. [D/4 cong. 5 mod 8]
Actual Prec. [D/4 cong. 1,2,6 mod 8]

the best one is D ≡ 3, 7 (mod 8) (for D = 68, 383 and
h = 148 the time for the construction of the polynomial
is only 4.43 s). This ranking may be helpful for designers
of ECCs as it may be used as a guideline for the selection
of values of D that lead to Weber polynomials with the
least computational requirements.

Concerning the storage requirements of the Weber
polynomials, it is clear that their coefficients are much
smaller than the coefficients of the corresponding
Hilbert polynomials. Moreover, the size of the coeffi-
cients of the Weber polynomials for the different cases
of D is analogous to the precision required for their con-
struction (see Theorem 2). For example, the coefficients
of polynomials with D ≡ 0 (mod 3) are larger than
the coefficients of polynomials with D �≡ 0 (mod 3),
when the discriminants and the degrees of the poly-
nomials are comparable in size. We also noticed that
Weber polynomials with even D are more beneficial
than Weber polynomials with odd D when it comes to
storage requirements. The reason is that the absolute
values of their coefficients are symmetric around the
central coefficient. For example, W116(x) = x6 − 9x5 +

5x4 + 2x3 − 5x2 − 9x − 1. Using this property, we can
reduce the space required for the storage of the partic-
ular Weber polynomials.

5.2 Computation of p and m

We next turn to the efficiency of Steps 3 and 4 of the
CM variant (Sect. 3.1) assuming that the polynomials
(Weber or Hilbert) have been computed off-line during
the preprocessing phase. Firstly, we compared the per-
formance of the Cornacchia’s algorithm with the per-
formance of the random method for the solution of the
Diophantine equation and for the generation of EC’s
suitable order m. For the order m we check the three
conditions mentioned in Sect. 2.1. The first condition
was tested as follows in our implementation. The order
must be of the form m = nq, where n is an integer and q
is a large prime (greater than 2160). The test proceeds by
factoring m and demanding that there are at most four
small factors (smaller than 20), while one factor should
be prime. If this fails, then the particular m is rejected
and the process is repeated. It is easy to see that in this

Fig. 3 Actual and
approximate bit precision for
the construction of Weber
polynomials with even D,
which is not divisible by 3

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

B
it

pr
ec

is
io

n

D

Approx. Prec. [D/4 cong. 5 mod 8]
Approx. Prec. [D/4 cong. 1,2,6 mod 8]

Actual Prec. [D/4 cong. 5 mod 8]
Actual Prec. [D/4 cong. 1,2,6 mod 8]

60 E. Konstantinou et al.

Fig. 4 Actual and
approximate bit precision for
the construction of Weber
polynomials with odd D

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
it

pr
ec

is
io

n
D

Approx. Prec. D odd, divided by 3
Approx. Prec. D odd, not divided by 3

Actual Prec. D odd, divided by 3
Actual Prec. D odd, not divided by 3

Table 6 Timing estimations (in s) for the computation of p and m
in the 192-bit finite field

D h #p #m T(p, m) #pr #mr T(pr, mr)

232 2 4 5 0.63 158 5 0.28
568 4 7 6 1.02 101 5 0.27
1,432 6 12 5 1.27 99 5 0.26
3,448 8 15 5 1.34 92 4 0.25
5,272 10 21 5 2.04 95 4 0.25
8,248 12 24 5 2.39 93 4 0.25
9,172 14 28 5 2.80 100 5 0.28
9,640 16 33 6 3.69 182 6 0.29
9,832 18 37 7 4.55 212 7 0.31
19,492 20 42 5 4.78 147 6 0.28
29,908 30 59 5 6.51 109 6 0.28
39,796 50 102 6 11.73 112 5 0.27
39,608 100 195 8 27.42 180 7 0.30

way q is greater than 2160 for sizes of 192 or 224 bits
for the field’s order, since n is at most 204. Moreover,
when the random method is used for the computation
of a prime p in a k-bit finite field, values of p that are
not in [2k−1, 2k] (k = 192 or 224 in our experiments) are
rejected.

The comparison of Cornacchia’s algorithm and ran-
dom method in the 192-bit finite field for various val-
ues of D and h is shown in Table 6. Let #p denote the
number of primes that we had to try in order to find a
solution (u, v) using Cornacchia’s algorithm, and let #m
be the number of orders m that we tried until a suitable
one was found. Correspondingly, #pr is the number of
random pairs (u, v) that we had to try in order to find
a prime p in the interval [2191, 2192] with the random
method, and #mr is the number of orders m that we
tried until we found a suitable one. T(p, m) is the time
for the computation of p and m using Cornacchia’s algo-
rithm, while T(pr, mr) is the time needed by the random
method. We observe that Cornacchia’s algorithm is less
efficient than the random method, with performance

Table 7 Timing estimations (in s) for the computation of p and m
in the 192-bit finite field

D h Cornacchia’s algorithm Random method

#p #m T(p, m) #pr #mr T(pr, mr)

296 10 20 10 3.70 286 7 0.31
724 10 20 9 3.44 122 6 0.27
1,268 10 20 6 2.29 99 5 0.25
3,412 10 20 6 2.20 101 5 0.25
5,272 10 21 5 2.04 95 4 0.25

that becomes worse as the degree h increases. On the
other hand, the efficiency of the random method is sim-
ilar for all values of D and h. The number of trials for
order m are approximately the same regardless of the
degree of the polynomial and the method used.

According to [6], we have to roughly try 2h primes
before a solution can be found by Cornacchia’s algo-
rithm. This fact was verified by our experiments with
surprising accuracy. For the random method many (usu-
ally more than 100) pairs of (u, v) must be tried in order
to find a prime p for all values of D. This can turn to an
advantage of Cornacchia’s method for small values of h
(even if its performance is still worse than the random
method). The advantage is that a user can provide his EC
cryptosystem with the primes one wishes to use within
a set of “good” primes, like Mersenne primes, when the
degree h is relatively small.

Tables 7 and 8 elaborate further on the use of Cornac-
chia’s algorithm and the random method, respectively,
for various values of D but for the same h = 10 in the
192-bit and 224-bit finite field. The main observation is
that the time requirements for the construction of p and
m decrease as D increases for both methods, following
the number of orders m that we tried until we found a
suitable one, in the case of Cornacchia’s algorithm, and
the number of pairs (u, v) that we had to try in order to
find a prime p, in the case of random method.

Efficient generation of secure elliptic curves 61

Fig. 5 Time for the
construction of Weber
polynomials

0

20

40

60

80

100

120

10000 20000 30000 40000 50000 60000 70000

T
im

e
in

 s
ec

on
ds

D

D/4 congruent to 5 mod 8, D divided by 3
D/4 congruent to 1,2,6 mod 8, D divided by 3

D odd, divided by 3
D/4 congruent to 5 mod 8, D not divided by 3

D/4 congruent to 1,2,6 mod 8, D not divided by 3
D odd, not divided by 3

Table 8 Timing estimations (in s) for the computation of p and m
in the 224-bit finite field

D h Cornacchia’s algorithm Random method

#p #m T(p, m) #pr #mr T(pr, mr)

296 10 19 13 6.58 348 8 0.47
724 10 20 12 6.51 141 6 0.39
1,268 10 19 9 4.28 115 6 0.39
3,412 10 20 7 3.68 122 6 0.40
5,272 10 20 5 2.84 113 5 0.37

5.3 The other steps of the CM method

We finally turn to the efficiency of the other steps (Steps
5–7) of the CM variant (recall Sect. 3.1) and of our CM
implementation in total. In Table 9 we report on the
time requirements of all the steps of our CM variant
for various values of D and h and we see where exactly
the time is spent. We denote by T[W] the time for the
construction of the Weber polynomial, by T(p, m) and
T(pr, mr) the time required to find a prime p and a suit-
able order m (Steps 3 and 4) using Cornacchia’s algo-
rithm and random method, respectively, by T5 the time
required for the computation of a root of the polyno-
mial modulo p (Step 5) and by T67 the time required
for the construction of the EC (Steps 6 and 7). Tmain is
the total time of the main phase (Steps 3–7) of our vari-
ant using Cornacchia’s algorithm for Steps 3 and 4, and
Tr

main is the total time when the random method is used
for the computation of p and m. The Weber polynomials
have been constructed off-line during the preprocessing
phase.

We note that the most time consuming steps of the
CM method are Step 5 (computation of a root of the
polynomial) and Steps 3–4 when Cornacchia’s algorithm
is used. As it was expected, T67 does not change with D
and h.

Table 9 Timing estimations (in s) of our CM variant in the 192-bit
finite field

D h T[W] T(p, m) T(pr, mr) T5 T67 Tmain Tr
main

232 2 0.03 0.63 0.28 0.01 0.32 0.96 0.61
568 4 0.05 1.02 0.27 0.04 0.33 1.39 0.64
1,432 6 0.07 1.27 0.26 0.09 0.33 1.69 0.68
3,448 8 0.10 1.34 0.25 0.14 0.35 1.83 0.74
5,272 10 0.13 2.04 0.25 0.21 0.38 2.63 0.84
8,248 12 0.16 2.39 0.25 0.32 0.31 3.02 0.88
9,172 14 0.18 2.80 0.28 0.41 0.33 3.54 1.02
9,640 16 0.19 3.69 0.29 0.51 0.39 4.59 1.18
9,832 18 0.21 4.55 0.31 0.76 0.35 5.66 1.42
19,492 20 0.27 4.78 0.28 1.22 0.30 6.30 1.80
29,908 30 0.61 6.51 0.28 1.77 0.40 8.68 2.45
39,796 50 2.14 11.73 0.27 6.11 0.39 18.23 6.77
39,608 100 2.74 27.42 0.30 23.45 0.35 51.23 24.10

6 Conclusions

We have presented a variant of the Complex Multipli-
cation method for generating secure ECs. The variant
uses Weber polynomials that can be used for the con-
struction of ECs of suitable order. We have presented,
in a unifying and simple manner, all the transformation
of roots of Weber polynomials into roots of the corre-
sponding Hilbert polynomials as well as estimates for
the precision requirements of Weber polynomials for all
possible discriminant values. We have also conducted
an experimental study comparing the construction effi-
ciency of Weber and Hilbert polynomials for various
discriminant values. We observed that for Weber poly-
nomials there is a ranking among the values of D that
is defined by its divisibility properties. We also inves-
tigated the time efficiency of the new Complex Multi-
plication variant under different implementations of a
crucial step of the variant. We believe that our exper-
imental results can be used as a guideline for the con-
struction of EC cryptosystems, as the potential designer
can have an estimate of the computation time as well as

62 E. Konstantinou et al.

the precision required before the actual implementation
is accomplished.

Acknowledgments We would like to thank the anonymous ref-
erees for their valuable comments.

References

1. Argyroudis P.: NTRG ECC-LIB WINCE—a WinCE port
of ECC-LIB, available at: http://www.ntrg.cs.tcd.ie/∼argp/
software/ntrg-ecc-lib-wince.html (2004)

2. Atkin, A.O.L., Morain, F.: Elliptic curves and primality prov-
ing. Math. Comput. 61, 29–67 (1993)

3. Baier, H.: Efficient algorithms for generating elliptic curves
over finite fields suitable for use in cryptography. PhD Thesis,
Deptartment of Computer Science, Technical University of
Darmstadt (2002)

4. Baier, H., Buchmann, J.: Efficient construction of crypto-
graphically strong elliptic curves. In: Progress in Cryptol-
ogy—INDOCRYPT 2000, LNCS, vol. 1977, pp. 191–202.
Springer, Berlin Heidelberg New York (2000)

5. Berlekamp, E.R.: Factoring polynomials over large finite
fields. Math Comput 24, 713–735 (1970)

6. Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptogra-
phy. London Mathematical Society, Lecture Note Series 265.
Cambridge University Press, Cambridge (1999)

7. Burton, D.: Elementary Number Theory, 4th edn. McGraw-
Hill, New York (1998)

8. Cornacchia, G.: Su di un metodo per la risoluzione in numeri
interi dell’ equazione

∑n
h=0 Chxn−hyh = P. Giornale di Ma-

tematiche di Battaglini 46, 33–90 (1908)
9. Enge, A., Morain, F.: Comparing invariants for class fields

of imaginary quadratic fields. In: Algorithmic Number
Theory—-ANTS-V. Lecture Notes in Computer Science,
vol. 2369, pp. 252–266. Springer, Berlin Heidelberg New York
(2002)

10. Enge, A., Schertz, R.: Constructing elliptic curves from mod-
ular curves of positive genus. (preprint 2003)

11. Frey, G., Rück, H.G.: A remark concerning m-divisibility and
the discrete logarithm problem in the divisor class group of
curves. Math Comput 62, 865–874 (1994)

12. GNU multiple precision library, 3.1.1. edn. Available at:
http://www.swox.com/gmp (2000)

13. Gura, N., Eberle, H., Shantz, S.C.: Generic implementations
of elliptic curve cryptography using partial reduction. In: Pro-
ceedings of the 9th ACM Conference on Computer and Com-
munications Security—CCS’02, pp. 108–116

14. Hankerson, D., Menezes, A., Vanstone, S.: Guide to elliptic
curve cryptography. Springer, Berlin Heidelberg New York
(2004)

15. Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung,
M.: Proactive public key and signature systems. In: Proceed-
ings of the 4th ACM Conference on Computer and Commu-
nications Security—CCS’97, pp. 100–110

16. IEEE P1363/D13: Standard specifications for public-
key cryptography, ballot draft. http://www.grouper.ieee.org/
groups/1363/tradPK/draft.html (1999)

17. Kaltofen, E., Yui, N.: Explicit construction of the Hilbert
class fields of imaginary quadratic fields by integer lattice
reduction. Research Report 89-13, Renseelaer Polytechnic
Institute (1989)

18. Kaltofen, E., Valente, T., Yui, N.: An improved Las Vegas
primality test. In: Proceedings of the ACM-SIGSAM 1989

International Symposium on Symbolic and Algebraic Com-
putation, pp. 26–33 (1989)

19. Konstantinou, E., Stamatiou, Y., Zaroliagis, C.: A software
library for elliptic curve cryptography. In: Proceedings of
the 10th European Symposium on Algorithms—ESA 2002
(Engineering and Applications Track). Lecture Notes in
Computer Science, vol. 2461, pp. 625–637. Springer, Berlin
Heidelberg New York (2002)

20. Konstantinou, E., Stamatiou, Y., Zaroliagis, C.: On the effi-
cient generation of elliptic curves over prime fields. In: Cryp-
tographic hardware and embedded systems—CHES 2002.
Lecture Notes in Computer Science, vol. 2523, pp. 333–348.
Springer, Berlin Heidelberg New York (2002)

21. Konstantinou, E., Stamatiou, Y., Zaroliagis, C.: On the Use
of Weber polynomials in elliptic curve cryptography. In:
Public key infrastructure—EuroPKI 2004. Lecture Notes in
Computer Science, vol. 3093, pp. 335–349. Springer, Berlin
Heidelberg New York, (2003)

22. Lay, G.J., Zimmer, H.: Constructing elliptic curves with given
group order over large finite fields. In: Algorithmic num-
ber theory—ANTS-I. Lecture Notes in Computer Science,
vol. 877, pp. 250–263. Springer, Berlin Heidelberg New York
(1994)

23. LiDIA: A library for computational number theory, Tech-
nical University of Darmstadt. Available from http://www.
informatik.tu-darmstadt.de/TI/LiDIA/Welcome.html (2001)

24. Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing ellip-
tic curve logarithms to a finite field. IEEE Trans. Info. The-
ory 39, 1639–1646 (1993)

25. Müller, V., Paulus, S.: On the generation of cryptographically
strong elliptic curves (preprint 1997)

26. Niven, I., Zuckerman, H.S., Montgomery, H.L.: An intro-
duction to the theory of numbers, 5th edn. Wiley, New York
(1991)

27. Pohlig, G.C., Hellman, M.E.: An improved algorithm for
computing logarithms over GF(p) and its cryptographic sig-
nificance. IEEE Trans. Info. Theory 24, 106–110 (1978)

28. Satoh, T., Araki, K.: Fermat quotients and the polyno-
mial time discrete log algorithm for anomalous elliptic
curves. Comm. Math. Univ. Sancti Pauli 47, 81–91 (1998)

29. Savas, E., Schmidt, T.A., Koc, C.K.: Generating elliptic
curves of prime order. In: Cryptographic hardware and
embedded systems—CHES 2001. Lecture Notes in Com-
puter Science, vol. 2162, pp. 145–161. Springer, Berlin
Heidelberg New York (2001)

30. Schertz, R.: Weber’s class invariants revisited. J. Théor. Nom-
bres Bordeaux 14, 1 (2002)

31. Semaev, I.A.: Evaluation of discrete logarithms on some
elliptic curves. Math. Comput. 67, 353–356 (1998)

32. Silverman, J.H.: The arithmetic of elliptic curves, GTM 106.
Springer, Berlin Heidelberg New York (1986)

33. Smart, N.P.: The discrete logarithm problem on elliptic curves
of trace one. J. Cryptogr. 12, 193–196 (1999)

34. Spallek, A.-M.: Konstruktion einer elliptischen Kurve über
einem endlichen Körper zu gegebener Punktegruppe. Mas-
ter Thesis, Universität GH Essen (1992)

35. Valente, T.: A distributed approach to proving large num-
bers prime. Rensselaer Polytechnic Institute Troy, New York,
Thesis (1992)

36. Washington, L.C.: Elliptic curves: number theory and cryp-
tography. Chapman & Hall/CRC, Boca Raton (2003)

37. Weber, H.: Algebra III. Vieweg (1908)
38. Williams, P.: Available at: http://www.mindspring.com/

∼pate

Efficient generation of secure elliptic curves 63

Author’s Biography

Elisavet Konstantinou holds
a B.Sc. in Informatics from the
University of Ioannina, a M.Sc.
in Signal and Image Processing
Systems, and a PhD in The-
ory and Applications of Ellip-
tic Curve Cryptosystems from
the University of Patras, Depart-
ment of Computer Engineering
and Informatics. She is currently
a Lecturer in the Department
of Information and Communica-

tion Systems Engineering, University of the Aegean. She was
a research fellow in the R.A. Computer Technology Institute
and participated in several EC funded projects (such as the IST
projects ASPIS and FLAGS), as well as in secveral national pro-
jects (such as the HYPERGEN project and the IRAKLITOS
Action supported by the Greek Ministry of Education through
the EPEAEK II programme). She has published several papers
in international conferences and journals. Her research inter-
ests include elliptic curves cryptosystems and generation of their
parameters, public key cryptosystems, random number genera-
tion, algorithm engineering, and algebraic number theory. She is
a member of the IEEE Computer Society.

Yannis C. Stamatiou was
born in Volos in 1968. He holds a
degree of Computer Engineer-
ing & Informatics, from the Uni-
versity of Patras and a Ph.D.
from the same department. He
is currently an Assistant Profes-
sor at the University of Ioann-
ina, Mathematics Department,
Greece, and a scientific consul-
tant on security and cryptogra-
phy issues of the Research and
Academic Computer Technol-
ogy Institute (RACTI). His sci-

entific interests lie in the fields of security and cryptography as well
as the study of threshold phenomena arising in computationally
intractable problems. He is a member of ACM and IEEE.

Christos Zaroliagis received
his PhD in computer science
from the University of Patras,
Greece, in 1991. He is cur-
rently an Associate Professor
in the Department of Com-
puter Engineering & Informat-
ics, University of Patras, Greece,
and a Senior Researcher of
the R.A. Computer Technology
Institute, Patras, Greece. He held
previous positions at the Max-
Planck-Institute für Informatik,
Saarbrücken, Germany, and in
the Department of Computer

Science, King’s College, University of London, UK. His current
research interests include design and analysis of efficient algo-
rithms and data structures, algorithm engineering, theory and
applications of parallel and distributed computing, combinatorial
optimization, large-scale optimization, robust and online optimi-
zation, and cryptography and information security. He has pub-
lished more than 80 papers in major international journals and
conferences. He is editor of the Journal of Discrete Algorithms
(Elsevier), and he has served in more than 15 Program Commit-
tees of leading international computer science conferences. He
has participated as a coordinator and/or key researcher in several
EC-funded and national projects. He is a member of ACM, IEEE,
and EATCS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

