
1.6

An Experimental Study of Algorithms for
Fully Dynamic Transitive Closure

IOANNIS KROMMIDAS and CHRISTOS ZAROLIAGIS

CTI and University of Patras

We have conducted an extensive experimental study on algorithms for fully dynamic transitive
closure. We have implemented the recent fully dynamic algorithms by King [1999], Roditty [2003],
Roditty and Zwick [2002, 2004], and Demetrescu and Italiano [2000, 2005] along with several vari-
ants and compared them to pseudo fully dynamic and simple-minded algorithms developed in a
previous study [Frigioni et al. 2001]. We tested and compared these implementations on random in-
puts, synthetic (worst-case) inputs, and on inputs motivated by real-world graphs. Our experiments
reveal that some of the dynamic algorithms can really be of practical value in many situations.

Categories and Subject Descriptors: G.2.1 [Combinatorics]: Combinatorial algorithms; G.2.2
[Graph Theory]: Graph algorithms, Network problems, Path and circuit problems; G.4 [Mathe-
matical Software]: Algorithm design and analysis; D.2.8 [Metrics]: Performance Measures; E.1
[Data Structures]: Graphs and Networks

General Terms: Algorithm, Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Transitive closure, path, reachability, dynamic algorithm

ACM Reference Format:
Krommidas, I. and Zaroliagis C. 2008. An experimental study of algorithms for fully dynamic transi-
tive closure. ACM J. Exp. Algor. 12, Article 1.6 (June 2008), 22 pages DOI 10.1145/1370596.1370597
http://doi.acm.org 10.1145/1370596.1370597

1. INTRODUCTION

The transitive closure (or reachability) problem in a digraph G consists in find-
ing whether there is a directed path between any two vertices in G. In this
paper, we are concerned with the dynamic version of the problem, namely, with

This work was partially supported by the Future and Emerging Technologies Unit of EC (IST
priority—6th FP), under contracts no. IST-2002-001907 (integrated project DELIS) and no. FP6-
021235-2 (project ARRIVAL). A preliminary version of this work appeared in Krommidas and
Zaroliagis [2005].
Authors’ addresses: Ioannis Krommidas and Christos Zaroliagis R.A. Computer Technology
Institute, N. Kazantzaki Str, Patras University Campus, 26500 Patras, Greece, and Dept of
Computer Engineering and Informatics, University of Patras, 26500 Patras, Greece; emails:
{krommudi,zaro}@ceid.upatras.gr
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1084-6654/2008/06-ART1.6 $5.00 DOI 10.1145/1370596.1370597 http://doi.acm.org
10.1145/1370596.1370597

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.

1.6

1.6



1.6:2 • I. Krommidas and C. Zaroliagis

the maintenance of transitive closure when G undergoes a sequence of edge in-
sertions and deletions. This is a fundamental and extensively studied problem.
An algorithm is called fully dynamic if it supports both edge insertions and
deletions and partially dynamic if either insertions or deletions (but not both)
are supported; in the former case, the partially dynamic algorithm is called
incremental, while in the latter it is called decremental.

Recently, we have witnessed a number of important theoretical break-
throughs regarding fully dynamic transitive closure [Demetrescu and Italiano
2000, 2005; King and Sagert 1999; King 1999; King and Thorup 2001; Roditty
2003; Roditty and Zwick 2002, 2004], which is our main concern in this work.
These fully dynamic algorithms can be roughly divided into two categories:
those using combinatorial techniques [King 1999; King and Thorup 2001;
Roditty 2003; Roditty and Zwick 2002, 2004] and those which do not exclusively
use such techniques [Demetrescu and Italiano 2000, 2005; King and Sagert
1999; Roditty and Zwick 2002]. Moreover, some of these algorithms apply to
directed acyclic graphs (DAGs), while some others to general digraphs.

In this paper, we concentrate on fully dynamic algorithms for maintaining
the transitive closure of a general digraph G = (V , E). Hence, we mention the
results related to this case only. Starting from algorithms which do not exclu-
sively use combinatorial techniques, King and Sagert [1999] presented a ran-
domized (Monte Carlo) algorithm achieving O(n2.26) amortized update time and
O(1) query time (if not stated otherwise, queries are considered Boolean and
their associate time worst-case), where n = |V |. These results were improved
by Demetrescu and Italiano [2000, 2005], where a deterministic algorithm is
presented achieving O(1) query time and O(n2) amortized update time. Finally,
Roditty and Zwick [2002], building on the above as well as on a new decremen-
tal algorithm (see below), presented a randomized (Monte Carlo) algorithm,
which has an O(m0.43) query time and an O(m0.58n) amortized update time,
where m denotes the current number of edges in G plus the number of edges
to be inserted or deleted. Turning now to the fully dynamic algorithms that are
mostly based on combinatorial techniques, King [1999] gave a deterministic
algorithm that achieves an O(n2 log n) amortized update time and O(1) query
time. This algorithm (as well as the aforementioned ones in [Demetrescu and
Italiano 2000, 2005; King and Sagert 1999]) uses O(n3) space. A space-saving
technique introduced by King and Thorup [2001] reduces the space require-
ments to O(n2 log n). Roditty and Zwick [2002] presented a deterministic algo-
rithm with an O(

√
n) query time and an O(m

√
n) amortized update time. This

algorithm (as well as the aforementioned one in Roditty and Zwick [2002]) is
based on a new decremental randomized (Las Vegas) algorithm that achieves
O(n) amortized update time and O(1) query time. Further improvements have
been made by Roditty [2003], where a deterministic algorithm is presented that
achieves O(n2) amortized update time and O(1) query time. Finally, Roditty and
Zwick [2004] have very recently presented a new deterministic algorithm that
supports each update in O(m + n log n) time and each query in O(n) time.

Despite the above theoretical progress, we are not aware of any practical
assessment of any of the aforementioned algorithms. Our prime goal in this pa-
per is to advance our knowledge on the practical aspects of this recent and

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



An Experimental Study of Algorithms for Fully Dynamic Transitive Closure • 1.6:3

important theoretical work regarding fully dynamic maintenance of transi-
tive closure. In particular, we follow up the advances in King [1999], King and
Thorup [2001], Roditty [2003], Roditty and Zwick [2002, 2004] on fully dynamic
algorithms based on combinatorial techniques, as well as these in Demetrescu
and Italiano [2000, 2005], with an extensive comparative experimental study
and investigate their practical merits. Previous experimental studies regarding
maintenance of transitive closure [Abdeddaim 2000; Frigioni et al. 2001] have
mostly focused on the assessment of partially dynamic algorithms. The only ex-
perimental comparison regarding fully dynamic transitive closure was made by
Frigioni et al. [2001], where a fully dynamic algorithm of Henzinger and King
[1995] was compared to a new algorithm, called Ital-Gen, developed in that pa-
per. Ital-Gen is based on a hybridization and extension of Italiano’s partially
dynamic algorithms [Italiano 1986, 1998]. It works in a fully dynamic setting,
but update times can be analyzed and bounded only for partially dynamic op-
eration sequences. We shall refer to such algorithms as pseudo fully dynamic.
The experiments conducted in Frigioni et al. [2001] showed that Ital-Gen was
considerably more efficient in practice than the fully dynamic algorithm in
Henzinger and King [1995].

In this work, we have implemented and experimentally compared all the
aforementioned combinatorially based fully dynamic algorithms [King 1999;
King and Thorup 2001; Roditty 2003; Roditty and Zwick 2002, 2004], as well as
the algorithm of Demetrescu and Italiano [2000, 2005], for maintaining tran-
sitive closure in general digraphs along with some new variants. In particular,
from the former set, we have implemented the space-saving version of King’s
algorithm [King 1999; King and Thorup 2001] along with two new variants,
the algorithm of Roditty and Zwick [2002], the algorithm of Roditty [Roditty
2003], along with a new variant, and the very recent algorithm of Roditty and
Zwick [2004]. In addition, we have implemented the decremental algorithm of
Roditty and Zwick [2002], which we modified and fine-tuned so that it can work
in a fully dynamic environment. We call this pseudo fully dynamic algorithm
RZ-Opt. We compared the above implementations to the Ital-Gen algorithm
developed in Frigioni et al. [2001] and also to the simple-minded algorithms
(easily implementable and with very small constants) presented in the same
study. Our experiments were conducted on three types of inputs: random, syn-
thetic, which are worst-case for the dynamic algorithms, and real-world.

Our experiments showed that, regardless of the type and size of input, the
algorithm of [Demetrescu and Italiano 2000, 2005], the space-saving version
of King’s algorithm [King 1999; King and Thorup 2001], and its new variants
were, by far, the slowest, followed by the algorithm of Roditty [2003]. The per-
formance of the latter is actually surprising, since, at least for some cases, it is
theoretically better than the algorithm in Roditty and Zwick [2002].

For random inputs, the pseudo fully dynamic algorithms Ital-Gen and
RZ-Opt were dramatically faster than any of the fully dynamic ones or their
variants, with RZ-Opt being usually the fastest. Regarding fully dynamic algo-
rithms, the first interesting outcome is that the theoretically inferior—with re-
spect to Roditty and Zwick [2004]—algorithm of Roditty and Zwick [2002] was
the fastest. The second interesting outcome is that Demetrescu and Italiano

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



1.6:4 • I. Krommidas and C. Zaroliagis

[2000, 2005] algorithm exhibits an excellent locality of reference and achieves
the smallest ratio of cache misses w.r.t. any algorithm in our study. However, its
performance degrades, since it requires a vast number of main memory accesses
to maintain its data structures.

For synthetic inputs, the fastest algorithm, in all cases, were the simple-
minded ones. Regarding the dynamic algorithms, we observed that the situa-
tion is similar to the random inputs as long as the graph consists of strongly
connected components (SCCs) of small size. When, however, the size of SCCs in-
creases, the fully dynamic algorithms of Roditty and Zwick [2002, 2004] perform
dramatically better than the pseudo fully dynamic ones. This implies that the
fully dynamic algorithms demonstrate their theoretical superiority by quickly
learning the specific structure of these graphs and benefiting substantially from
it.

The experimental results with the real-world inputs were similar to those of
random inputs.

1.1 Related Work

There are several papers complementing the wealth of theoretical work on
dynamic graph algorithms with extensive experimental studies. In particu-
lar, there is a bulk of studies regarding the dynamic shortest path problem
[Demetrescu et al. 2004, 2000, Demetrescu and Italiano 2006; Frigioni et al.
1998], as well as the dynamic minimum spanning tree and connectivity prob-
lems in undirected graphs [Alberts et al. 1997; Amato et al. 1997; Cattaneo
et al. 2002; Iyer et al. 2000]. See Zaroliagis [2002] for a recent survey.

2. ALGORITHMS AND THEIR IMPLEMENTATION

Let G = (V , E) be a digraph with n vertices and an initial number of m0 edges.
If there is a directed path from a vertex u to a vertex v, then u is called an
ancestor of v, v is called a descendant of u, and v is said to be reachable from
u. The digraph G∗ = (V , E∗) that has the same vertex set with G, but has an
edge (u, v) ∈ E∗ iff v is reachable by u in G is called the transitive closure of G.

In the rest of this section, we give a short description of the algorithms con-
sidered in our experimental study. For simplicity, we consider only Boolean
queries and note that all algorithms can report the actual path in time propor-
tional to its number of edges. Moreover, some algorithms support an extended
set of insert and delete operations. In the following, we shall denote by m′ the
number of edges to be inserted and/or deleted, and consequently, m = m0 + m′.

2.1 The Algorithms of Italiano and Their Extensions

We start with the partially dynamic algorithms of [Italiano 1986, 1988]. The
incremental algorithm applies to any digraph, while the decremental applies
to DAGs. We describe the modified and fine-tuned implementation of these
algorithms presented in [Frigioni et al. 2001], and which is referred to as
Ital-Opt.

Italiano’s algorithm maintains for each vertex u ∈ V a tree Desc[u], which
contains all descendants of u. The Desc trees are maintained implicitly using

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



An Experimental Study of Algorithms for Fully Dynamic Transitive Closure • 1.6:5

a n × n matrix Parent. If a vertex v belongs to Desc[u], then Parent[u, v] points
to the edge, which connects v to its parent in Desc[u], otherwise Parent[u, v] =
Null.

During insertion of an edge (v, w), the data structure is updated only if (v, w)
creates new paths from any ancestor u of v to any descendant of w; otherwise, it
is simply added to the graph. In the former case, Desc[u] is expanded using the
information in Desc[w]. The deletion of an edge e = (i, j ) is done as follows. The
edge e must be deleted from every tree Desc[u] to which it belongs. Because of
the deletion of e, the tree Desc[u] breaks into two subtrees and it is updated as
follows. If there exists an edge (x, j ) such that the u-x path in Desc[u] does not
contain e, then reconstruct Desc[u] by joining the two subtrees using the edge
(x, j ). In this case, x is called the hook of j . Otherwise, j is not a descendant of u.
Therefore, j is deleted from Desc[u] and the same process is applied recursively
by deleting the outgoing edges of j in Desc[u]. A Boolean query for vertices i
and j is carried out in O(1) time, by checking Parent[i, j ]. The incremental
part of Ital-Opt requires O(n(m0 + m′)) time to process a sequence of m′ edge
insertions, while the decremental part requires O(nm0) time to process any
number of edge deletions. The latter bound depends heavily on the fact that
once a vertex x is considered as a hook for some vertex j , then it will never be
a hook for j in any subsequent edge deletions.

Based on Ital-Opt, Frigioni et al. [2001] developed a new algorithm called
Ital-Gen that can handle edge insertions and deletions in general digraphs.
In particular, it handles m′ edge insertions in O(n(m0 + m′)) time, while and it
handles any sequence of edge deletions in O(m2

0) worst-case time.
The main idea of Ital-Gen is that if every strongly connected component

(SCC) is replaced by a single vertex (called supervertex), then the resulting
graph G ′ is a DAG, whose transitive closure can be maintained using Ital-Opt.
For each SCC (supervertex) C, the algorithm maintains: (1) a graph repre-
senting C; (2) an array Parent of length n, where Parent[w] points to the edge
that connects C to its parent in Desc[w] (if such an edge does not exist, then
Parent[w] = Null); (3) a sparse certificate S of C, which is a sparse subgraph of
C such that if there exists a x- y path in C, then there also exists a x- y path in
S (and vice versa). In addition, the algorithm maintains an n × n matrix Index
such that Index(i, j ) is true iff there is an i- j path.

The insertion of an edge is done similarly to Ital-Opt. A query can be an-
swered in O(1) time by checking the Index matrix. The deletion of an edge
e = (u, w) is done as follows. If e belongs to a SCC C, then check whether e
belongs to the sparse certificate S of C. If it does not, then nothing is done.
Otherwise, check whether C has broken and, in such a case, the new SCCs are
computed and the data structures are updated accordingly. If e does not belong
to a SCC, then Ital-Opt is used to remove it.

In Frigioni et al. [2001], it is also described how both Ital-Opt and Ital-Gen
can be modified so that they can be used in a fully dynamic environment (to
handle mixed sequences of edge insertions and deletions). The modification for
Ital-Opt is based on a lazy updating of the hook values during edge insertions.
The modification for Ital-Gen is based on the modified Ital-Opt and on the fact
that instead of recomputing SCCs, their sparse certificates, and G ′, before any

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



1.6:6 • I. Krommidas and C. Zaroliagis

sequence of edge deletions, SCCs are merged to supervertices as soon as they
are created.

2.2 The Algorithm of King and Its Variants

King’s [1999] algorithm uses forests of BFS trees. An Out (resp. In) BFS tree
of depth d rooted at vertex r is a data structure, which maintains vertices
reachable from (resp. reaching) r, and whose distance from r is less than or
equal to d . Maintenance of this data structure for any sequence of edge deletions
can be done in O(m0d ) time. The algorithm maintains k = �log2 n� forests F 1,
F 2, . . . , F k , where each F i contains a pair of BFS trees Ini

u and Outi
u of depth

d = 2 rooted at every vertex u ∈ V . In addition, a number k+1 of n×n matrices
counti, i = 0, 1, . . . , k, and a number k of n × n matrices listi, i = 1, . . . , k, are
maintained. Matrix listi(u, w) contains all vertices z, such that u ∈ Ini

z and w ∈
Outi

z and counti(u, w) is the number of these vertices. Matrix count0 is defined
as follows. If (x, y) ∈ E, then count0(x, y) = 1, otherwise count0(x, y) = 0.

The BFS trees of the forest F 1 are constructed for the graph G. The BFS
trees of the forest F i, i > 1, are constructed for the graph Gi = (V , Ei), where
Ei is defined as follows: Ei = {(x, y) : counti−1(x, y) > 0}. The main idea of
this algorithm is that if there exists a path L between two vertices u, w and the
length of L is less than or equal to 2 j , then count j (u, w) > 0.

The deletion of an edge e (or of a set of edges) is done as follows. The edge e is
removed from any BFS tree of forest F 1 it belongs to and the matrices count1 and
list1 are updated accordingly. Subsequently, the pairs of vertices x, y , such that
count1(x, y) became 0, are removed from the BFS trees of forest F 2. This process
is repeated for all 2 ≤ i ≤ k, until the matrices countk and listk are updated.
The insertion of an edge (or a set of edges) incident to a vertex u is done as
follows. The trees In1

u, Out1
u are built from scratch and count1, list1 are updated

accordingly. BFS trees Ini
u and Outi

u, i = 2, . . . , k are then built from scratch,
and matrices counti and listi are updated. Each update operation is handled in
O(n2kd ) = O(n2 log n) amortized time. Boolean queries are answered in O(1)
time by checking countk .

King and Thorup [2001] proposed a space saving-version of this algorithm.
Graphs Gi = (V , Ei) are maintained using incidence matrices and BFS trees
are built using these matrices. Specifically, if (u, w) ∈ Ei, then M (u, w) = 1,
otherwise M (u, w) = 0 (M is the incidence matrix representing Gi). However,
the maintenance of a BFS tree for any sequence of edge deletions now costs
O(n2d ) time, which is amortized across the edge deletions (and across all trees)
and does not affect the amortized update bound. We shall refer to the imple-
mentation of this algorithm as King-1.

In addition, we have implemented a variant of this algorithm, called King-2.
The idea is to maintain BFS trees of depth d > 2. In this case, the number of nec-
essary forests is reduced from �log2 n� to �logd n� and we wanted to investigate
whether the reduction of forests affects performance. In King-2, we considered
d = 8, which reduces the number of forests by 2/3. The asymptotic complexity
of the update operations is the same with those of King-1. Furthermore, we
have implemented another variant, called King-3, that maintains BFS trees of

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



An Experimental Study of Algorithms for Fully Dynamic Transitive Closure • 1.6:7

depth D, where D is the diameter of the graph and, therefore, requires only
one forest of BFS trees.

2.3 The Algorithms of Roditty and Zwick

2.3.1 The Algorithms in [Roditty and Zwick 2002] and Their Extensions.
Roditty and Zwick [2002] proposed in a randomized (Las Vegas) decremental
algorithm for maintaining the transitive closure of a graph. The algorithm is
a combination of the decremental part of Ital-Gen in Frigioni et al. [2001]
with a new decremental algorithm for maintaining the SCCs of a digraph that
also presented in Roditty and Zwick [2002]. The crucial observation is that the
decremental part of Ital-Gen requires O(nm0) time to handle any sequence of
edge deletions, if it does not perform any computations to determine whether
a SCC has broken. This part in the Ital-Gen algorithm is now handled by
the new algorithm in Roditty and Zwick [2002] for maintaining the SCCs in a
decremental environment. Since this algorithm also requires O(nm0) time, the
total running time of the decremental algorithm for maintaining the transitive
closure for any sequence of edge deletions is O(nm0).

The algorithm for maintaining the SCCs works as follows. During initializa-
tion, the SCCs of the graph are computed and in each SCC Cj an In-BFS tree
In(wj ) and an Out-BFS tree Out(wj ) rooted at wj is initialized, where wj is a
random vertex belonging to Cj and called the random representative of Cj . In
addition, an array A of length n is initialized such that A(u) = w for every ver-
tex u, where w is the random representative of the SCC containing u. Deletion
of an edge (x, y) is done as follows. If x and y belong to different SCCs, then
nothing is done. Otherwise, let C be the SCC containing x and y . The BFS trees
of C are updated accordingly and, in order to determine whether C has broken,
it suffices to check whether x ∈ In(w) and y ∈ Out(w), where w = A(x) = A( y).
If C has broken, the new SCCs to which C breaks are computed and new BFS
trees are constructed, except for the new SCC C′, which contains w and inherits
the BFS trees rooted at w.

The decremental transitive closure algorithm of Roditty and Zwick can han-
dle only edge deletions. We have modified this algorithm so it can handle both
edge insertions and deletions, without affecting the performance of the algo-
rithm when it handles edge deletions. Specifically, edge deletions are processed
as in the “original” algorithm and an edge insertion is handled as follows. If the
new edge connects two different SCCs, then the incremental part of Ital-Gen
is used to update the data structures used. If a new SCC C is created (because
of the merge of two or more SCCs), then an In-BFS tree and an Out-BFS tree
for C are initialized, apart from the other tasks performed by the algorithm.
On the other hand, if the new edge belongs to a SCC, then the BFS trees of that
SCC are updated as we describe below. We shall refer to the above pseudo fully
dynamic algorithm that can work in a fully dynamic environment as RZ-Opt.
Note that RZ-Opt handles any sequence of edge deletions in O(nm0) time and
handles m′ edge insertions in O(m′(n+m0 +m′)) time. Consequently, we expect
that RZ-Opt would be more efficient than Ital-Gen in handling edge deletions
and Ital-Gen would be more efficient in handling edge insertions.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



1.6:8 • I. Krommidas and C. Zaroliagis

The update of an Out-BFS tree as a result of the insertion of an edge (x, y)
is done as follows. Let depth(x) be the depth of vertex x in the BFS tree. If
depth( y) > depth(x) + 1, then, because of the insertion of (x, y), x becomes
parent of y and we set depth( y) = depth(x) + 1. We then, proceed recursively
by examining all outgoing edges of y to check if other vertices are affected. This
process requires O(n + m0 + m′) worst-case time. The update of an In-BFS tree
is done in a similar way. Consequently, in a sequence of m′ edge insertions, up
to 2m′ trees may have to be updated, yielding an O(m′(n+m0 +m′)) worst-case
cost. A boolean query is answered by checking the Index matrix.

A final remark regarding the algorithm for maintaining the SCCs. When a
SCC C breaks, then the new SCC C′, which contains the random representative
w of C, inherits the BFS trees rooted at w. The vertices of the trees, which do not
belong to C′, are chopped from the trees, so the trees do not have to be built from
scratch. In our implementation of RZ-Opt, these trees are built from scratch.
Therefore, RZ-Opt may spend more than O(nm0) time to handle a sequence of
m′ edge deletions. Despite this fact, however, RZ-Opt proved to be competitive
to the fastest algorithms implemented by Frigioni et al. [2001] and for random
inputs RZ-Opt was the fastest algorithm.

We now turn to the combinatorial fully dynamic algorithm in Roditty and
Zwick [2002]. In its initialization phase, a decremental data structure for main-
taining the transitive closure is initialized. This data structure can be main-
tained using RZ-Opt (or Ital-Gen). The insertion of an edge (or a set of edges)
incident to a vertex u is done as follows. Vertex u is added to a set S of ver-
tices and an ancestor (resp. descendant) tree In(u) (resp. Out(u)) rooted at u is
built. If the size of S becomes equal to a predetermined parameter t (t = √

n in
Roditty and Zwick [2002] and in our implementation), then all data structures
are reinitialized. The deletion of a set E ′ of edges is done as follows. First, every
e ∈ E ′ is removed from the decremental data structure. Then, for every w ∈ S,
the trees In(w) and Out(w) are rebuilt. A query for an u-w path is computed
as follows. First the decremental data structure is queried and if the answer
is yes, then there exists a u-w path in G. If the answer is no and if a vertex z
exists such that u ∈ In(z) and w ∈ Out(z), then again a u-w path exists in G.
Otherwise, there is no u-w path. We shall refer to the implementation of this
algorithm as RZ-1.

2.3.2 The Algorithm of [Roditty 2003]. The recent fully dynamic algorithm
proposed by Roditty [2003] is inspired by the algorithm of King [1999]. It uses
a decremental data structure for maintaining paths composed of “old” edges
(edges belonging to the initial graph) and an algorithm for maintaining a forest
of in- (ancestor trees) and out-trees (descendant trees) around each insertion
center (i.e., the vertex incident to the current set of edge insertions). Boolean
queries are answered in O(1) time using an n × n matrix count, such that each
entry count(x, y) equals the number of insertion centers that lie on a path from
x to y .

An out-tree (in-tree) around a vertex u maintains the so-called blocks with
respect to u that are reachable from (reach) u. Two vertices x, y belong to the
same block with respect to u, if x and y belong to the same SCC after the last edge

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



An Experimental Study of Algorithms for Fully Dynamic Transitive Closure • 1.6:9

insertion centered at u and after every subsequent delete operation. Generally,
blocks change over time, because the insertion of a set of edges incident to a
vertex u, may change the blocks with respect to u, while an edge deletion may
change every block that exists so far. For example, if there exists a path between
two vertices u and v, then there exists a vertex x such that the block, which
contains u with respect to x, belongs to the in-tree of x, and the block, which
contains v with respect to x, belongs to the out-tree of x. This occurs when there
exists a path that contains at least one edge, which did not belong to the initial
graph.

The main idea of this algorithm is that all in- and out-trees can be main-
tained implicitly using a single adjacency matrix M of size O(n2). This matrix
is constructed in O(n2) time and it is updated after each edge deletion or inser-
tion in O(n2) time. The algorithm has total running time O(nm0 +n2m′), where
m′ is the number of edge insertions and edge deletions performed.

In our implementation, we have used RZ-Opt as the decremental structure
for the above algorithm, because it has been the fastest algorithm in handling
edge deletions in general digraphs. We shall refer to the implementation of this
algorithm as Rod.

Our experiments revealed that this algorithm spends a significant amount
of time in building the adjacency matrix M (M is built from scratch at every up-
date operation). The algorithm must maintain entries M (v, x) = minw M (v, w),
where v is a vertex, x is a block, and w is a vertex (or a block) belonging to
x. The value of each entry M (v, x) in Rod is computed using a for loop across
all entries. Since these values are nonnegative, we can exit the loop as soon
as a zero entry is found. We have generated a variant of the algorithm, called
Rod-Opt, based on this fact, to see whether it affects performance.

2.3.3 The Algorithm of [Roditty and Zwick 2004]. The very recent algo-
rithm of Roditty and Zwick [2004] is a combination of a new persistent dynamic
algorithm for maintaining the SCCs of a graph with a new decremental algo-
rithm for maintaining reachability trees presented in Roditty and Zwick [2004].

The persistent algorithm for strong connectivity works as follows. During the
insertion of an edge (or of a set of edges incident to a vertex), a new version of the
graph is created. The algorithm maintains all versions of the graph and each one
of them, once created, is not affected by any edge insertion. On the other hand,
each edge deletion applies to all versions of the graph. Each SCC of version i of
the graph (created by the ith insert operation) is either a SCC of version i − 1
or a union of SCCs of version i − 1. As a result, the SCCs of all versions of the
graph can be maintained as a forest, where each SCC is represented by a node
and the parent of each SCC is the smallest SCC that contains it. The edge set
of the graph is partitioned into t + 1 edge sets Hi (i = 1, . . . , t + 1). If an edge e
connects two different SCCs in the current version of the graph, then e ∈ Ht+1.
Otherwise, e ∈ Hj , where j is the version of the graph at which e became an
internal edge of some SCC. When an edge insertion occurs, it suffices to use the
edge set Ht+1 to check whether new SCCs are formed (and to compute them).
In order to achieve this, a Union-Find algorithm is used, which can efficiently
merge SCCs by representing them as sets of vertices and return the SCC to

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



1.6:10 • I. Krommidas and C. Zaroliagis

which a vertex belongs. Using the Union-Find algorithm, an edge set H ′ from
Ht+1 can be constructed in O(mα(m, n)) worst-case time (m = m0 + m′), where
each endpoint of an edge e corresponds to a SCC, and then compute the SCCs
of the graph with edge set H ′. Roditty and Zwick [2004] use this algorithm
in a very clever way in order to maintain a reachability tree in a decremental
environment (see Roditty and Zwick [2004] for the details) at a total cost of
(m + n log n).

The fully dynamic algorithm for maintaining the transitive closure main-
tains a pair of reachability trees Inu, Outu for each vertex u ∈ V . The reach-
ability tree Outu (resp. Inu) maintains SCCs reachable from (resp. reaching)
u. When a set of edges, incident to a vertex u, is inserted into the graph G, a
new version Gu of the graph is created, and the trees Inu, Outu are built from
scratch. Each pair of trees Inu, Outu is maintained with respect to Gu. Each ver-
sion Gu undergoes only edge deletions and is replaced by a new version when
another edge insertion around vertex u occurs. When an edge deletion occurs,
the forest of SCCs is updated using the persistent algorithm for strong connec-
tivity. If a SCC C contained in a reachability tree breaks, then C is replaced
by the SCCs to which it breaks, and the algorithm checks whether these SCCs
can be connected to the tree. The algorithm handles each update operation in
O(m + n log n) amortized time. A boolean query (u, v) is answered in O(n) time
by checking for each vertex w whether u ∈ Inw and v ∈ Outw. We refer to this
algorithm as RZ-P.

2.4 The Algorithm of Demetrescu and Italiano

The main idea of the algorithm of [Demetrescu and Italiano 2000, 2005] (see also
[Demetrescu 2001]) is to reduce the transitive closure problem to the problem
of maintaining polynomials over matrices subject to updates of their variables.
The algorithm takes advantage of the following equivalence: If G is a directed
graph and X G is its adjacency matrix, then computing the Kleene closure X ∗

G
of X G is equivalent to computing the transitive closure of G.

Let X a
b denote a Boolean matrix. The basic data structure (we shall refer to

it as Struct1) used by the algorithm maintains polynomials P over such matri-
ces of degree 2, i.e., P is of the form P = ∑h

i=1 X i
1 · X i

2. This structure (after
an initialization phase that takes O(hnω + hn2) time, ω is the exponent of ma-
trix multiplication) is able to maintain P efficiently when a Boolean matrix X a

b
is changed. This is done by maintaining integer matrices Proda, a = 1, . . . , h,
where each Proda maintains a “lazy” count of the number of witnesses of the
product X a

1 · X a
2 . More specifically, if X a

1[x, y] = X a
2[ y , z] = 1, then y is a

witness of pair (x, z), i.e., Proda[x, z] = | y : {X a
1[x, y] = X a

2[ y , z] = 1}|. The
operations supported are SetRow, SetCol, LazySet, Reset. Each of these oper-
ations updates P after a matrix X a

b has changed. SetRow / SetCol updates P
when some entries of a specific row / column of X a

b flip to 1. Reset updates P
when any entries of X a

b have flipped to 0. LazySet updates P lazily when any
entries of X a

b have flipped to 1. This is done, by updating X a
b but not P , which

could be updated by subsequent SetRow/SetCol operations. P is maintained
correctly under a sequence of these operations, if no LazySet operations are

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



An Experimental Study of Algorithms for Fully Dynamic Transitive Closure • 1.6:11

performed. If a LazySet is performed, then some entries of P , which should
be set to 1, could remain 0. The operations SetRow, SetCol, LazySet require
O(n2) time (worst case) and Reset requires O(n2) amortized time. If only Reset
operations are allowed, then the amortized cost of Reset is O(n). Struct1 uses
O(hn2) space.

Polynomials Pk of degree k > 2 can be maintained by using Struct1, because
each Pk can be represented by a sum of O(k2) polynomials of degree 2. The
structure which maintains Pk , supports the operations SetRow, SetCol, Lazy-
Set, Reset. These operations are similar to those supported by the basic data
structure.

If G is a directed graph, X its adjacency matrix, X ∗ the Kleene closure of
X , then X ∗ can be defined as follows (n is the number of nodes of the graph,
and also the size of X , X ∗). Let A, B, C, D be submatrices (of size n

2 × n
2 ) of X

and E, F, G, H be submatrices (of size n
2 × n

2 ) of X ∗. Then X ∗ can be computed
recursively by using the following equations [Demetrescu and Italiano 2000,
2005; Demetrescu 2001]:

P = D∗ E1 = Q∗ H2 = R∗

Q = A + BP2C E2 = E1 BH2
2 CE1 E = E1 + E2

F1 = E2
1 BP F2 = E1 BH2

2 F = F1 + F2

G1 = PCE2
1 G2 = H2

2 CE1 G = G1 + G2

H1 = PCE2
1 BP R = D + CE2

1 B H = H1 + H2

Thus, it suffices to maintain the polynomials Q , E2, F1, F2, G1, G2, H1,
R, E, F, G, H and the closure matrices P, E1, H2 of size n

2 × n
2 . Each such closure

matrix of size n
2 × n

2 is maintained recursively by 12 polynomials and 3 closures
of size n

4 × n
4 , and so on. When an edge insertion or deletion occurs, the transitive

closure information is updated by properly updating the 12 polynomials and the
3 matrix closures of size n

2 × n
2 (each matrix closure is updated recursively). In

this way, the algorithm can handle insertion of a set of edges around a vertex u
(such an insertion is called a u−centered insertion) and deletion of an arbitrary
set of edges. Each update operation requires O(n2) amortized time. However, if
only edge deletions are performed, then each operation requires O(n) amortized
time. Boolean queries can be answered in O(1) time.

In our implementation, which we refer to as DI, we have not used matrix mul-
tiplication. However, this affects only the initialization time of the algorithm,
because in update operations matrix multiplication is not used.

2.5 Simple-Minded Algorithms

Frigioni et al. [2001] developed three simple-minded algorithms for maintaining
the transitive closure, which are based on graph-searching algorithms. These
simple algorithms maintain no information about the transitive closure. When
an insertion or deletion occurs, then the particular edge is simply added or
removed from G, resulting in a O(1) time update operation. Queries are an-
swered in O(n + m) worst-case time by applying some graph-searching algo-
rithm, starting from the source vertex and terminating the algorithm as soon
as the the target vertex is found or the graph is exhausted. The graph-searching

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



1.6:12 • I. Krommidas and C. Zaroliagis

Fig. 1. Algorithms considered. Amortized bounds for m′ = �(m) edge insertions/
deletions. D denotes the diameter of the graph. (†) Pseudo fully dynamic algorithms.

algorithms used were BFS, DFS, and DBFS (vertices are visited in DFS order, but
every time a vertex is visited, we check whether the target vertex is any of its
adjacent ones).

2.6 Summary

The theoretical time and space bounds of all algorithms and their variants
considered in our study are summarized in Figure 1. Recall that m = m0 + m′.

3. EXPERIMENTAL RESULTS

For our experimental study we used the experimental platform developed
by Frigioni et al. [2001]. We implemented each algorithm as a C++ class us-
ing LEDA [Mehlhorn and Näher 1999]. Each class inherits from a common
base class for dynamic graph algorithms developed by Alberts et al. [1998].
We used the correctness checking program developed in [Frigioni et al. 2001]
and verified the correctness of our implementations. The source code is avail-
able from http://www.ceid.upatras.gr/faculty/zaro/software/. The exper-
iments were run on three different computing environments; namely, (1) a Sun
UltraSparc II (USparc-II) with 4 processors at 300 MHz, Solaris 7 operating
system, 1.2 GB of main memory, and 2-MB L2 cache per processor; (2) an Intel
Pentium 4 (P4) at 1.6 GHz, with linux SUSE 7.3 operating system, 512 MB of

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



An Experimental Study of Algorithms for Fully Dynamic Transitive Closure • 1.6:13

main memory, and 512 KB L2 cache; and (3) an AMD Athlon at 1.9 GHz, with
linux Mandrake 10 operating system, 512 MB of main memory, and 256-KB L2
cache. We used this variety of computing environments to investigate whether
it affects the relative performance of algorithms, especially regarding memory
accesses and cache effects, since all algorithms require �(n2) space.

In all experiments conducted, we did not observe any substantial differ-
ence in the relative performance of the implementations (the experiments on
USparc-II were run on a single processor). The same applies for the simulation
of cache misses with Valgrind [2006]. For that reason, we will mostly report ex-
periments run on P4. We only mention that RZ-P (as expected) was, by far, the
most memory-demanding algorithm, and after a certain point its performance
is dominated by the swaps executed between main and secondary memory. Be-
cause of this fact, we were practically unable to run large input instances (e.g.,
graphs with more than 800 vertices) on P4 and Athlon.

We performed experiments on three classes of inputs: (a) random, involv-
ing random sequences of update and query operations performed on random
digraphs; (b) synthetic, which are worst-case inputs for the fully dynamic al-
gorithms involving specific sequences of bad update patterns; and (c) those
motivated by real-world graphs.

In the following, and for the case of simple-minded algorithms, we report
results only with the fastest of them in the particular class of inputs.

3.1 Random Inputs

We performed our tests on random digraphs with n ∈ [100, 700] vertices and
several values on the initial number of edges m0. For these values of n and m0,
we considered various lengths of operation sequences |σ | ∈ [500, 50,000]. We
generated a large collection of data sets, each consisting of five to ten samples,
and corresponded to a fixed value of graph parameters and |σ |. The reported val-
ues are the average CPU time, over the samples, required to process the whole
sequence of operations. The random sequence of operations consisted of update
operations (insertions/deletions) and queries (Boolean). As it is customary with
similar studies (e.g., Demetrescu et al. [2004]; Demetrescu and Italiano [2006];
Frigioni et al. [2001]), we considered an on-line environment with no prediction
of the future and where queries and updates are equally likely. In particular, we
considered two types of patterns: uniformly mixed queries and updates (each
occurring with probability 1/2, where an update can equally likely be an inser-
tion or deletion), and uniformly mixed insertions, deletions, and queries (each
such operation occurs with probability 1/3). Since we are dealing with random
graphs, it is important to recall some of their structural properties, which de-
pend on the edge density [Bollobas 1985]. If a random (di)graph has more than
n ln n edges, then it is with high probability (w.h.p) (strongly) connected. If its
number of edges is below n ln n and above n, then the graph has a giant com-
ponent of size �(n) and several small components, the largest of which has size
O(ln n). When the number of edges is about n, then the giant component has size
�(n2/3), while when the number of edges drops below n, then the largest com-
ponent has size O(ln n). Moreover, the diameter of a random (di)graph ranges

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



1.6:14 • I. Krommidas and C. Zaroliagis

0.001

0.01

0.1

1

10

100

1000

400 600 800 1000 1200 1400 1600

T
im

e 
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

Rod
Rod-Opt

RZ-1
RZ-P

King-1
King-2
King-3

DI

0.01

0.1

1

10

100

1000

1000 1500 2000 2500 3000 3500 4000 4500

T
im

e 
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

Rod
Rod-Opt

RZ-1
RZ-P

Fig. 2. Random digraphs. Experiments on P4. Left: n = 150, |σ | = 1000 (50% queries), all algo-
rithms; right: n = 300, |σ | = 5000 (50% queries). DI and King’s algorithms are excluded. Time is
shown in logarithmic scale.

0

5

10

15

20

25

30

1000 1500 2000 2500 3000 3500 4000 4500

T
im

e 
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

RZ-1
RZ-P

0

100

200

300

400

500

600

700

5000 10000 15000 20000 25000 30000

T
im

e 
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

RZ-1
RZ-P

Fig. 3. Random digraphs with n = 300. Experiments run on P4. Left: |σ | = 5000 (33% queries);
right: |σ | = 30000 (33% queries).

w.h.p. from constant (dense graphs) to O(log n) (sparse graphs) [Bollobas 1985;
Reif and Spirakis 1992].

Our experiments revealed that Demetrescu and Italiano’s algorithm, King’s
algorithm, and its variants were by far the slowest, followed by Rod and Rod-Opt,
even for small input instances and moderate operation sequences with 50%
of queries (which is in favor of these algorithms, as a query is a O(1) time
operation). Figure 2 precisely demonstrates this behavior. The other algorithms
are put there only to give a flavor of comparison. Their precise performance will
be discussed later with the help of Figures 3 and 4.

The bad behavior of King-1, King-2, King-3, Rod, and Rod-Opt can be ex-
plained by the fact that they maintain incidence matrices. This slows down
the construction and the update of the trees maintained, since they require
quadratic time regardless of the edge density. The cost of traversing the outgo-
ing edges of a vertex v now requires O(n), instead of O(out-degree(v)), time and,
as a result the construction of a depth 2 tree, with O(n) nodes at depth 1, re-
quires O(n2) time, because one must traverse the outgoing edges of O(n) nodes.
In addition, these algorithms maintain a matrix count, such that count(x, y)

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



An Experimental Study of Algorithms for Fully Dynamic Transitive Closure • 1.6:15

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e 
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

0

5

10

15

20

25

30

35

40

45

0 10000 20000 30000 40000 50000 60000 70000

T
im

e 
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

Fig. 4. Random digraphs with n = 700. Experiments run on P4. Left: |σ | = 5000 (33% queries);
right: |σ | = 50000 (33% queries).

equals the number of insertion centers that lie on a path from x to y (King-1
and King-2 maintain more than one such matrices). The maintenance of these
matrices turns out to be costly. Among the variants of King’s algorithm, we ob-
serve that King-3 is almost always the fastest. This could be explained by the
fact that the number of trees it maintains is smaller than those of King-1 and
King-2. When the graph becomes very sparse, however, King-3 is slower than
the other two, because of the overhead of maintaining a BFS tree for the large
component. The right chart of Figure 2, in which DI and King’s algorithms are
excluded, shows the difference between Rod and Rod-Opt. The latter is from 1.5
(50% queries) to 2 (33% queries) times faster than the original because of the
heuristic of aborting the loop as soon as a zero M (v, w) entry has been found.

We now turn to DI. One possible explanation for the bad performance of DI is
that it maintains a large number of polynomials of degree k > 2. Each such poly-
nomial is maintained by O(k2) polynomials of degree 2 and the update of such
a degree 2 polynomial requires O(n2) time. Moreover, the algorithm maintains
3 closure matrices of size n

2 × n
2 , each of which is maintained recursively with

12 polynomials and 3 closure matrices of size n
4 × n

4 , and so on. However, this
recursive maintenance turns out to be inefficient, because DI becomes slower
as the recursion depth increases. Even in the case where no recursion has been
used, as in Figure 2, DI was also slow. On the other hand, DI (as expected) is
faster than King’s algorithm and its variants, because it manages to exhibit a
better locality of reference. Indeed, simulation of cache misses with Valgrind
revealed that the cache behavior of DI is dramatically (about 50 to 100 times)
better than King’s algorithm and its variants. Actually, DI has the smallest ratio
of cache misses w.r.t. any algorithm in our study (even w.r.t. the simple-minded
ones). However, its performance degrades, since it requires a vast number of
main memory accesses to maintain the matrices.

The comparison of the rest of the algorithms is shown better in the exper-
iments reported in Figure 3. Algorithms DBFS, Ital-Gen, and RZ-Opt clearly
outperform RZ-1 and RZ-P. These two latter algorithms, although faster than
those of King and Roditty, have execution times that are significantly larger
than those of the simple-minded or pseudo fully dynamic algorithms. RZ-P is

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



1.6:16 • I. Krommidas and C. Zaroliagis

0

100

200

300

400

500

600

700

5000 10000 15000 20000 25000 30000

T
im

e 
(s

ec
)

Edges

Overall time
Deletion time

0

50

100

150

200

250

300

350

400

1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e 
(s

ec
)

Edges

Splits
Merges

Fig. 5. Experiments with random digraphs on P4. Left: deletion time vs overall time of RZ-P for
n = 300 and |σ | = 30,000 (33% queries); right: splits and merges of SCCs in RZ-Opt and Ital-Gen

for n = 700 and |σ | = 5000 (33% queries).

penalized by its larger query time, by its large memory demand after a cer-
tain point (see the right chart of Figure 3), and most importantly, by the cost
of maintaining the forest of SCCs across all versions of the graph, which is
rather expensive during deletions. Figure 5(left) demonstrates precisely this
latter fact, as RZ-P spends almost all of its time in handling edge deletions.
RZ-1 is faster than RZ-P because of its smaller query time and the fact that it
uses RZ-Opt to handle edge deletions. Its main drawback, however w.r.t. DBFS,
Ital-Gen, and RZ-Opt, seems to be the fact that its decremental data structure
(i.e., RZ-Opt) must be rebuilt from scratch following each sequence of a relatively
small (

√
n) number of operations.

We now turn to the three faster implementations DBFS, Ital-Gen, and RZ-Opt.
Figure 4 illustrates their performance. Similar results were reported for other
sizes of the operation sequence and different percentage of queries. We observe
that when the graph is relatively sparse (less than n ln n edges), DBFS is the
fastest algorithm. For denser graphs with more than n ln n edges, RZ-Opt is
considerably faster, since, in this case, the digraph is almost surely strongly
connected. The differences between the performance of Ital-Gen and RZ-Opt,
in this case, can be explained by how they handle edge insertions and deletions,
in SCCs. Ital-Gen is not efficient in handling edge deletions because if an edge
is removed from a SCC, then it may spend O(n+ m) time to determine whether
that SCC has broken. Moreover, even if the SCC does not break, it may still need
to rebuild the sparse certificate of the SCC and this is independent of the edge
density of the graph, a fact that consequently applies to the total edge deletion
time, as Figure 6(left) illustrates. This claim is also confirmed with the support
of Figure 5(right): although the number of SCCs that split decreases, the total
deletion time is practically unaffected. On the other hand, RZ-Opt is not effi-
cient in handling edge insertions, because if a new edge is created in a SCC,
then the algorithm may spend O(n + m) time to update the BFS trees it main-
tains. However, this slows down the performance of the algorithm only in the
case where the graph is sparse. When the edge density increases, RZ-Opt per-
forms better, since the BFS trees have small depth because of the fact that the
diameter of the graph decreases. This is precisely reported in Figure 6(right),

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



An Experimental Study of Algorithms for Fully Dynamic Transitive Closure • 1.6:17

0

0.5

1

1.5

2

2.5

3

3.5

1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e 
(s

ec
)

Edges

Overall time
Deletion time

0

1

2

3

4

5

6

1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e 
(s

ec
)

Edges

Overall time
Deletion time

Fig. 6. Random digraphs with n = 700 and |σ | = 5000 (33% queries). Experiments on P4. Dele-
tion time versus overall time (their difference is practically the insertion time, since queries take
negligible time). Left: Ital-Gen; right: RZ-Opt.

where initially (sparse edge density) the time for edge insertion is a fair por-
tion of the overall time; however, as the edge density increases, insertion time
gradually decreases, and the same applies to the overall time. The above sug-
gest that RZ-Opt is highly dominated by the merges and splits of SCCs, a fact
that can be easily confirmed by an inspection of the curves of Figure 5(right)
with the overall time curve of Figure 6(right). Consequently, in sparse graphs,
where many splits and merges of SCCs occur, both algorithms have more or
less the same performance, since they have to frequently reinitialize the data
structures maintaining the SCCs (either for insertion or deletion purposes).
As soon as the strong connectivity threshold (n ln n) is approached and/or sur-
passed RZ-Opt outperforms Ital-Gen, as it performs much less work mainly for
deletions.

3.2 Synthetic Inputs

We have considered and slightly modified the specific structured inputs intro-
duced by Frigioni et al. [2001], which enforce the dynamic algorithms to ex-
hibit their worst-case behavior. These graphs consist of a sequence of s = �n/k�
cliques C1, . . . , Cs, each of size k, interconnected with a set of “bridges.” A bridge
is a pair of directed edges connecting a node of Ci with a node of Ci+1, and vice
versa. Insertions and deletions are only performed on bridges and in a specific
order. In the case of edge insertions, first the bridge pair between C1 and C2 is
inserted (one edge of the pair at a time), the second bridge between Cs−1 and
Cs, the third between C2 and C3, and so on. Hence, the bridge inserted last will
provide new reachability and SCC information from roughly n/2 to the other
n/2 vertices of the graph. The reverse order is followed in the case of edge dele-
tions. The fully dynamic sequence consists of alternating subsequences of 2s−2
insertions and 2s − 2 deletions intermixed evenly with queries.

As with random inputs, DI, King’s algorithm, and its variants as well as
Rod and Rod-Opt were the worst and, hence, we do not report results for these
algorithms. From the pseudo fully dynamic algorithms, Ital-Gen was always
faster than RZ-Opt (because of the inefficient insertion procedure of the lat-
ter; see below) and, hence, we report results only with the former. Figure 7

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



1.6:18 • I. Krommidas and C. Zaroliagis

0

10

20

30

40

50

60

70

200 400 600 800 1000 1200 1400 1600

T
im

e 
(s

ec
)

Vertices

DFS
Ital-Gen

RZ-1
RZ-P

0

50

100

150

200

250

200 400 600 800 1000 1200 1400 1600

T
im

e 
(s

ec
)

Vertices

DFS
Ital-Gen

RZ-1
RZ-P

Fig. 7. Synthetic digraphs with |σ | = 1920 (33% queries). Experiments run on USparc-II. Left:
clique size 10; right: clique size 80.

illustrates the performance of the rest of the algorithms considered. Similar
results hold for smaller or larger operation sequences and different computing
environments; we report results on USparc-II (the machine with the largest
memory) to include large values of n. We observed that DFS was always the
fastest algorithm.

The performance of Ital-Gendeteriorates as the clique size k increases, since,
for large k, we get large SCCs whose maintenance becomes very costly because
of their splits and merges. Note that a split (resp. merge) of a SCC occurs every
two edge deletions (resp. insertions), and the algorithm must build the data
structures in those SCCs from scratch. On the other hand, RZ-1 and RZ-P per-
form better than Ital-Gen as the value of k increases, since they can better
handle the splits and merges of large SCCs. As an aside, the good performance
of RZ-1 indicates that RZ-Opt (which is used by RZ-1 for deleting edges) is worse
than Ital-Gen mainly as a result of the inefficient handling of edge insertions.
For RZ-P a large value of k implies a small number of insertion centers (tails of
edges inserted) and, consequently, a small number of versions of the graph that
the algorithm must maintain. In addition, the maintenance of the reachability
trees has a very low cost, since the algorithm has to check only the external to a
SCC edges, i.e., the bridges. However, RZ-P is slower than RZ-1 probably due to
the overhead caused by deletions, in order to maintain the forest of SCCs across
all versions of the graph. In conclusion, the fully dynamic algorithms demon-
strate their theoretical superiority by quickly learning the specific structure of
the synthetic graphs and benefiting substantially from it.

3.3 Real-World Inputs

Apart from random and synthetic inputs, we have run the algorithms on inputs
motivated by real-world graphs. The first graph we have used describes the con-
nections and policy strategies among the autonomous systems of a fragment of
the Internet visible from RIPE (www.ripe.net) [Bates et al. 1994], one of the
main European servers. The graph has 1259 vertices and 5101 edges and has
been also used in Frigioni et al. [2001], where (for the purpose of their study)
it has been converted to a DAG by changing the direction of a few edges. The

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



An Experimental Study of Algorithms for Fully Dynamic Transitive Closure • 1.6:19

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90

T
im

e 
(s

ec
)

% Queries

DBFS
Ital-Gen
RZ-Opt

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60 70 80 90

T
im

e 
(s

ec
)

% Queries

DBFS
Ital-Gen
RZ-Opt

Fig. 8. Experiments on P4. Left: RIPE fragment of Internet, |σ | = 15, 000; right: US road network,
|σ | = 5000.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

3500 4000 4500 5000 5500 6000 6500 7000

T
im

e 
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

0

10

20

30

40

50

60

35000 40000 45000 50000 55000 60000 65000

T
im

e 
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

Fig. 9. Deletions on random digraphs with n = 700. Experiments run on P4. Left: |σ | = 5000 (50%
queries); right: |σ | = 50,000 (50% queries).

second graph describes a US road network (ftp://edcftp.cr.usgs.gov). Such
graphs have been used in [Demetrescu et al. 2004; Demetrescu and Italiano
2006]. This specific graph has 576 vertices and 1762 edges. On these graphs,
we run random sequences of operations, similar to those used for random
digraphs.

We ran several experiments with various lengths of operation sequences and
observed no substantial differences in the behavior of the algorithms compared
with the experiments on random inputs. In addition, we performed experiments
with different percentage of queries in the operation sequence (from 10 to 90%).
These experiments may give useful suggestions on how to proceed if one knows
in advance the update-query pattern. Figure 8 illustrates the performance of the
fastest algorithms for fully dynamic sequences of 15,000 (left) and 5,000 (right)
operations. Since these graphs are relatively sparse, it needs more than 65% of
queries in order to beat the simple algorithms. The performance of RZ-Opt and
Ital-Gen are almost identical. This is because of the fact that: the first graph
is a DAG and both implementations perform almost identical tasks; the second
graph is sparse and, therefore, the two implementations have almost the same
performance (as explained in section 3.1).

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



1.6:20 • I. Krommidas and C. Zaroliagis

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000

T
im

e 
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

0

1

2

3

4

5

6

0 10000 20000 30000 40000 50000 60000 70000

T
im

e 
(s

ec
)

Edges

DBFS
Ital-Gen
RZ-Opt

Fig. 10. Insertions on random digraphs with n = 700. Experiments run on P4. Left: |σ | = 5000
(50% queries); right: |σ | = 50, 000 (50% queries).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

400 450 500 550 600 650 700 750 800

T
im

e 
(s

ec
)

Vertices

DFS
Ital-Gen
RZ-Opt

RZ-1
RZ-P

0

0.05

0.1

0.15

0.2

0.25

0.3

400 450 500 550 600 650 700 750 800

T
im

e 
(s

ec
)

Vertices

DFS
Ital-Gen
RZ-Opt

RZ-1
RZ-P

Fig. 11. Synthetic digraphs with |σ | = 160 (50% queries), clique size 10. Experiments run on P4.
Left: Deletionsl right: insertions.

3.4 Partially Dynamic Inputs

Although the focus of the paper is on fully dynamic algorithms and, thus, on
fully dynamic sequences of operations, we have also conducted experiments
on partially dynamic sequences. For random digraphs and in the case of decre-
mental sequences, RZ-Opt is the fastest algorithm, except for the case where the
initial graph is sparse (in this case DBFS is faster). Figure 9 illustrates this fact.
In the case of incremental sequences Ital-Gen is the fastest, followed closely
by RZ-Opt. Figure 10 illustrates this fact. The fully dynamic algorithms in both
decremental and incremental sequences are slower than any of DBFS, Ital-Gen,
and RZ-Opt.

In the case of synthetic digraphs, DFS is the fastest algorithm. Among the
rest, Ital-Gen and RZ-Opt are the best. Figure 11 illustrates this fact. Finally,
in the case of real-world digraphs, the results are similar to those of random
digraphs. This very good performance of pseudo dynamic algorithms is a result
of the fact that they are designed to handle efficiently only partial dynamic
sequences.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



An Experimental Study of Algorithms for Fully Dynamic Transitive Closure • 1.6:21

4. CONCLUSIONS

We have implemented some recent fully dynamic algorithms along with several
variants for maintaining the transitive closure in a digraph and compared them
experimentally with pseudo fully dynamic and simple-minded algorithms. Our
experimental study shows that fully dynamic algorithms perform very well on
structured inputs, although they cannot beat the simple ones. In unstructured
inputs, the pseudo fully dynamic algorithms are much better.

Regarding future work, it would be interesting to investigate the practicality
of the algorithms in King and Sagert [1999] and Roditty and Zwick [2002]
and the recent one in Sankowski [2004], as well as of a simpler version of the
algorithm in Demetrescu and Italiano [2000, 2005] discussed in Demetrescu
[2001].

ACKNOWLEDGMENTS

We are indebted to the anonymous referees for several valuable comments that
improved the presentation.

REFERENCES

ABDEDDAIM, S. 2000. Algorithms and experiments on transitive closure, path cover and multi-
ple sequence alignment. In Proc. 2nd Workshop on Algorithm Engineering and Experiments—
ALENEX 2000. 157–169.

ALBERTS, D., CATTANEO, G., AND ITALIANO, G. F. 1997. An empirical study of dynamic graph algo-
rithms. ACM Journal of Experimental Algorithmics 2, 5. Preliminary version in Proc. SODA’96.

ALBERTS, D., CATTANEO, G., ITALIANO, G., NANNI, U., AND ZAROLIAGIS, C. 1998. A software library of
dynamic graph algorithms. In Proc. Workshop on Algorithms and Experiments—ALEX’98. 129–
136.

AMATO, G., CATTANEO, G., AND ITALIANO, G. F. 1997. Experimental analysis of dynamic mini-
mum spanning tree algorithms. In Proc. 8th ACM-SIAM Symposium on Discrete Algorithms—
SODA’97. 314–323.

BATES, T., GERICH, E., JONCHERAY, L., JOUANIGOT, J.-M., KARRENBERG, D., TERPSTRA, M., AND YU, J. 1994.
Representation of ip routing policies in a routing registry. Tech. Rep. RIPE-181. (Oct.).

BOLLOBAS, B. 1985. Random Graphs. Academic Press, New York.
CATTANEO, G., FARUOLO, P., FERRARO-PETRILLO, U., AND ITALIANO, G. 2002 Maintaining dynamic min-

imum spanning trees: An experimental study. In Proc. 4th Workshop on Algorithm Engineering
and Experiments—ALENEX 2002.

DEMETRESCU, C. 2001. Fully dynamic algorithms for path problems on directed graphs. Ph.D.
thesis, Department of Computer and Systems Science, University of Rome “La Sapienza.”

DEMETRESCU, C. AND ITALIANO, G. F. 2000. Fully dynamic transitive closure: Breaking through
the o(n2) barrier. In Proc. 41st IEEE Symp. on Foundations of Computer Science—FOCS 2000.
381–389.

DEMETRESCU, C. AND ITALIANO, G. F. 2006. Experimental analysis of dynamic all pairs short-
est path algorithms. ACM Transactions on Algorithms 2, 4, 578–601. Special issue on SODA
2004.

DEMETRESCU, C., FRIGIONI, D., MARCHETTI-SPACCAMELA, A., AND NANNI, U. 2000. Maintaining shortest
paths in digraphs with arbitrary arc weights: An experimental study. In Algorithm Engineering—
WAE 2000. Lecture Notes in Computer Science, vol. 1982. Springer, New York. 218–229.

DEMETRESCU, C., EMILIOZZI, S., AND ITALIANO, G. F. 2004. Experimental analysis of dynamic all pairs
shortest path algorithms. In Proc. 15th ACM-SIAM Symp. on Discrete Algorithms—SODA 2004.
362–371.

DEMETRESCU, C. AND ITALIANO, G. 2005. Trade-offs for fully dynamic reachability: Breaking through
the o(n2) barrier. Journal of the ACM 52, 2, 147–156.

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.



1.6:22 • I. Krommidas and C. Zaroliagis

FRIGIONI, D., IOFFREDA, M., NANNI, U., AND PASQUALONE, G. 1998. Experimental analysis of dy-
namic algorithms for the single source shortest paths problem. ACM Journal of Experimental
Algorithmics 3, 5.

FRIGIONI, D., MILLER, T., NANNI, U., AND ZAROLIAGIS, C. 2001. An experimental study of dynamic
algorithms for transitive closure. ACM Journal of Experimental Algorithmics 6, 9.

HENZINGER, M. AND KING, V. 1995. Fully dynamic biconnectivity and transitive closure. In
Proc. 36th IEEE Symposium on Foundations of Computer Science—FOCS’95. 664–672.

ITALIANO, G. F. 1986. Amortized efficiency of a path retrieval data structure. Theoretical Computer
Science 48, 273–281.

ITALIANO, G. F. 1988. Finding paths and deleting edges in directed acyclic graphs. Information
Processing Letters 28, 5–11.

IYER, R., KARGER, D., RAHUL, H., AND THORUP, M. 2000. An experimental study of poly-logarithmic
fully-dynamic connectivity algorithms. In Proc. 2nd Workshop on Algorithm Engineering and
Experiments—ALENEX 2000. 59–78.

KING, V. 1999. Fully dynamic algorithms for maintaining all-pairs shortest paths and transi-
tive closure in digraphs. In Proc. 40th IEEE Symposium on Foundations of Computer Science—
FOCS’99. 81–91.

KING, V. AND SAGERT, G. 1999. A fully dynamic algorithm for maintaining the transitive closure.
In Proc. 31st ACM Symposium on Theory of Computing—STOC’99. 492–498.

KING, V. AND THORUP, M. 2001. A space saving trick for directed dynamic transitive closure and
shortest path algorithms. In Computation and Combinatorics—COCOON 2001. Lecture Notes
in Computer Science, vol. 2108. Springer, New York. 268–277.

KROMMIDAS, I. AND ZAROLIAGIS, C. 2005. An experimental study of algorithms for fully dynamic
transitive closure. In Algorithms—ESA 2005. Lecture Notes in Computer Science, vol. 3669.
Springer, 544–555.

MEHLHORN, K. AND NÄHER, S. 1999. LEDA: A Platform for Combinatorial and Geometric Comput-
ing. Cambridge University Press, Cambridge.

REIF, J. AND SPIRAKIS, P. 1992. Expected parallel time and sequential space complexity of graph
and digraph problems. Algorithmica 7, 597–630.

RODITTY, L. 2003. A faster and simpler fully dynamic transitive closure. In Proc. 14th ACM-SIAM
Symp. on Discrete Algorithms—SODA 2003. 404–412.

RODITTY, L. AND ZWICK, U. 2002. Improved dynamic reachability algorithms for directed graphs.
In Proc. 43rd IEEE Symposium on Foundations of Computer Science—FOCS 2002. 679–690.

RODITTY, L. AND ZWICK, U. 2004. A fully dynamic reachability algorithm for directed graphs with
an almost linear update time. In Proc. 36th ACM Symp. on Theory of Computing—STOC 2004.

SANKOWSKI, P. 2004. Dynamic transitive closure via dynamic matrix inverse. In Proc. 45th IEEE
Symposium on Foundations of Computer Science—FOCS 2004. 509–517.

VALGRIND. 2006. http://valgrind.kde.org/.
ZAROLIAGIS, C. 2002. Implementations and experimental studies of dynamic graph algorithms.

In Experimental Algorithmics. Springer, New York. Chapter 11, 229–278.

Received August 2006; revised July 2007; accepted July 2007

ACM Journal of Experimental Algorithmics, Vol. 12, Article No. 1.6, Publication date: June 2008.


