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We consider classical linear-time planar separator algorithms, determining for a given planar graph
a small subset of its nodes whose removal divides the graph into two components of similar size.
These algorithms are based on planar separator theorems, which guarantee separators of size
O(

√
n) and remaining components of size at most 2n/3 (where n denotes the number of nodes in the

graph). In this article, we present a comprehensive experimental study of the classical algorithms
applied to a large variety of graphs, where our main goal is to find separators that do not only
satisfy upper bounds, but also possess other desirable characteristics with respect to separator
size and component balance. We achieve this by investigating a number of specific alternatives
for the concrete implementation and fine-tuning of certain parts of the classical algorithms. It is
also shown that the choice of several parameters influences the separation quality considerably.
Moreover, we propose as planar separators the usage of fundamental cycles, whose size is at most
twice the diameter of the graph: For graphs of small diameter, the guaranteed bound is better than
the O(

√
n) bounds, and it turns out that this simple strategy almost always outperforms the other

algorithms, even for graphs with large diameter.
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1. INTRODUCTION

Finding node separators in planar graphs is a fundamental and well-studied
problem with several applications, the most prominent of which is its em-
ployment in divide-and-conquer approaches (see, e.g., Alber et al. [2003],
Frederickson [1987], Goodrich [1995], Henzinger et al. [1997], and Lipton and
Tarjan [1980]). An interesting analogy to the divide-and-conquer paradigm from
the realm of molecular biology is protein folding, which is the process of polypep-
tides (i.e., linear chains of amino acids) transforming themselves into 3D struc-
tures. In a recent paper [Ozkan et al. 2007], it is suggested that this folding
takes place as a zipping-and-assembly process, where zipping denotes grow-
ing of local substructures within the polypeptide, and the assembly part refers
to interaction between these substructures. This physical model has, in turn,
led to more efficient algorithms for computing the stereometric structure of
proteins by determining certain folding points, which are used to split up the
given instance.

1.1 Problem and History

Investigation of the problem started with the pioneering work of Lipton and
Tarjan [1979], who introduced the so-called Planar Separator Theorem, stating
that for every planar graph with n ≥ 5 nodes there is a subset of its nodes—
called (node) separator—of size at most

√
8n ≈ 2.83

√
n whose removal sepa-

rates the graph into two components of size smaller than 2n/3. The proof of
this theorem is constructive in the sense that an algorithm can be derived from
it fairly easily, which can be implemented to run in linear time. Djidjev [1982]
improved the upper bound on separator size to

√
6n ≈ 2.45

√
n, paralleled by a

refinement of Lipton and Tarjan’s algorithm; he also proved a lower bound of
1.56

√
n, which is still the best known.

Both these classical algorithms proceed in two stages, where they share the
second one. The first, or simple, stage of each algorithm tries to determine a
separator that meets the given bounds, induced by one or two levels of nodes
of a breadth-first search (BFS) tree. If this is not possible, the algorithms enter
the second, or complex, stage, which determines an appropriate fundamental
cycle in a planar graph that contributes to the sought separator.

Since then, a lot of generalizations and extensions have been made. The up-
per bound on separator size has been improved by Alon et al. [1994] to 2.13

√
n,

and by Djidjev and Venkatesan [1997] to the currently best known bound of
1.97

√
n—where the aforementioned core algorithm is used as a subroutine. The

latter work also gives a lower bound of 1.56
√

n on the size of planar node sep-
arators, due to an analysis of specifically-constructed globe graphs. Spielman
and Teng [1996] provided an algorithm for separation of a planar graph into
two components of size, at most 3n/4 each, through a separator of no more than
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√
3.5n ≈ 1.84

√
n nodes. For the sake of completeness, we mention that there

are results on separating planar graphs into components of size at most n/2 via
separators of size O(

√
n), where the constant factors hidden in this term are

much higher than those stated above.
Aleksandrov et al. [2006] consider a generalization named t-separators:

Given a planar graph with cost and weight associated to each node, total cost C,
and a balance factor t ∈ (0, 1), the objective is to find a node separator with total
cost not exceeding C such that after removal of the separator the weight of each
remaining component is at most t times the total weight of the graph. Such sep-
arations typically yield more than two components. Setting t = 2/3 and using
unit weights and costs, the generalized problem reduces to the original variant
of Lipton and Tarjan [1979]. The article includes an experimental study with a
few synthetic and real-world graphs. Finally, for the case of 2-connected planar
graphs with a maximum face size of f , Miller [1984] showed that there exists
a simple-cycle separator of size 2

√
2fn separating the graph into components of

size at most 2n/3.

1.2 Applications

Planar separator algorithms are often employed to recursively decompose pla-
nar graphs according to the divide-and-conquer paradigm. A straightforward
implementation would yield a running time of O(n log n). In Goodrich [1995],
some refined strategies are presented to obtain a linear-time decomposition al-
gorithm. Another application of recursive decomposition is shortest-path search
on planar graphs [Frederickson 1987], where separators consisting of O(n/

√
r)

nodes and splitting the graph into �(n/r) components of size O(r) are used. This
decomposition approach has been further elaborated in Henzinger et al. [1997],
where, along with other techniques, a linear-time approach for the single-source
shortest path problem on planar graphs is presented. Finally, Alber et al. [2003]
describe parameterized algorithms for different graph problems that rely on
planar separators.

1.3 Our Contribution

Although the classical algorithms by Lipton and Tarjan [1979] and Djidjev
[1982] have been known for quite some time, we are not aware of any system-
atic experimental study investigating them. In this article, we therefore include
various graphs, both synthetic and from real world, which exhibit considerable
differences in properties, such as density, minimum separator size, diameter,
and so on. However, we do not settle for finding separators satisfying those
upper bounds, but consider several new algorithmic aspects, regarding: (i) opti-
mization of separator size and balance; (ii) consideration of a fundamental-cycle
separator (FCS) algorithm in their own right; (iii) application of postprocessing
techniques to improve the quality of separators; and (iv) choices made in the
implementation with respect to various parameters. Furthermore, to provide
a measure for the tradeoff between separator size and balance of component
sizes, we employ the separation ratio as suggested by Leighton and Rao [1999].
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Our experiments show that the behavior of the tested algorithms highly
depends on the input graph: For example, on regular graphs (such as grids) one
level of the BFS tree computed at the first stage already is an almost-optimal
separator, whereas for more irregular and real-world graphs (such as road map
graphs) the classical algorithms yield relatively bad solutions.

The FCS algorithm guarantees a bound on the separator size of 2d +1, where
d denotes the diameter of a triangulation of the input graph. Thus, when the
diameter is small, which is often the case for real-world graphs, this approach
guarantees separators smaller than O(

√
n), given for the classical algorithms.

A surprising outcome of our experiments is therefore that the FCS algorithm
provides better solutions also for all other graphs tested.

Many subroutines shared by the classical algorithms are not fixed with re-
spect to every detail: For the BFS performed during the simple stage, neither
the root node nor the order in which incident edges and adjacent nodes are
visited are specified. Further, the complex stage requires a triangulation of the
graph and the selection of a nontree edge, where no further assumptions are
made. Our results show the importance of an appropriate choice of the BFS
root node: Since testing all nodes in the graph would incur quadratic running
time, we rather propose different heuristic methods to select a set of root nodes
to be considered. Even though variation of the order for visiting incident edges
does not affect the distribution of the nodes to BFS levels, the “balance” of the
tree edges is affected, which may have an impact on the performance of the
subsequent steps. Finally, for computation of the desired triangulation, the tri-
angulating BFS variant proposed, which simultaneously recomputes the given
BFS tree, performs exceptionally well.

It should be noted that in contrast to Aleksandrov et al. [2006], which also
features an experimental study on planar separator algorithms applied to both
synthetic and real-world inputs, the main focus of our article is on the anal-
ysis of the degrees of freedom inherent to the classical algorithms, so as to
exploit concrete ways of implementing these for improvement of separation
quality in practice. A preliminary version of this work appeared in Holzer
et al. [2005].

1.4 Structure

The remainder of this article is organized as follows. In the rest of this section,
we discuss previous work done in the field of graph separation. Section 2 briefly
reviews the Planar Separator Theorem and gives details on the two classical as
well as the FCS algorithm; for our experiments, we provide several optimiza-
tion criteria, and show how to modify the algorithms accordingly. In Section 3,
we present some of the degrees of freedom inherent to the algorithms and pro-
pose several variants of implementing each of them; we round off this part with
a description of some postprocessing techniques. Section 4 lists the classes of
graphs used in our experimental study, while the experimental setup and re-
sults are reported in Section 5. In Section 6, we conclude with a short summary
and some open questions on the subject.
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2. ALGORITHMS

In this section, we consider classical linear-time planar separator algorithms
implementing the Planar Separator Theorem, as stated below. The node sepa-
rators computed by the different algorithms fulfill different upper bounds β

√
n

on the separator size, for certain constants β, while each of the remaining com-
ponents contains no more than two thirds of all nodes. The first theorem of this
kind (for β = √

8) and the fundamental-cycle lemma were introduced by Lipton
and Tarjan [1979]; this lemma is used in the complex stage of the classical algo-
rithms, and further constitutes, as a stand-alone procedure, the fundamental-
cycle separation algorithm. For our experiments, we envision three optimiza-
tion criteria, which partly lead to some algorithmic modifications; in particu-
lar, implementing the optimized version of the complex stage requires a little
elaboration.

For simplicity, we state the Planar Separator Theorem and its related algo-
rithms for the case of an unweighted planar graph. Nevertheless, the algorithms
and our implementations work equally for the weighted case, as introduced
in Lipton and Tarjan [1979].

THEOREM 1 (PLANAR-SEPARATOR THEOREM). Let G = (V , E) be a planar graph
with n ≥ 5 nodes. Then, the nodes of V can be partitioned into three sets A, B,
and S such that no edge joins a node in A with a node in B, neither A nor B
consists of more than 2n/3 nodes, and S contains at most β

√
n nodes, for some

constant β.

Using this notation, the separator bound due to Lipton and Tarjan is given
by β = √

8, while Djidjev’s bound takes β = √
6. However, our implementation

of Lipton and Tarjan’s algorithm was done according to a textbook version with
β = 4 [Mehlhorn 1984; Kozen 1992].

An important concept used in the theorem are fundamental cycles: Given
a spanning tree of the input graph, a fundamental cycle consists of a nontree
edge e together with the path connecting the two endpoints of e in the spanning
tree.

LEMMA 1 (FUNDAMENTAL-CYCLE LEMMA). Let G be a connected planar graph.
Suppose G has a spanning tree of height h. Then, the nodes of G can be parti-
tioned into three sets A, B, and C such that no edge joins a node in A with a node
in B, neither A nor B consist of more than 2n/3 nodes, and C is a fundamental
cycle containing no more than 2h + 1 nodes.

Before proceeding with the algorithms, we state the following definition,
which will be used later.

Definition 1 (Radius, Diameter). Given a (uniformly) weighted graph G =
(V , E), the eccentricity of a node v ∈ V is defined to be the maximum distance
from v to any other node in G. The minimum eccentricity over all nodes in the
graph is called radius, while the maximum eccentricity is called diameter.
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Fig. 1. The three phases of Lipton and Tarjan’s algorithm (simplified illustration; nontree edges
are generally omitted). From left to right: Phase 1 (simple stage; one BFS level, μ), Phase 2 (simple
stage; two BFS levels, m and M ), and Phase 3 (complex stage; two BFS levels plus fundamental
cycle). Separator nodes are marked in black; red and blue coloring reflects component membership
of the remaining nodes. The dashed gray lines cut off the nodes temporarily merged and removed
during Phase 3, respectively; the nontree edge inducing the fundamental cycle (green path) is
drawn dashed-green.

2.1 Algorithm Description

The classical algorithms by Lipton and Tarjan and by Djidjev both work in two
stages, which we call simple and complex. The simple stage can be subdivided
into two parts, Phases 1 and 2; for the sake of consistency, we will refer to the
complex stage also as Phase 3. It is noteworthy that all steps of the algorithms
can be implemented to run in linear time.

2.1.1 Lipton and Tarjan’s Algorithm (LT). We now detail the single steps
of the algorithm; Figure 1 gives an illustration of the different phases.

Simple Stage. Phase 1 starts by computing a BFS tree, thus grouping the
nodes into levels, where the BFS root is located at level 0. Then, the middle level
is defined to be the level with the smallest index μ, such that all levels with
indexes at most μ encompass at least half of the graph’s nodes. If this middle
level contains fewer nodes than given by the separator bound, the algorithm
returns that level (note that due to construction, the balance requirement is
always met); otherwise, the algorithm continues with Phase 2.

In Phase 2, the levels above and below the middle level (i.e., with smaller
and with greater indexes) are scanned until in each direction a level of at most
2(

√
n−D) nodes is found, where D is the respective distance to the middle level.

These two levels, with indexes denoted by m and M , yield a separation of the
remaining nodes into three parts. If the biggest of these parts and the union
of the other two meet the balance bound, then the two levels are returned as a
separator. Otherwise, the algorithm enters the complex stage.

Complex Stage. This stage starts with the reduction step: Temporarily all
levels with indexes at least M are removed from the graph and levels 0 to m
are merged to one node. Then the remaining graph is triangulated. Every non-
tree edge e induces a path in the BFS tree from each of e’s endpoints to their
“nearest” common ancestor. These paths together with e form a fundamental
cycle, dividing the remaining nodes into an inner and an outer part. From all
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nontree edges, the algorithm picks one arbitrarily. As long as the size of the
bigger of the inner and the outer parts exceeds 2n/3, the algorithm gradually
shrinks the bigger (and enlarges the smaller) part by picking a different, neigh-
boring nontree edge, which induces a new fundamental cycle. This shrinking
step is repeated until both inner and outer parts have a size of 2n/3 at most.
The separator returned by this stage consists of the fundamental cycle and the
levels m and M , and fulfills both the separator size and the component balance
requirement.

2.1.2 Djidjev’s Algorithm (Dj). As mentioned earlier, the algorithm by
Djidjev [1982] follows the LT framework, but uses more sophisticated construc-
tions in Phases 1 and 2, trying to find a separator consisting of one or two levels
of the BFS tree, whose size has to be smaller than the one given by LT. Phase
3 is similar to that in LT.

2.1.3 Fundamental-Cycle Separation (FCS). During the experimental
phase of this study, we discovered that it is very effective to give up the sim-
ple stage and apply the complex stage—that is, the algorithmic version of
Lemma 1—directly to the input graph, where the reduction step is omitted.
We call this the FCS algorithm. Since the height of any spanning (and hence
BFS) tree is between the graph’s radius r and diameter d (recall Definition 1),
Lemma 1 implies that every fundamental cycle contains no more than 2d + 1
nodes. Hence, for graphs of small diameter, the FCS approach guarantees a
better bound than β

√
n.

2.2 Optimization

In practical applications of planar separator algorithms, requirements for “good
separations” may vary a lot. Therefore, we provide three optimization criteria,
separator size, balance, and separator ratio, which we define next and discuss
how to implement them within the different stages.

Criteria. The formulation of the Planar Separator Theorem entails two nat-
ural optimization criteria, minimization of separator size, |S|, and maximiza-
tion of component balance, |A|/|B|, where |A| denotes the size of the smaller and
|B| the size of the larger component. Besides considering these individually, we
also use a trade-off value, called separator ratio, introduced by Leighton and
Rao [1999] and defined to be |S|/|A|. Consequently, as long as |S| gets smaller
and |A| gets larger, the separator ratio becomes smaller and hence this crite-
rion is to be minimized. The separator ratio also comes into play to break ties
between separators optimized for separator size or balance.

Simple-Stage Modifications. Implementing optimization for these criteria
leads to the following refinements of the algorithms. In Phase 1, picking the
middle level as defined above yields good component balance in general, but no
statement can be made regarding separator size. Our strategy now is simply
to scan all BFS levels not violating the balance requirement and to select from
amongst them the one with minimum size. A similar routine can be performed
in Phase 2 (if there is a valid Phase-2 separator, the classical algorithms account
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Fig. 2. Duality of spanning trees. The original graph is given in black, its dual in gray; tree edges
are drawn solid, nontree edges dashed. The big gray square marks the root of the dual tree.

for optimality of neither separator size nor balance). It is fairly easy to see that
these modifications do not affect linearity of the running time.

Enumerating Fundamental Cycles. The optimized version of the complex
stage (and of the FCS algorithm, respectively) examines all nontree edges in
the given graph, computing the sizes of the induced fundamental cycle and
of the inner and outer parts, and eventually picks the best cycle according to
the specified criterion. In order to do this in linear time, we need to arrange
the nontree edges in such an order that examination of a subsequent cycle can
rely on information computed for a preceding one; in other words, we proceed
from small, inner circles to more “comprehensive” ones. Again, it can be verified
easily that all construction steps require only linear time.

To order the nontree edges, we make use of the dual of the given graph
through the following well-known property (see Eppstein et al. [1990] for the
proof and Figure 2 for an illustration): the dual edges that correspond to the
nontree edges of the original graph form a spanning tree in the dual graph.
Hence, there is an immediate correspondence between cycles in the original
and tree edges in the dual graph. The dual node corresponding to the outer face
of the original graph is chosen to be the root of the dual spanning tree. Starting
by examining the cycles in the original graph that correspond to edges incident
to leaf nodes in the dual spanning tree and then continuing toward the root,
the sizes of the inner and outer parts of all cycles can be computed inductively.
Note that in the actual implementation, construction of the dual graph and
its spanning tree is avoided. Instead, the construction of the spanning tree is
simulated by performing a “breadth-first” traversal on the faces of the original
graph, by use of the nontree edges. We keep track of the edges that are used to
“enter” a face and then examine them in the reverse order of their discovery.
The result is a correct and reasonably efficient implementation.
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3. HEURISTICS

The algorithms described above are formulated at a fairly abstract level and
thus bear quite some degrees of freedom, for which concrete implementing pro-
cedures have to be given: At the simple stage, BFS root and BFS order (i.e., the
order in which to visit incident edges) may both be chosen arbitrarily; at the
complex stage, the original, nonoptimizing formulation of the algorithms picks
just any nontree edge, and the shrinking step, which has to pick an appropriate
new nontree edge, is determined by the triangulation chosen.

In the following text, we propose several ways of implementing these rou-
tines, evaluated in Section 5. Regarding BFS trees, we identify some general
characteristics that promote good simple and complex separators, respectively,
which can be fostered through recomputation of a given BFS tree. Other than
employing some standard triangulation algorithm (provided by the libraries
used), we suggest a variant called triangulating BFS, which allows to simulta-
neously compute a triangulation and tailor a possibly more favorable tree for
the complex stage. Because the tree used at the complex stage (and with the
FCS algorithm) does not rely on BFS tree properties (no levels are required),
any spanning tree will do; therefore, we propose an alternative way of comput-
ing such a tree. Finally, we present two postprocessing techniques to improve
separations, called node expulsion and Dulmage-Mendelsohn decomposition.

3.1 BFS Variants

In this section, we describe different orders in which a graph’s nodes and edges
may be processed by a BFS search. Let L be the set of nodes constituting some
already constructed level l . Figure 3 illustrates various BFS trees of one sample
graph; note that the number of leaf nodes varies, while the tree height remains
the same.

Standard Search. The nodes in L are processed in the order in which they
are “stored internally”: For example, these may be kept in a list (the order
possibly reflecting a given embedding), which is then scanned in a linear fashion
from start to end. Similar properties hold for the set of edges incident with each
of L’s nodes, which are often stored in clockwise or counterclockwise order. Thus,
Standard Search iterates through L and for each node considers its outgoing
edges; each edge being visited is included in the set of tree edges if and only if
its incident node at level l + 1 has not been visited before.

Ordered Search. The nodes in L are sorted ascendingly or descendingly
according to their degree; as mentioned previously, internal storage determines
the order in which incident edges are scanned. Since typically only a few high-
degree nodes of level l “cover” all nodes of level l +1, descending ordering tends
to generate exceptionally many leaves.

Permuted Search. This variant is similar to the ordered search; however,
the nodes of level l are processed as given by a random permutation.
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Fig. 3. BFS variants. From top left to bottom right: standard, ascendingly ordered, descendingly
ordered, and balanced BFS. Bold, red lines represent tree edges; leaf nodes are marked by big
squares.

Balanced Search. The intuition behind Balanced Search is to produce BFS
trees that exhibit as few leaf nodes as possible; therefore, arrange the nodes in
L in a circular list according to their degree. As long as there exists a node at
level l +1 not discovered yet, iterate through the list in ascending order; if from
the node being considered there is an edge to a level-(l +1) node not discovered
yet, declare it a tree edge; then proceed to the next node in the list.

It should be noted that all variants can be implemented to run in linear
time. For Ordered Search, we can easily use bucket sort, since we know the
maximum node degree of a given graph. Experiments comparing these variants
are described in Section 5.3.

3.2 Tree Height Control

We want to investigate how the height of BFS trees can be affected such that
they exhibit favorable properties for both the simple stage and the complex
stage. Intuitively, to allow at the simple stage for a desired trade-off between
small separator size and high component balance, BFS trees should have sparse
middle levels (thus, balance may be finely adjusted). This implies that for the
simple stage, we would like to have tall trees.

For the complex stage, recall that a separator consists of two BFS levels and
a fundamental cycle. The size of the cycle is determined mainly by the height
of the tree used in Phase 3, so we strive to keep this tree as shallow as possible.
This is exactly the opposite goal of the simple stage. However, we are free to
use a different tree at the complex stage than the one inherited from the simple

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 1.5, Publication date: August 2009.



Engineering Planar Separator Algorithms • 1.5:11

Fig. 4. Height maximization and minimization. The figures from left to right show a sample graph
with a BFS tree, a BFS tree after height maximization, and a BFS tree after height minimization.
BFS root and tree edges are marked in red.

stage (reducing the tree height neither invalidates the statement of the theorem
nor the analysis of the algorithms).

Consequently, we introduce two procedures, called height maximization and
height minimization, after which a new BFS tree is produced based on an initial
one; Figure 4 illustrates these concepts.

In height maximization, we pick from the given tree a leaf at the highest
level and compute a new BFS tree rooted at this node. This process may be
iterated for a constant number of times. It is clear that, by construction, each
iteration does not reduce the tree height.

Height minimization proceeds in a similar way but chooses as a new root node
a centroid of the tree, that is, a node whose maximum distance to any other node
in the tree is minimum (each tree contains either one or two centroids, which
can be determined in linear time). By definition, this procedure delivers a new
tree of equal or smaller height. Results from an experimental evaluation of
these heuristics are given in Section 5.3.

3.3 Triangulating BFS

As described in Section 2.1.1, triangulation takes place in the graph obtained
from the reduction step (merging and removal of nodes). On the other hand, as
just seen, the BFS tree induced by this reduction can be replaced by a new one,
which implies that tree edges may at the same time be triangulation edges.

These insights are exploited by the subsequent process. Since for the com-
plex stage shallow trees are desirable, the more adjacent nodes a BFS reaches
from a single node, the smaller the tree height potentially becomes. On the re-
duced graph, we now start a new BFS (with arbitrary root): From each node v
whose incident edges are being explored, additionally introduce a triangulation
edge to each node w that is not connected to v but can be linked through an
edge without causing any crossings; if w has not been visited yet, make {v, w} a
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Fig. 5. Triangulating BFS applied to the graph from Figure 4. BFS root and tree edges are marked
in red, triangulation edges are dashed.

tree edge. Continue this search until the graph is triangulated (which may well
be done after the tree has been constructed). Figure 5 shows an illustration of
this method.

3.4 Star Trees

The reason for which the algorithm by Lipton and Tarjan uses BFS trees instead
of arbitrary ones is that each BFS level has the property of separating the graph
into two parts. This feature is exploited during the simple stage; however, it is
not required for the complex stage, which suggests trying also different trees.

An alternative idea is to rely on a bottom-up procedure that “greedily covers”
the graph used for the complex stage with isolated stars (i.e., trees of height at
most 1 not connected to one another) and grows these together to a maximal
tree; roughly, at each step, a node connected through nontree edges to many
other partial trees is chosen and these nontree edges are made tree edges.
However, preliminary experiments showed that the trees thus arising cannot
compete with our BFS trees, so we eventually discarded this approach.

3.5 Postprocessing

In the following text, we provide two postprocessing steps that can be used to
improve the quality of separations in terms of separator size and/or component
balance.

Node Expulsion. This technique consists in moving nodes of a simple sepa-
rator that do not separate two nodes from different components to the smaller
component, which improves both separator size and component balance (see
Figure 6).

Dulmage-Mendelsohn Optimization. The idea of this technique is to shift a
subset of the separator nodes to their adjacent nodes in the larger component
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Fig. 6. Postprocessing techniques. Black nodes are separator nodes, while blue (and red, respec-
tively) nodes are the nodes of the blue (and red, respectively) component. Node expulsion (left):
The bold edges form a BFS tree of the given graph. The separator node connected to the red, but
not to the blue component (red disk with black border) can be moved to the red component, which
improves both separator size and component balance.

Dulmage-Mendelsohn optimization (right): Solid lines indicate edges of the bipartite graph in-
duced by the black and red nodes, bold edges show a maximum matching in this graph, where
squares highlight unmatched nodes; the labels denote membership of both S and Adj to the re-
spective node sets internal (I), external (X), or residual (R). Shifting the separator nodes in I to the
red component reduces the separator size by 1 and improves component balance from 2:7 to 4:6
(blue/red nodes), while shifting the separator nodes in I and R to the red component yields equal
reduction in separator size, but a 7:3 balance.

[Ashcraft and Liu 1996]. In other words, detect a subset of the separator,
∅ �= S′ ⊂ S, such that the subset B′ ⊂ B, consisting of nodes that are ad-
jacent to S′ and belong to the larger component B, is smaller than S′. Then, the
separator is modified by removing the nodes in S′ and adding the nodes in B′.
The size of the new separator is smaller than the original one, and the balance
may be improved as well. This is done by computing a maximum-cardinality
matching on the bipartite graph induced by the separator S and its adjacent
nodes, AdjB(S), that belong to the larger component. Either set of nodes con-
stituting this bipartite graph is divided into three groups: a node in S is called
internal (I) if it is reachable via alternating paths from an unmatched node
in S; external (E) if it is reachable via alternating paths from an unmatched
node in AdjB(S); and residual (R) otherwise—a symmetric definition holds for
the nodes in AdjB(S) for an illustration, (see Figure 6). Shifting either SI or
SI ∪SR to their adjacent nodes in the bipartite graph gives maximum reduction
in separator size.

4. GRAPHS

The following list describes all graph classes used for our experiments, mostly
randomly generated but also from real world, where similar classes are gath-
ered in one paragraph. Examples of a few graph classes are depicted in Figure 7.
To enhance the significance of our investigation, we employ a set containing one
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Fig. 7. Sample graphs with separators. From top left to bottom right: hex, t-sphere, del, leda,
diam, and ka. Separator nodes are drawn in black, nodes attributed to one component in red, and
nodes attributed to the other component in blue.
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Table I. Graph Parameters: Number n and m of Nodes and Edges, Diameter and Radius
for Both the Original and Triangulated Graphs

Diameter Radius
Graph n m orig triang orig triang Remark
square 10,000 19,800 198 67 100 50
rect 10,000 19,480 518 20 260 10 20 × 500 raster
hex 9,994 14,733 513 22 257 11 20 × 237 raster
globe 10,002 20,100 101 101 76 67 100 × 100 circles
t-sphere 10,242 30,720 96 96 80 80 5 iterations
diam 10,000 29,994 3,333 3,333 1,667 1,667
del 10,000 25,000 56 45 46 34
del-max 10,000 29,971 52 48 43 39
leda 9,990 25,000 18 14 11 8
leda-max 10,000 29,975 16 16 9 8
c-square 10,087 19,904 219 71 110 36 5 connecting nodes
c-del-max 10,005 29,972 62 55 33 28 5 connecting nodes
c-leda-max 10,005 29,984 18 15 9 8 5 connecting nodes
ka 10,298 14,175 129 28 69 18

graph of each class with roughly the same size; a detailed synopsis can be found
in Table I.

Grid Graphs. An obvious choice of regularly structured planar graphs is to
use grids of different shapes:

—square and rect graphs are (x × x)- and (x × y)-rasters of nodes, respectively,
where adjacent nodes of the same row or column are connected by an edge.
Straightforward calculation shows that a squarewith n nodes has a minimum
simple separator of approximately

√
2n/3 ≈ 0.82

√
n nodes.

—hex graphs can be seen as a number of hexagons “glued together” in a hon-
eycomblike fashion. As can easily be verified by Figure 7, a grid of x × y
honeycombs contains 2(x +1) y +2x nodes. Clearly, hex graphs are the spars-
est of all grid graphs.

Sphere Graphs. In Djidjev [1982], a class of graphs with a lower bound of
1.56

√
n on separator size is introduced, which is obtained through approxima-

tion of the unit sphere. With our experiments, we consider two similar classes
of graphs, whose generation is a little more straightforward.

—globe graphs are induced by equally distributed circles of longitude and lat-
itude of a unit sphere, where nodes are induced by edge crossings.

—t-sphere graphs approximate the unit sphere by triangles (see Bourke
[1992]). The iterative generation process starts with an icosahedron (con-
sisting of 20 equilateral triangles with all nodes on the sphere); at each step,
each triangle is split into four smaller, identical ones by placing a new node
in the middle of each edge and interconnecting these through edges.

Big-Diameter Graphs. Under the name of diam, we provide graphs exhibit-
ing rather big diameters: Given an integer d , a maximal planar graph with
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3d + 1 nodes and of diameter d is generated. By construction, diam graphs
have separators of size 3.

Random Graphs. Random planar graphs come in two flavors, according to
the triangulation used to generate them:

—del and del-max graphs employ a Delaunay triangulation, where quite a
regular distribution of node degrees is achieved.

—triangulation of leda and leda-max is computed by the LEDA library (see
Näher and Mehlhorn [1999]): roughly, a sweep-line algorithm scans the nodes
and inserts edges as needed, causing many (almost-)vertical edges.

Construction of these graphs is done by placing at random a given number of
nodes in the plane and triangulating the convex hull, which immediately yields
the respective -max variant. The general variants, del and leda, are obtained
by deleting from the maximal graph a desired number of edges.

Small-Separator Graphs. To construct graphs with small separators yield-
ing perfect balance, we connect two copies of a graph through a few additional
nodes; the challenge for our algorithms then is to find this separator. These
graphs are indicated with a c- prefix (for connected); for our study, we employ
c-square, c-del-max, and c-leda-max.

Real-World Graphs. Graphs representing road networks typically have
the property of being almost planar (edge crossings are mostly caused by
bridges/underpasses, given the geographic embedding). Such edge crossings
can be removed by simply placing a node on it, without altering the graph too
much. For our experiments, we use a graph extracted from the German road
network,1 denoted by ka, that represents the city of Karlsruhe.

5. EXPERIMENTS

Our empirical study involving the aforementioned base algorithms, heuristic
methods, and graphs was undertaken in an inductive fashion, where first a
broader range of combinations was investigated, followed by more specific pa-
rameter settings under consideration of preceding results. The presentation of
our findings is thus divided into five parts:

—In order to obtain a comprehensive overview of the performance of each al-
gorithm optimized for the different criteria and applied to each graph class,
we started by running a complete series of these combinations, investigating
separator size, component balance, separator ratio, and terminating phase.

—To get a finer picture of algorithmic performance, we studied a series of graphs
increasing in size, taking into account also running time.

—We next focused on the heuristics for BFS search and triangulation described
in Section 3.

1The data was provided courtesy of PTV AG, Karlsruhe.
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—We evaluated the postprocessing techniques, introduced in Section 3.5, with
respect to reduction of separator size for a few selected graphs.

—The final part summarizes our experimental outcomes, and deduces from
the preceding observations some general recommendations for the choice of
algorithms and parameters when one wishes to separate a given graph for a
desired criterion.

We implemented the algorithms in C++, using the LEDA (version 5.0.1)
and Boost (version 1.33.1) libraries. Our code was compiled with the GCC
(version 3.4), and executed on different Intel Xeon and Opteron machines, run-
ning a Linux kernel.

5.1 Algorithmic Comparison

The first series of experiments focuses on our algorithms LT, Dj, and FCS, op-
timized for the different criteria (separator, balance, and ratio), as described
in Section 2.1 and applied to the graphs listed in Table I. Each node is once
picked as the root for BFS search. Our experimental results display separator
size, component balance, and separator ratio with each algorithm, both unopti-
mized and optimized for the respective criterion, and are presented in the form
of boxplots: For each combination of algorithm and graph, the corresponding box
represents the middle 50% of values obtained over all root nodes, each whisker
spans a range of 1.5 times the height of the box (outliers are not shown), and
average values are marked by a cross.

Separator Size. The plots of Figure 8 denote relative separator size, that
is, the absolute number of nodes in a separator divided by the square root of
the number of nodes in the graph (which corresponds to β from Section 2.1).
The graphs are distinguished along the x-axis; for each graph, the algorithms
LT, Dj, and FCS are colored (from left to right) red, blue, and green, respec-
tively. In general, it can be observed that for most graphs tested, average sep-
arators are significantly smaller than the respective upper bound, especially
for Dj. For LT, the hardest instances are the (c-)del(-max) graphs, for which
the bound is actually reached, and even average separator sizes are beyond
3
√

n.
Overall, FCS performs best: For almost all graphs, both maximum and aver-

age separators are smaller than those achieved by the other two algorithms (ex-
ceptions hereto are, for the unoptimized case, the sphere graphs and—to some
negligible extent—the diam graph). This result holds not only for instances with
rather small diameters (according to Table I, triangulated del exhibits a diam-
eter of 45, so the theoretic bound of 2 · 45 + 1 = 91 is considerably smaller than
Djidjev’s bound of

√
6 · 10,000 = 245), but also for diam, which features a much

larger diameter.
Concerning the unoptimized algorithms, great reduction in separator size

(up to a factor of around 5) can be achieved for del(-max) and leda(-max)
when applying Dj instead of LT, while similar savings are obtained for ka when
switching from Dj to FCS. With optimization employed, the differences be-
tween the algorithms are slightly less pronounced: For the grid and ka graphs,
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Fig. 8. Relative separator size (absolute number of nodes divided by the square root of the number
of nodes in the graph) for the 10,000-node graphs with the different algorithms, both unoptimized
(top) and optimized for separator size (bottom). The graphs are distinguished along the x-axis; for
each graph, the algorithms LT, Dj, and FCS are colored (from left to right) red, blue, and green,
respectively.
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performance of LT and Dj is almost identical; for the random graphs, Dj and es-
pecially FCS work considerably better. Regarding improvement with optimized
vs. unoptimized algorithms, LT often yields smaller mean values (e.g., for the
grid, del, and ka graphs) or smaller boxes (e.g., for globe); separator reduc-
tions obtained for Dj and FCS, in contrast, are generally marginal, but for FCS
applied to c-square, an improvement from roughly 0.7 to 0.2 is achieved.

Component Balance. Component balance (size of the smaller component di-
vided by the size of the larger one) is shown in Figure 9. Unlike with separator
size, there is a large difference between the unoptimized and optimized vari-
ants: On average, LT gives good or excellent balance even when no optimization
is applied, except for the (c-)leda(-max) and c-del-max graphs. However, this
is not true for Dj and especially FCS applied to many instances, where for the
unoptimized variant poor balance is often achieved, while the optimized algo-
rithms give mean balance of at least 0.9 for all graphs.

This behavior can easily be explained through the fact that for many
graphs, LT succeeds in determining a Phase-1 separator (consisting of one
BFS level dividing the graph into two components of similar size)—except
for (c-)leda(-max) and c-del-max, which mostly demand for Phase 3 (see
Figure 11). On the other hand, the initial cycle separator computed by FCS
does not necessarily guarantee high component balance. Allowing the algo-
rithm to level out imbalance by appropriately shrinking the bigger component,
however, may produce even better separators than achieved by LT; in particu-
lar, with graphs exhibiting small separators (e.g., the c-graphs) balance can be
better fine-tuned by FCS.

Separator Ratio. The separator ratio, reflecting the ratio between separator
size and component balance, is shown in Figure 10 and is naturally correlated
to the previous plots, where the overall picture strongly follows that for sepa-
rator size. Altogether, FCS is a favorable choice; only with single graphs, such
as globe, comparatively large separator size adds to rather poor balance, so
that FCS does not perform best even when optimization is applied. A similar
observation holds for Dj, so that for a few graphs, the unoptimized LT slightly
outperforms Dj. Interestingly, some worsening in both maximum and mean ra-
tio can be observed for quite some graphs when LT is optimized: This reflects the
tradeoff between finding a (Phase-1) separator that is both small and induces
high balance.

Terminating Phase. Figure 11 finally shows for the classic algorithms the
share of each phase in all root nodes for which that phase suffices to find a valid
separator with LT and Dj, respectively. The following distinction can be made:
regular-structured and fairly sparse graphs (especially the grid, sphere, diam,
c-square, c-globe, and ka graphs) generally require only Phase 1; in contrast,
the (c-)leda(-max) graphs cannot be separated through a simple separator,
but require phase 3 with both LT and Dj. A border case is constituted by del and
optimization for separator size, for which LT always terminates after Phase 1,
while Dj applies mostly Phase 3. This can be explained due to the fact that the
average BFS level contains roughly 300 = 3

√
10,000 nodes, which exceeds the
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Fig. 9. Component balance for the 10,000-node graphs with the different algorithms, both unop-
timized (top) and optimized for balance (bottom). The graphs are distinguished along the x-axis;
for each graph, the algorithms LT, Dj, and FCS are colored (from left to right) red, blue, and green,
respectively.
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Fig. 10. Separator ratio for the 10,000-node graphs with the different algorithms, both unopti-
mized (top) and optimized for ratio (bottom). The graphs are distinguished along the x-axis; for
each graph, the algorithms LT, Dj, and FCS are colored (from left to right) red, blue, and green,
respectively.
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Fig. 11. Top and middle: Shares of terminating phases for the 10,000-node graphs with LT (left bar
of each group) and Dj (right bar) optimized for separator size (top) and component balance (middle).
The graphs are distinguished along the x-axis; light-blue, black, and pink segments represent
Phases 1, 2, and 3, respectively. Bottom: Snapshot of the c-del-max graph with a Phase-2 separator
(black nodes, dividing the red from the blue component).
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bound accepted by Dj. When optimizing for balance, however, LT also has to
enter Phase 3 for around 20% of root nodes.

It is extremely surprising to discover that there are only very few cases in
which LT is terminated in Phase 2: For c-del-max, < 1% of root nodes induce
Phase-2 separators when optimization for balance is applied; a snapshot of an
example is shown in Figure 11.

5.2 Graph Series

To study the behavior of our algorithms with a series of graphs increasing in
size, we chose the del class, considering 20 instances with a number of nodes
between 50 and 1,000 and an edge density of 2.5 times the number of nodes.
The advantage of this choice is that random instances of arbitrary size can
be generated that are not totally regular in structure; furthermore, due to the
previously mentioned outcome, these graphs seem to constitute rather hard
instances for LT, while leading to a varying terminating phase. Again, we take
into account all three algorithms, however, without any optimization applied,
and iterate over all BFS root nodes, where we now also iterate over all possible
nontree edges. Our results are reported in Figures 12 through 14, which depict
terminating phase, separator size, running time, as well as the impact of BFS
root node and nontree edge selection on separator size and component balance.
In the following text, we discuss in detail the reported results.

Separator Size. The upper diagram of Figure 12 shows the relative sep-
arator size of the different algorithms, along with the terminating phase in
the lower diagram. For increasing numbers of nodes, we observe a growth in
separator size from 2

√
n to just under 3

√
n for LT, while for FCS, separator

size appears fairly stable (after a slight decline with the first few instances).
The strong decline with Dj can be explained by the fact that with increasing
frequency valid separators are found only in Phase 3: Obviously, the levels ob-
tained from a BFS become larger, so that simple separators still meet the bound
for LT, but fail to satisfy the bound for Dj.

Running Time. Running time is shown in Figure 13: The upper diagram
depicts the total running time of each algorithm over all root nodes and all non-
tree edges. Although linearity of the running time can be clearly confirmed
for all algorithms, the actual factors determining the time spent by a pro-
cessor vary enormously: LT, which we have shown to always terminate in
Phase 1, consumes for each graph <1ms; Dj, increasingly involving Phase 3,
takes up to 30ms; and for FCS, a maximum running time of just over 60ms is
obtained.

To get a better understanding of the time spent for FCS (and the com-
plex stage, respectively), the average running time with FCS is broken down
to different subroutines, as shown in the lower diagram of Figure 13. These
subroutines include initialization, embedding, and triangulation of the input
graph, BFS tree computation, determination of the order of nontree edges (see
Section 2.2), initial computation and possibly enhancement of a cycle separator,
and residual tasks (including control structures, method calls, etc.). It becomes
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Fig. 12. Separator size (top) and terminating phase (bottom) for a series of 20 del graphs. The
labels on the x-axis indicate the numbers of nodes in the graphs; the arrangement and colors match
the ones used for Figures 8 and 11.
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Fig. 13. Total running time (top) and running time for FCS (bottom) in seconds for a series of
20 del graphs. The labels on the x-axis indicate the numbers of nodes in the graphs; the arrange-
ment matches the one previously used. In the lower diagram, the different segments reflect (from
dark- to light-gray colors and bottom to top, respectively) times spent on initializing, embedding,
and triangulating the graph, computing a BFS tree, determining the order of nontree edges, con-
structing/improving fundamental cycles, as well as residual tasks.
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clear that iterating over all nontree edges (including determination of the or-
der of nontree edges) comprises well over 50% of the running time. However,
note that such an iteration is indispensable when an optimization criterion is
used.

Influence of Choices. The upper diagram in Figure 14 shows the influence
of BFS root and nontree edge selection, respectively, on separator size: For
each graph and application of FCS, the range of mean relative separator size
(marked by a circle in the diagram) is determined by computing for each BFS
root the average relative separator size over all possible nontree edges and tak-
ing the difference between the maximum and the minimum of these average
values; consequently, high numbers of this measure correspond to a great im-
pact of BFS root selection. A similar measure (marked by triangles) denotes
the range, over all nontree edges, of average relative separator sizes over all
BFS nodes, which reflects the influence of nontree edge selection. Analogously,
the lower diagram shows these values for balance instead of separator size.
The diagrams suggest that the variation of separator size depends to a similar
extent on BFS root and on nontree edge selection, whereas the more decisive
factor for balance seems to be nontree edge selection.

5.3 Heuristics

The preceding experiments revealed that the FCS algorithm generally outper-
forms the others, especially in terms of separator size, but its running time
is slower than that of LT by significantly more than one order of magnitude.
The LT algorithm, on the other hand, yields quite good balance (partly owing to
the fact that most graphs settle for Phase 1), but considerably worse results in
terms of separator size. In addition, the separator size heavily depends on BFS
root selection; observe the relatively large boxes in Figure 8.

Therefore, we evaluate in the following whether variation of the BFS cou-
pled with height maximization, as introduced in Section 3, might be suited to
enhance performance of LT. Moreover, we present a very small examination of
triangulating BFS. Due to the overwhelming number of possible combinations,
we report our results for one graph class using a few parameters and respect-
ing only the separator size. Similar results hold for the other graph classes
considered.

Figure 15 shows relative separator size with the del graph and different
combinations of BFS order and number of iterations for height maximization:
All combinations involving height maximization reduce the mean separator
size by almost 10%, and also the maximum separator size is reduced. On the
other hand, BFS order does not seem to matter, and also 10 steps of iteration
do not yield any improvement over 2.

Experiments with triangulating BFS in contrast to individual triangulation
followed by (standard) BFS showed that a reduction in relative separator size
from 0.75 to 0.68 is attainable for del, using a random sample of five roots for
triangulating BFS and 15 iterations for height minimization.

ACM Journal of Experimental Algorithmics, Vol. 14, Article No. 1.5, Publication date: August 2009.



Engineering Planar Separator Algorithms • 1.5:27

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

1,
00

0

0.04

0.06

0.08

0.10

0.12
50 10

0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

1,
00

0

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Fig. 14. Influence of the choice of BFS root and nontree edge on separator size (top) and balance
(bottom) for a series of 20 del graphs. The labels on the x-axis indicate the numbers of nodes in the
graphs; the y-axis denotes the average range of relative separator size and balance, depending on
the choice of BFS root (circles, solid lines) and nontree edge (triangles, dashed lines), respectively.
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Fig. 15. BFS variation and height maximization with the 10,000-node del graph. The y-axis de-
notes relative separator size, the labels on the x-axis give BFS order and number of iterations for
height maximization. The colors correspond to the number of iterations.

Table II. Reduction in Relative Separator
Size Through the Node Expulsion

Postprocessing for Different 10,000-Node
Graphs

Graph Before After
del 3.00 2.35
del-max 3.18 2.61
c-square 0.88 0.88
ka 1.57 1.21

5.4 Postprocessing

Preliminary results (see Holzer et al. [2005]) suggested that all possible
combinations of our two postprocessing techniques give similar reduction in
separator size. Combination of the node expulsion followed by the Dulmage-
Mendelsohn optimization is slightly superior to mere node expulsion, but more
expensive by a few orders of magnitude. In fact, our implementation of node ex-
pulsion takes less than an additional 3% of the time used by LT to compute a pri-
mary separator for del, whereas postprocessing with the Dulmage-Mendelsohn
optimization requires in addition (the enormous amount of) 20 times the initial
LT running time.

Table II lists, for a few graphs settling for Phase 1 with LT, the average
relative separator size (over all root nodes) before and after postprocessing. Ef-
fectiveness of the preprocessing naturally depends on the graphs: For c-square,
no significant improvement can be obtained but for del, savings of well over 20%
are attainable.
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5.5 Recommendation

The above experimental outcomes suggest the following recommendations for
the choice of separator algorithms, depending on the optimization criterion
used. Note that all procedures suggested require only linear time.

—When optimizing for separator size and running time is not a critical issue,
we suggest to use FCS with triangulating BFS and height minimization with
a few iterations.

—When optimizing for separator size and running time does matter, it might
be an option to employ LT, especially for graphs that promise to yield simple
separators with high probability. Moreover, the use of height maximization
(with only a few iterations) and node expulsion postprocessing are strongly
recommended.

—When optimizing for component balance, an effective and fast algorithm for
many graphs arising in practice is LT. For graphs that require careful fine-
tuning of component balance, FCS is suggested.

6. DISCUSSION

In this study, we have thoroughly investigated the Planar Separator Theorem
by Lipton and Tarjan (as well as—to some minor extent—the further develop-
ment by Djidjev) with respect to several degrees of freedom. For each of these
parameters, we provided concrete variants for implementation and also sug-
gested a few simple methods to heuristically improve separator quality. We
further proposed a new, straightforward separator algorithm relying on only
part of the aforementioned algorithms. Experiments on a variety of graphs
have shown, among other things, the following:

—For many of the graph classes tested, the classical algorithms often require
only Phase 1 to yield valid separators, where sizes are typically much smaller
than the theoretic bounds suggest. Moreover, Phase 2 is only seldom used.

—On the other hand, for quite a few graphs there is a high potential for opti-
mization, which is confirmed by the large range in separator size with dif-
ferent BFS roots. Using the height maximization heuristic (possibly coupled
with choosing a small sample of initial roots for BFS) can mitigate this effect
considerably.

—For almost all graphs, smaller separators are reached through FCS. Selection
of a nontree edge at the complex stage may greatly influence both separator
size and component balance, where our implementation allows to select in
linear time an edge that optimizes a given criterion.

—Merging the triangulating step, needed at the complex stage in order to
shrink fundamental-cycle separators, with recomputing a BFS tree (and ad-
ditionally applying height minimization) can further improve separator size.

Based on these findings, we see the following issues for further investigation:

—Another step of the algorithms whose implementation is not specified con-
cerns the embedding of the input graph, which in turn may influence the
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set of triangulations considered. In our experiments, we naturally chose the
embedding induced by the graph’s coordinates; however, it is not quite clear
whether a different embedding would exhibit “more advantageous” triangu-
lations. Enumerating all possible embeddings and triangulations is not an
option, so one would have to find some formulation for the more promising
constellations to narrow down the set of options.

—As for theoretical complexity, it has been known for quite some time that find-
ing minimum-size separators bisecting arbitrary graphs is NP-hard; how-
ever, a similar result for planar graphs was shown only recently, in Fukuyama
[2006]. One practical approach to determining optimum separators, at least
for small graphs, could be a simple enumeration algorithm with some branch-
and-bound strategy.
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