
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ & ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ

Ver. 2, Rev. 1

ΕΓΧΕΙΡΙ∆ΙΟ ΑΣΚΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟΥ
ΜΙΚΡΟΕΠΕΞΕΡΓΑΣΤΩΝ

ΧΑΡΙ∆ΗΜΟΣ ΒΕΡΓΟΣ

ΝΙΚΟΛΑΟΣ ΚΩΣΤΑΡΑΣ

ΠΑΤΡΑ 2007

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

ii

Περιεχόµενα

Εισαγωγική ΄Ασκηση 1

Εργαστηριακή ΄Ασκηση 1 . 1

i. Σκοπός . 1

ii. Κύκλωµα . 2

iii. Υλοποίηση . 3

iv. Αποσφαλµάτωση . 7

∆ιαµόρφωση Εύρους Παλµού 11

Εργαστηριακή ΄Ασκηση 2 . 11

i. Σκοπός . 11

ii. Υποερώτηµα 1. Εφαρµογή τεχνικής PWM σε οδήγηση LED bar 11

iii. Κύκλωµα . 11

iv. Οδηγίες αποσφαλµάτωσης υποερωτήµατος 1 14

v. Υποερώτηµα 2. Ολίσθηση ϕωτεινότητας 14

vi. Οδηγίες υλοποίησης υποερωτήµατος 2 15

Ρολόι 17

Εργαστηριακή ΄Ασκηση 3 . 17

i. Σκοπός . 17

ii. Κύκλωµα . 17

Φωτεινοί Σηµατοδότες 19

Εργαστηριακή ΄Ασκηση 4 . 19

i. Σκοπός . 19

ii. Κύκλωµα . 20

Παιχνίδι Pong 23

Εργαστηριακή ΄Ασκηση 5 . 23

i. Σκοπός . 23

ii. Κύκλωµα . 24

iii

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών ΠΕΡΙΕΧ�ΟΜΕΝΑ

iii. Επιπλέον χαρακτηριστικά (Προαιρετικό) 24

iv. Οδηγίες υλοποίησης . 25

Πληκτρολόγιο 31

Εργαστηριακή ΄Ασκηση 6 . 31

i. Σκοπός . 31

ii. Κύκλωµα . 32

iii. Οδηγίες υλοποίησης . 32

Α΄ HEADER.H 35

Β΄ Μονάδα εισόδου/εξόδου 39

iv. Γενικά . 39

v. Καταχωρητές ελέγχου . 39

vi. Παράδειγµα . 44

Γ΄ Μονάδα ελέγχου διακοπών 47

i. Γενικά . 47

ii. Καταχωρητές ελέγχου . 49

iii. Παράδειγµα . 51

∆΄ Μονάδα Μετρητή 53

iv. Γενικά . 53

v. Καταχωρητές ελέγχου . 53

vi. Παράδειγµα . 56

iv

Εισαγωγική ΄Ασκηση

Εργαστηριακή ΄Ασκηση 1

i. Σκοπός

Σκοπός αυτής της εργαστηριακής άσκησης είναι η εξοικείωσή σας µε τη µονάδα

εισόδου / εξόδου του ΑΤ91, τη µονάδα διαχείρισης διακοπών (interrupts) και τη χρήση του

µετρητή του συστήµατος (Timer / Counter). Στο τέλος αυτής της άσκησης ϑα είστε σε ϑέση

να προγραµµατίζετε το ΑΤ91 ώστε να µπορεί να δεχθεί είσοδο από κάποια µονάδα και να

διαβιβάσει δεδοµένα στην ίδια ή κάποια άλλη, να διαχειρίζεστε σήµατα διακοπών και να

χρησιµοποιείτε το µετρητή του συστήµατος ώστε να προγραµµατίσετε χρονικές ακολουθίες.

Το κύκλωµα το οποίο πρέπει να αναπτύξετε στη πλακέτα επέκτασης (breadboard)

ϕαίνεται στην παραπάνω εικόνα, και αποτελείται από ένα διακόπτη push­button, ένα

LED και µία αντίσταση 1Κ. Στην άσκηση καλείστε να προγραµµατίσετε το ΑΤ91 έτσι ώστε

να ελέγχει (µέσω της υποµονάδας εξόδου) το εικονιζόµενο LED. Το LED ϑα πρέπει είτε να

αναβοσβήνει µε συχνότητα 1 δευτερολέπτου είτε να παραµένει στην ίδια κατάσταση (σβη-

στό ή αναµµένο). Κάθε διαδοχικό πάτηµα του διακόπτη σηµατοδοτεί την εναλλαγή µεταξύ

αυτών των δύο καταστάσεων.

1

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 1

Από το σχηµατικό της προηγούµενης εικόνας προκύπτει πως κάθε πάτηµα του δι-

ακόπτη προκαλεί ένα χαµηλό δυναµικό στη γραµµή εισόδου προς το ΑΤ91. Θα προγραµ-

µατίσουµε συνεπώς έτσι το ΑΤ91 ώστε χαµηλό δυναµικό σε αυτή τη γραµµή να προκαλεί

µια διακοπή. Η ϱουτίνα εξυπηρέτησης διακοπών ϑα περιέχει τον απαραίτητο κώδικα ώ-

στε να ελέγχει ποια περιφερειακή συσκευή προκάλεσε τη διακοπή. Αν η διακοπή έχει

προκληθεί από το πάτηµα του διακόπτη και το LED δεν είναι στην κατάσταση ¨ΑΝΑΒΟΣ-

ΒΗΝΕΙ¨, τότε ϑα σηµατοδοτηθεί η έναρξη λειτουργίας της µονάδας µέτρησης (Timer) για

τη µέτρηση χρονικού διαστήµατος ίσου µε 1 δευτερόλεπτο, διαφορετικά αν το LED είναι

στην κατάσταση ¨ΑΝΑΒΟΣΒΗΝΕΙ¨ ϑα σηµατοδοτηθεί η λήξη λειτουργίας της µονάδας

µέτρησης. Πέρα από το πάτηµα του διακόπτη, ϑα προγραµµατίσουµε το ΑΤ91 ώστε δι-

ακοπή να µπορεί να προκληθεί και από την εξάντληση της επιθυµητής µέτρησης από

το µετρητή του συστήµατος. Αν προκληθεί συνεπώς διακοπή από την ολοκλήρωση της

µέτρησης του ενός δευτερολέπτου, η υποµονάδα εξόδου που ελέγχει τον ακροδέκτη στον

οποίο είναι συνδεδεµένο το LED ϑα προγραµµατιστεί έτσι ώστε να αντιστραφεί η κατάσταση

του LED (από ενεργό να γίνει ανενεργό ή το αντίστροφο). Επιπλέον, ϑα προγραµµατιστεί

η µονάδα µέτρησης, ώστε να µετρήσει εκ νέου χρονικό διάστηµα ίσο µε 1 δευτερόλεπτο.

ii. Κύκλωµα

Η πλήρης συνδεσµολογία που ϑα πρέπει να αναπτύξετε παρουσιάζεται στο επόµενο διά-

γραµµα. Οι επιβλέποντες του εργαστηρίου ϑα σας εξηγήσουν σε ποια σηµεία της πλακέτας

επέκτασης ϑα ϐρείτε τα σήµατα τροφοδοσίας και γής καθώς και τους ακροδέκτες 0 (PIOA_0)

και 1 (PIOA_1) της µονάδας εισόδου / εξόδου.

΄Οπως παρατηρείτε, για τη διασύνδεση του κυκλώµατος που αναπτύξατε µε το ΑΤ91

έχουν χρησιµοποιηθεί µόνο οι ακροδέκτες 0 και 1 της µονάδας εισόδου / εξόδου. Οι

παράµετροι λειτουργίας των ακροδεκτών της µονάδας εισόδου / εξόδου καθορίζονται µέσω

2

1. Εισαγωγική ΄Ασκηση Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

του προγραµµατισµού των καταχωρητών της µονάδας αυτής. Αναλυτικός οδηγός για τον

προγραµµατισµό των καταχωρητών αυτής της µονάδας παρατίθεται στο Παράστηµα Β.

Ο ακροδέκτης 0, που συνδέεται µε τον διακόπτη, πρέπει να ϱυθµιστεί σε λειτουργία

εισόδου. ΄Οσο ο διακόπτης δεν είναι πατηµένος, η γραµµή δεν οδηγείται από εξωτερική

πηγή. Για να µην µένει σε απροσδιόριστη κατάσταση, είναι απαραίτητο να ενεργοποιηθεί

η εσωτερική pull­up αντίσταση, ώστε το δυναµικό εισόδου της γραµµής να διατηρείται

υψηλό. ΄Οταν πατηθεί ο διακόπτης, η γραµµή 0 ϑα οδηγηθεί µε χαµηλό δυναµικό (η

εσωτερική αντίσταση που είναι της τάξης των 100Κ, ϑα αρχίσει να διαρέεται από ϱεύµα

πολύ χαµηλής έντασης). Η αλλαγή της κατάστασης της γραµµής 0 ϑα ενεργοποιήσει µια

διακοπή. Αναλυτικός οδηγός για τον προγραµµατισµό της µονάδας διαχείρησης διακοπών

παρατίθεται στο Παράρτηµα Γ. Τέλος, ϑα πρέπει να λάβετε υπ΄ όψιν σας ότι ο ελεγκτής

εισόδου / εξόδου ϑα αντιληφθεί τόσο το πάτηµα, όσο και την απελευθέρωση του διακόπτη

(και στις δυο περιπτώσεις υπάρχει αλλαγή κατάστασης δυναµικού εισόδου), οπότε πρέπει

να προβλεφθεί το γεγονός πως ϑα δηµιουργηθούν 2 σήµατα διακοπών.

Ο ακροδέκτης 1 πρέπει να ϱυθµιστεί σε λειτουργία εξόδου. Χαµηλό δυναµικό σε αυτόν

τον ακροδέκτη συνεπάγεται σβήσιµο του LED. Υψηλό δυναµικό αντίθετα συνεπάγεται δι-

αφορά τάσης στα άκρα της ϕωτοδιόδου µεγαλύτερη των 0.7V και συνεπώς ενεργοποίηση

της πηγής ϕωτός.

Για τη µέτρηση του διαστήµατος µεταξύ των 2 καταστάσεων του LED στην κατάσταση

¨ΑΝΑΒΟΣΒΗΝΕΙ¨, ϑα χρησιµοποιήσουµε τη µονάδα µέτρησης του ΑΤ91. Αναλυτικός

οδηγός για τον προγραµµατισµό αυτής της µονάδας παρατίθεται στο Παράστηµα ∆.

Χρειάζεται πολύ προσοχή στη συνδεσµολογία του κυκλώµατος, ώστε να µη δηµιουργηθεί

ϐραχυκύκλωµα ανάµεσα σε γραµµή τροφοδοσίας (Vcc ή γραµµή εξόδου µε υψηλό δυναµικό)

και γείωση !!!

iii. Υλοποίηση

Ο Ϲητούµενος προγραµµατισµός του ΑΤ91 για την επίλυση της άσκησης ακολουθεί

το παρακάτω flowchart. Στο flowchart έχουµε αριθµήσει µε 1, 2, . . . , 14 τα διαφορετικά

τµήµατα του κώδικα που παρατίθενται µε την ίδια αρίθµηση παρακάτω. Για παράδειγµα,

στο σηµείο 2 γίνεται ένας ατέρµονος ϐρόχος µέχρι να πατηθεί το πλήκτρο e, οπότε και

τερµατίζει το πρόγραµµα. Ο κώδικας που αντιστοιχεί στο 2 του flowchart είναι αυτός που

παρατίθεται στο υποκεφάλαιο «2. Κεντρικός ϐρόχος».

Το αρχείο "header.h" το οποίο παρατίθεται στο παράρτηµα Α, περιέχει τις δηλώσεις

των δοµών που χρησιµοποιούνται στον υπόλοιπο κώδικα (συµβατές µε τη σηµειολογία

των παραρτηµάτων Β, Γ και ∆) και κάποιες εντολές αρχικοποίησης. Θα πρέπει να περ-

ιλαµβάνετε το αρχείο "header.h" στον κώδικά σας για τις επόµενες ασκήσεις, χωρίς να το

µεταβάλλετε.

3

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 1

∆ιάγραµµα ϱοής προγράµµατος

1. Αρχικοποίηση συστήµατος

Αρχικοποιεί το πρόγραµµα, τις µεταβλητές του συστήµατος και επιτρέπει την πρόσβαση στα περ-

ιφερειακά.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <sys/mman.h>
#include <stdio.h>
#include <stdlib.h>

#include <header.h>

#define PIOA_ID 2
#define TC0_ID 17

#define BUT_IDLE 0

4

1. Εισαγωγική ΄Ασκηση Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

#define BUT_PRESSED 1
#define BUT_RELEASED 2

#define LED_IDLE 0
#define LED_FLASHING 1

void FIQ_handler(void);

PIO* pioa = NULL;
AIC* aic = NULL;
TC* tc = NULL;

unsigned int button_state = BUT_IDLE;
unsigned int led_state = LED_IDLE;

int main(int argc, const char* argv[]){
unsigned int gen;

STARTUP; //ΑΡΧΙΚΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΟΣ

tc->Channel_0.RC = 8192; //ΠΕΡΙΟ∆ΟΣ 1 ∆ΕΥΤΕΡΟΛΕΠΤΟ

tc->Channel_0.CMR = 2084; // SLOW CLOCK , WAVEFORM , DISABLE CLK ON RC COMPARE

tc->Channel_0.IDR = 0xFF; //ΑΠΕΝΕΡΓΟΠΟΙΗΣΗ ΟΛΩΝ ΤΩΝ ∆ΙΑΚΟΠΩΝ

tc->Channel_0.IER = 0x10; //ΕΝΕΡΓΟΠΟΙΗΣΗ ΜΟΝΟ ΤΟΥ RC COMPARE

aic->FFER = (1<<PIOA_ID) | (1<<TC0_ID); // ΟΙ ∆ΙΑΚΟΠΕΣ 2 ,17 Ε ΙΝΑ Ι ΤΥΠΟΥ FIQ

aic->IECR = (1<<PIOA_ID) | (1<<TC0_ID); //ΕΝΕΡΓΟΠΟΙΗΣΗ ∆ΙΑΚΟΠΩΝ : PIOA & TC0

pioa->PUER = 0x01; //ΕΝΕΡΓΟΠΟΙΗΣΗ ΣΤΗ ΓΡΑΜΜΗ 0 : PULL−UP

pioa->ODR = 0x01; //ΓΡΑΜΜΗ 0 : ΛΕΙΤΟΥΡΓΙΑ ΕΙΣΟ∆ΟΥ

pioa->CODR = 0x02; //ΓΡΑΜΜΗ 1 : ∆ΥΝΑΜΙΚΟ ΕΞΟ∆ΟΥ LOW

pioa->OER = 0x02; //ΓΡΑΜΜΗ 1 : ΛΕΙΤΟΥΡΓΙΑ ΕΞΟ∆ΟΥ

gen = pioa->ISR; // PIOA : ΕΚΚΑΘΑΡΙΣΗ ΑΠΟ ΤΥΧΟΝ ∆ΙΑΚΟΠΕΣ

pioa->PER = 0x03; //ΓΡΑΜΜΕΣ 0 , 1 : ΓΕΝΙΚΟΥ ΣΚΟΠΟΥ

gen = tc->Channel_0.SR; //TC0 : ΕΚΚΑΘΑΡΙΣΗ ΑΠΟ ΤΥΧΟΝ ∆ΙΑΚΟΠΕΣ

aic->ICCR = (1<<PIOA_ID)|(1<<TC0_ID); // AIC : ΕΚΚΑΘΑΡΙΣΗ ΑΠΟ ΤΥΧΟΝ ∆ΙΑΚΟΠΕΣ

pioa->IER = 0x01; //ΕΝΕΡΓΟΠΟΙΗΣΗ ∆ΙΑΚΟΠΩΝ ΣΤΗ ΓΡΑΜΜΗ 0

2. Κεντρικός ϐρόχος

Εκτελείται µέχρι να πατηθεί το πλήκτρο ’e’ + enter. Εδώ µπορεί να προστεθεί ο κώδικας επεξερ-

γασίας των δεδοµένων. Θεωρείται ως νήµα χαµηλής προτεραιότητας, διότι µπορεί να διακοπεί από

τη ϱουτίνα εξυπηρέτησης διακοπών.

while((tmp = getchar()) != ’e’)
{

}

3. Τερµατισµός συστήµατος

Επιστρέφει τις δεσµευµένες περιοχές στο σύστηµα και απενεργοποιεί τις διακοπές.

aic->IDCR = (1<<PIOA_ID) | (1<<TC0_ID); // ∆ΙΑΚΟΠΗ ΤΩΝ AIC i n t e r r u p t s

tc->Channel_0.CCR = 0x02; // ΑΠΕΝΕΡΓΟΠΟΙΗΣΗ ΤΟΥ T imer
CLEANUP;
return 0;
}

5

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 1

΄Ελεγχος διακόπτη

4. ΄Ελεγχος µονάδας εισόδου/εξόδου. Εξετάζει αν η µονάδα εισόδου/εξόδου προκάλεσε τη

διακοπή, ή περιµένει να εξυπηρετηθεί.

5. ΄Ελεγχος κατάστασης διακόπτη. Εξετάζει αν ο διακόπτης πατήθηκε ή αφέθηκε.

6. ΄Ελεγχος σηµειωµένης κατάστασης διακόπτη. Ελέγχει αν η κατάσταση στην οποία είχε

σηµειωθεί πως ϐρισκόταν ο διακόπτης, πριν αρχίσει να εξυπηρετείται η διακοπή, είναι η ¨ΜΗ

ΠΑΤΗΜΕΝΟΣ¨.

7. Αλλαγή τρέχουσας κατάστασης. Σηµειώνει πως η κατάσταση του διακόπτη είναι ¨ΠΑΤΗ-

ΜΕΝΟΣ¨.

8. ΄Ελεγχος κατάστασης LED Ελέγχει αν το LED έχει σηµειωθεί πως είναι σε κατάσταση ¨∆ΕΝ

ΑΝΑΒΟΣΒΗΝΕΙ¨.

9. Ενεργοποίηση Μετρητή Ξεκινά τη µέτρηση του 1 δευτερολέπτου και σηµειώνει πως η κατάσ-

ταση του LED είναι ¨ΑΝΑΒΟΣΒΗΝΕΙ¨.

void FIQ_handler(void)
{
unsigned int data_in = 0;
unsigned int fiq = 0;
unsigned int data_out;

fiq = aic->IPR; //ΕΝΤΟΠΙΣΜΟΣ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΠΟΥ ΠΡΟΚΑΛΕΣΕ ΤΗ ∆ΙΑΚΟΠΗ

if(fiq & (1<<PIOA_ID)){ //ΕΛΕΓΧΟΣ Γ Ι Α PIOA

data_in = pioa->ISR; //ΕΚΚΑΘΑΡΙΣΗ ΤΗΣ ΠΗΓΗΣ ΤΗΣ ∆ΙΑΚΟΠΗΣ

aic->ICCR = (1<<PIOA_ID); //ΕΚΚΑΘΑΡΙΣΗ ΤΗΣ ∆ΙΑΚΟΠΗΣ ΑΠΟ AIC

data_in = pioa->PDSR; //ΑΝΑΓΝΩΣΗ ΤΙΜΩΝ ΕΙΣΟ∆ΟΥ

if(data_in & 0x01){ //∆ΙΑΚΟΠΤΗΣ ΠΑΤΗΜΕΝΟΣ ;

if(button_state == BUT_IDLE){
button_state = BUT_PRESSED;
if(led_state == LED_IDLE){ //ΑΝ ∆ΕΝ ΑΝΑΒΟΣΒΗΝΕΙ

tc->Channel_0.CCR = 0x05; //ΕΝΑΡΞΗ ΜΕΤΡΗΤΗ

led_state = LED_FLASHING;
}

΄Ελεγχος διακόπτη

10. Απενεργοποίηση Μετρητή. Απενεργοποιεί τον µετρητή και σηµειώνει πως το LED είναι σε

κατάσταση ¨∆ΕΝ ΑΝΑΒΟΣΒΗΝΕΙ¨.

11. ΄Ελεγχος σηµειωµένης κατάστασης διακόπτη. Ελέγχει αν η κατάσταση στην οποία είχε

σηµειωθεί πως ϐρισκόταν ο διακόπτης, πριν αρχίσει να εξυπηρετείται η διακοπή, είναι η ¨ΠΑΤΗ-

ΜΕΝΟΣ¨.

12. Αλλαγή τρέχουσας κατάστασης. Σηµειώνει πως η κατάσταση του διακόπτη είναι ¨ΜΗ

ΠΑΤΗΜΕΝΟΣ¨.

else{
tc->Channel_0.CCR = 0x02; //∆ΙΑΚΟΠΗ ΜΕΤΡΗΤΗ

led_state = LED_IDLE;
}

}
}else{

if(button_state == BUT_PRESSED)
button_state = BUT_IDLE;

}
}

6

1. Εισαγωγική ΄Ασκηση Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

΄Ελεγχος Μετρητή

13. ΄Ελεγχος Μετρητή. Εξετάζει αν η Μονάδα Μετρητή προκάλεσε τη διακοπή, ή περιµένει να

εξυπηρετηθεί.

14. Επανέναρξη Μέτρησης. Επαναπρογραµµατίζει τη Μονάδα Μετρητή για να ξεκινήσει πάλι η

µέτρηση του 1 δευτερολέπτου.

if(fiq & (1<<TC0_ID)){
data_out = tc->Channel_0.SR;//ΕΚΚΑΘΑΡΙΣΗ ΤΗΣ ΠΗΓΗΣ ΤΗΣ ∆ΙΑΚΟΠΗΣ

aic->ICCR = (1<<TC0_ID); //ΕΚΚΑΘΑΡΙΣΗ ∆ΙΑΚΟΠΗΣ ΚΑΙ ΑΠΟ AIC

data_out = pioa->ODSR; //ΑΝΑΓΝΩΣΗ ΤΙΜΩΝ ΕΞΟ∆ΟΥ

pioa->SODR = data_out & 0x02;
pioa->CODR = data_out & 0x02;
tc->Channel_0.CCR = 0x05;

}
}

Παρατηρήστε πως στην αρχή του προγράµµατος εκτελείται κλήση της µακροεντολής S­

TARTUP. Η µακροεντολή STARTUP περιέχει τον κώδικα που είναι απαραίτητος για την

αρχικοποίηση του συστήµατος. Μια από τις διαδικασίες που εκτελούνται είναι και η

ενηµέρωση του λειτουργικού συστήµατος για τη ϑέση µνήµης όπου έχει τοποθετηθεί η

ϱουτίνα εξυπηρέτησης διακοπών. Η ϱουτίνα εξυπηρέτησης διακοπών πρέπει να έχει πάν-

τα το όνοµα FIQ_handler, διότι η µακροεντολή STARTUP κάνει χρήση του συγκεκριµένου

ονόµατος για να την δηλώσει στο λειτουργικό σύστηµα. Μόλις ενεργοποιηθεί κάποια

από τις διακοπές που έχουν οριστεί ως ενεργές κατά την αρχικοποίηση των περιφερειακών

συσκευών, ο επεξεργαστής ϑα διακόψει τη ϱοή εκτέλεσης του προγράµµατος και ϑα µεταβεί

στην ϱουτίνα εξυπηρέτησης διακοπών. Στη ϱουτίνα εξυπηρέτησης πρέπει να γίνει έλεγχος

για να εντοπιστεί το περιφερειακό που προκάλεσε τη διακοπή. Αν έχει προκληθεί από τη

µονάδα εισόδου/εξόδου, ϑα γίνει έλεγχος της κατάστασης του διακόπτη και του LED, ώστε

να υπολογιστεί η νέα κατάσταση στην οποία ϑα εισέλθει το LED. Αν έχει προκληθεί από

τη µονάδα µετρητή, ϑα γίνει έλεγχος της τρέχουσας κατάστασης του LED (αναµµένο/σ-

ϐηστό), ϑα γίνει αντιστροφή της κατάστασης του LED και ϑα επαναπρογραµµατιστεί η

µονάδα µετρητή.

Τέλος, παρατηρείστε πως το πρόγραµµα ολοκληρώνεται µε την κλήση της µακροεν-

τολής CLEANUP. Η µακροεντολή CLEANUP περιέχει τον απαραίτητο κώδικα για την

αποδέσµευση των πηγών του συστήµατος που είχαν δεσµευτεί µε την κλήση της µακροεν-

τολής STARTUP.

iv. Αποσφαλµάτωση

Η αποσφαλµάτωση του κυκλώµατος και ο έλεγχος ορθής λειτουργίας, ϑα σας ϐοηθή-

σει στο να εντοπίσετε σηµεία του κυκλώµατός σας που δεν εµφανίζουν την αναµενόµενη

7

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 1

συµπεριφορά (π.χ. ϐραχυκυκλωµένα, ανοιχτά κυκλώµατα λόγω κακής επαφής καλωδί-

ων κλπ). Η µεθοδολογία που µπορείτε να ακολουθήσετε είναι η ϱύθµιση των γραµµών

εισόδου / εξόδου µε τη ϐοήθεια εργαλείων της κονσόλας του λειτουργικού συστήµατος, η

εγγραφή τιµών στους καταχωρητές που ελέγχουν την έξοδο ώστε να διαπιστωθεί αν το LED

αναβοσβήνει και η ανάγνωση τιµών από τους καταχωρητές εισόδου, ώστε να διαπιστωθεί η

αλλαγή του δυναµικού εισόδου κατά το πάτηµα του διακόπτη.

Τα εργαλεία που ϑα χρησιµοποιήσετε είναι τα mw για την εγγραφή τιµών στις επι-

ϑυµητές ϑέσεις µνήµης και md για την ανάγνωση τιµών από τις επιθυµητές ϑέσεις µνήµης.

Υπενθύµιση

Η εντολή md 0 <phy_addr> <word_count> χρησιµοποιείται για να εµφανίσει τα

περιεχόµενα της µνήµης. Ξεκινά από τη διεύθυνση phy_addr και τυπώνει τις

πρώτες <word_count> διαδοχικές λέξεις. Για παράδειγµα, η εντολή

md 0 0xFFFFF400 4

ϑα τυπώσει τις τιµές των 4 πρώτων καταχωρητών της µονάδας εισόδου / εξόδου. Η

εντολή mw 0 <phy_addr> <value> χρησιµοποιείται για να αποθηκεύσει την τιµή

<value> στη ϑέση µνήµης <phy_addr>, εκτελώντας προσπέλαση λέξης (4 bytes).

Για παράδειγµα, η εντολή

mw 0 0xFFFFF400 0x10

εκτελεί την εγγραφή της τιµής 16 στον καταχωρητή PIO_PER.

Επειδή η ανάγνωση και η εγγραφή γίνονται µε προσπέλαση λέξης, οι διευθύν-

σεις µνήµης που εισάγονται ως παράµετροι στις 2 αυτές εντολές πρέπει να είναι

ακέραια πολλαπλάσια του 4.

Για παράδειγµα, για να ϱυθµίσετε την γραµµή 1 σε λειτουργία εξόδου, εκτελέστε τις

επόµενες εντολές :

Εντολή Λειτουργία Γραµµής Καταχωρητής

mw 0 0xFFFFF400 0x02 Γενικού Σκοπού PIO_PER

mw 0 0xFFFFF410 0x02 ΄Εξοδος PIO_OER

mw 0 0xFFFFF430 0x02 Υψηλό δυναµικό PIO_SODR

mw 0 0xFFFFF434 0x02 Χαµηλό δυναµικό PIO_CODR

8

1. Εισαγωγική ΄Ασκηση Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

Η εγγραφή στον καταχωρητή PIO_SODR ϑα ενεργοποιήσει το LED, ενώ η εγγραφή

στον PIO_CODR ϑα απενεργοποιήσει το LED. Με τις επόµενες εντολές γίνεται ο έλεγχος

της γραµµής 0, στην οποίο είναι συνδεδεµένος ο διακόπτης :

Εντολή Λειτουργία Γραµµής Καταχωρητής

mw 0 0xFFFFF400 0x01 Γενικού Σκοπού PIO_PER

mw 0 0xFFFFF414 0x01 Είσοδος PIO_ODR

mw 0 0xFFFFF464 0x01 Ενεργοποίηση Pull­up PIO_PUER

md 0 0xFFFFF43C 1 Ανάγνωση δυναµικού εισόδου PIO_PDSR

Αν ο διακόπτης είναι πατηµένος, η τιµή του bit 0 της λέξης που ϑα εµφανίσει η εντολή

md ϑα είναι 0 (χαµηλό δυναµικό), ενώ αν δεν είναι πατηµένος, η τιµή του bit 0 της λέξης

που ϑα εµφανιστεί ϑα είναι 1 (λόγω της pull­up).

9

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 1

10

∆ιαµόρφωση Εύρους Παλµού

Εργαστηριακή ΄Ασκηση 2

i. Σκοπός

Σκοπός αυτής της εργαστηριακής άσκησης είναι η χρήση της µονάδας εισόδου / εξόδου

για εφαρµογή της τεχνικής διαµόρφωσης εύρους παλµού (Pulse Width Modulation PWM)

στην οδήγηση LED bar. Η τεχνική της διαµόρφωσης εύρους παλµού σχετίζεται µε το

χρονικό διάστηµα κατά το οποίο µια γραµµή εξόδου διατηρεί το δυναµικό της υψηλό

(High). Σε µια χρονική περίοδο, ο λόγος του χρονικού διαστήµατος κατά το οποίο το σήµα

εξόδου είναι High προς το συνολικό διάστηµα της περιόδου ονοµάζεται λόγος κύκλου

(duty cycle). Για παράδειγµα, στα παρακάτω διαγράµµατα παρουσιάζονται κυµατοµορφές

εξόδου µε duty cycle ίσο µε 80%, 50% και 10% αντίστοιχα :

ii. Υποερώτηµα 1. Εφαρµογή τεχνικής PWM σε οδήγηση LED bar

Στο πρώτο µέρος της εργαστηριακής άσκησης καλείστε να συνδέσετε το σύστηµα ΑΤ91

µε ένα LED bar, µέσω της µονάδας εισόδου/εξόδου. Για καλύτερη οδήγηση του εξωτερικού

κυκλώµατος, ϑα χρησιµοποιηθούν εξωτερικοί buffers.

11

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 2

iii. Κύκλωµα

Υλικά

Για την ανάπτυξη του 1ου κυκλώµατος ϑα χρειαστείτε 1 πολλαπλή αντίσταση 1Κ,

1 σειρά LED (LED bar) και 1 κύκλωµα οδήγησης (ULN2003). Για το δεύτερο

κύκλωµα ϑα χρειαστείτε επιπλέον ένα διακόπτη (push­button).

Η συνδεσµολογία του κυκλώµατος είναι η εξής :

Η οδήγηση των LEDs γίνεται µε την τεχνική PWM και σε καθένα από αυτά αντισ-

τοιχίζεται διαφορετικό duty cycle. Ο πίνακας αντιστοίχισης είναι ο ακόλουθος :

Line Duty Cycle

PIOA_0 80%

PIOA_1 70%

PIOA_2 60%

PIOA_3 50%

PIOA_4 40%

PIOA_5 30%

PIOA_6 20%

Το αποτέλεσµα της εκτέλεσης πρέπει να έχει την ακόλουθη µορφή:

12

2. ∆ιαµόρφωση Εύρους Παλµού Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

Για να δηµιουργήσετε την επιθυµητή διαµόρφωση των εξόδων, µπορείτε να ακολουθή-

σετε το ακόλουθο ενδεικτικό διάγραµµα ϱοής :

Αφού γίνει η αρχικοποίηση του συστήµατος, η ϱοή εκτέλεσης ϑα εισέλθει στον κεντρικό

ϐρόχο. Η αρχική τιµή του counter είναι 100, έτσι η συνθήκη ελέγχου counter>100 ϑα

είναι αληθής κατά την πρώτη εκτέλεση του ϐρόχου. Η ϱοή εκτέλεσης ϑα περάσει αρχικά

από τις εντολές αρχικοποίησης των µεταβλητών bitmask, next & counter, ενώ ϑα απεν-

εργοποιηθούν και όλες οι έξοδοι (ϑα σβήσουν όλα τα LEDs). Στη συνέχεια, η µεταβλητή

counter ϑα αυξάνεται σε κάθε ϐρόχο και µόλις ϕτάσει στην τιµή next (η οποία αρχικά

είναι 20), ϑα ενεργοποιηθεί η γραµµή που αντιστοιχεί στην τιµή της µεταβλητής bitmask

(επειδή αρχικά η bitmask είναι 1, γράφοντας την τιµή της στον καταχωρητή PIO_SODR

ϑα ενεργοποιηθεί η γραµµή 0). Η next ϑα γίνει 30 και η bitmask ϑα γίνει 2. Μόλις η συν-

ϑήκη counter>=next γίνει πάλι αληθής, η εγγραφή της τιµής της bitmask στον PIO_SODR

ϑα ενεργοποιήσει τη γραµµή 1. Σηµειώστε ότι η γραµµή 0 είναι ήδη ενεργοποιηµένη για

10 επαναλήψεις. Η διαδικασία αυτή ϑα επαναληφθεί µέχρι ο counter να ϕτάσει την τιµή

13

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 2

100, όπου ϑα επαναρχικοποιηθούν οι τιµές των µεταβλητών bitmask, next & counter και

ϑα απενεργοποιηθούν όλες οι έξοδοι. Παρατηρείστε πως η γραµµή 0 είναι ενεργοποιηµένη

από τον 20ο µέχρι τον 100ο κύκλο επανάληψης (80%), η γραµµή 1 είναι ενεργοποιηµένη

από τον 30ο µέχρι τον 100ο κύκλο επανάληψης (70%) κλπ.

iv. Οδηγίες αποσφαλµάτωσης υποερωτήµατος 1

Ξεκινήστε µε την υλοποίηση του κυκλώµατος. Βεβαιωθείτε ότι οι συνδεσµολογίες είναι

σωστές και ότι δεν υπάρχουν ϐραχυκυκλώµατα ανάµεσα σε γραµµές τροφοδοσίας και γεί-

ωσης. Εξακριβώστε την ορθότητα του κυκλώµατος µε τη ϐοήθεια της εντολής mw του Lin­

ux. Συγκεκριµένα, ϑέστε τις γραµµές PIOA_0 ­ PIOA_6 σε κατάσταση λειτουργίας γενικού

σκοπού (εγγραφή στον καταχωρητή PIO_PER, διεύθυνση 0xFFFFF400) και σε κατάσταση

εξόδου (εγγραφή στον καταχωρητή PIO_OER, διεύθυνση 0xFFFFF410). Οδηγήστε όλες τις

εξόδους σε χαµηλό δυναµικό (εγγραφή στον καταχωρητή PIO_CODR, διεύθυνση 0xFFFF­

F434) και αρχίστε να ενεργοποιείτε τις εξόδους µια-προς-µία. ∆ηλαδή, αρχικά οδηγήστε

την PIOA_0 σε υψηλό δυναµικό, επιβεβαιώστε ότι ανάβει στο αντίστοιχο LED και ξαναοδ-

ηγήστε την σε χαµηλό δυναµικό. Επαναλάβετε τα ίδια ϐήµατα και για τις υπόλοιπες 6

γραµµές. Αν υπάρχει κάποιο ϐραχυκύκλωµα ή πρόβληµα στο κύκλωµα ϑα ϕανεί επειδή

δεν ϑα ανάβει το αντίστοιχο LED ή ϑα ανάψουν περισσότερα από ένα.

v. Υποερώτηµα 2. Ολίσθηση ϕωτεινότητας

Στο δεύτερο µέρος της εργαστηριακής άσκησης καλείστε να επαυξήσετε τη προηγού-

µενη λύση σας, έτσι ώστε να εκτελείται δεξιά ή αριστερή κυκλική ολίσθηση µε συχνότητα

5Hz, µετά από πάτηµα εξωτερικού διακόπτη. Συγκεκριµένα, τα LEDs ϑα ξεκινούν, µε

duty cycle ίδιο µε αυτό του πρώτου µέρους της άσκησης. ΄Οταν το σύστηµα ϐρίσκε-

ται σε αυτή την κατάσταση (κατάσταση IDLE), το πάτηµα του διακόπτη ϑα ενεργοποιεί

την κυκλική ολίσθηση προς τα δεξιά (το σύστηµα ϑα µεταβαίνει στην κατάσταση ROTAT­

ING_RIGHT). ΄Οταν το σύστηµα ϐρίσκεται στην κατάσταση ROTATING_RIGHT, το πάτηµα

του διακόπτη ϑα ενεργοποιεί την κυκλική ολίσθηση προς τα αριστερά (το σύστηµα ϑα

µεταβαίνει στην κατάσταση ROTATING_LEFT). ΄Οταν το σύστηµα ϐρίσκεται στην κατάσ-

ταση ROTATING_LEFT, το πάτηµα του διακόπτη ϑα ενεργοποιεί την κατάσταση IDLE και

ϑα σταµατά η ολίσθηση.

• Κυκλική ολίσθηση δεξιά : Το duty cycle της γραµµής n ϑα µεταφέρεται στο duty

cycle της γραµµής n­1, για n = 6...1. Το duty cycle της γραµµής 0 ϑα µεταφέρεται

στην 6η γραµµή.

14

2. ∆ιαµόρφωση Εύρους Παλµού Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

• Κυκλική ολίσθηση αριστερά : Το duty cycle της γραµµής ν ϑα µεταφέρεται στο duty

cycle της γραµµής n+1, για n = 5...0. Το duty cycle της γραµµής 6 ϑα µεταφέρεται

στην γραµµή 0.

vi. Οδηγίες υλοποίησης υποερωτήµατος 2

Τροποποιήστε την συνδεσµολογία του κυκλώµατος, έτσι ώστε να συµπεριλάβετε και τον

διακόπτη, όπως στο σχήµα.

Το αποτέλεσµα που πρέπει να εµφανιστεί απεικονίζεται στο επόµενο σχήµα:

Παρατηρείστε πως η ολίσθηση µπορεί να υλοποιηθεί µε τη χρήση µιας µεταβλητής

µάσκας (mask) η οποία ϑα ολισθαίνει δεξιά ή αριστερά και ϑα αποτελεί την τιµή αρ-

χικοποίησης της µεταβλητής bitmask που χρησιµοποιήσαµε στο προηγούµενο ενδεικ-

15

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 2

τικό διάγραµµα ϱοής. ΄Ενα ενδεικτικό διάγραµµα ϱοής για το τρέχον υποερώτηµα είναι

συνεπώς το ακόλουθο :

16

Ρολόι

Εργαστηριακή ΄Ασκηση 3

i. Σκοπός

Στην άσκηση αυτή καλείστε να ϕτιάξετε ένα ϱολόι δευτερολέπτων, 2 ψηφίων, µε λει-

τουργία "stopwatch". Το ϱολόι σας ϑα ξεκινά από την τιµή 0 και ϑα αυξάνεται ανά 1 µέχρι

την τιµή 59 (µε συχνότητα 1 Hz), απ’οπου ϑα επιστρέφει πάλι στο 0.

Το σύστηµα ξεκινά από την κατάσταση IDLE, στην οποία το ϱολόι ξεκινά να µετρά και

τα 7­segment displays απεικονίζουν την τιµή του. Το πάτηµα του εξωτερικού διακόπτη

ϑα σταµατά την ανανέωση των 7­segment displays (δηλαδή τα 7­segment displays ϑα

διατηρούν την τελευταία τιµή του ϱολογιού πριν το πάτηµα του διακόπτη), ενώ το ϱολόι

εσωτερικά ϑα συνεχίζει να µετρά. Αυτή τη νέα κατάσταση ϑα την αποκαλούµε κατάσταση

HOLD. Η κατάσταση αυτή υποδεικνύεται από το αναβόσβηµα των τελειών των 7­segment

displays µε συχνότητα 2 Hz). Πάτηµα του διακόπτη ενώ το σύστηµα ϐρίσκεται σε κατάσ-

ταση HOLD, προκαλεί µετάβαση και πάλι στην κατάσταση IDLE, µε διαρκή και πάλι

απεικόνιση της τιµής του ϱολογιού και απενεργοποίηση των τελειών. Τέλος, ανεξάρτητα

από τη κατάσταση στην οποία ϐρίσκεται το σύστηµα, πάτηµα του διακόπτη για χρονικό

διάστηµα µεγαλύτερο του 1 δευτερολέπτου ϑα πρέπει να επαναφέρει το ϱολόι στην τιµή 0.

ii. Κύκλωµα

Υλικά

Τα υλικά που ϑα χρειαστείτε για να υλοποιήσετε το κύκλωµα είναι 2 7­segment

displays και 2 BCD to 7­segment display drivers.

Το λογικό διάγραµµα του κυκλώµατος που ϑα πρέπει να αναπτύξετε στην πλακέτα

επέκετασης είναι το ακόλουθο :

17

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 3

Οι ακροδέκτες 0 έως 8 της µονάδας εισόδου / εξόδου ϑα πρέπει να χρησιµοποιοηθούν

ως έξοδοι, ενώ ο ακροδέκτης 9 ως είσοδος µε pull­up αντίσταση.

18

Φωτεινοί Σηµατοδότες

Εργαστηριακή ΄Ασκηση 4

i. Σκοπός

Σκοπός αυτής της εργαστηριακής άσκησης είναι η υλοποίηση ενός συστήµατος ελέγχου

ϕωτεινών σηµατοδοτών, για ένα µικρό οδικό δίκτυο, µε ειδικούς περιορισµούς (δες παρακάτω

σχήµα). Ενας πυροσβεστικός σταθµός έχει έξοδο σε οδό διπλής κυκλοφορίας. Η κυκλο-

ϕορία στην οδό ϱυθµίζεται από τους ϕωτεινούς σηµατοδότες Φ2 (ΚΟ-ΚΙ-ΠΡ) και Φ3 (ΚΙ,

αναβοσβήνει περιοδικά ανά 0,5 σες). Η έξοδος των πυροσβεστικών οχηµάτων ϱυθµίζε-

ται από τον σηµατοδότη Φ1 (ΚΟ-ΠΡ). Σε κανονικές συνθήκες ο Φ1 είναι κόκκινος, ο Φ2

πράσινος και ο Φ3 σβηστός. Η κυκλοφορία στην οδό σταµατά µε την πίεση ενός διακόπτη

START, επιτρέποντας την έξοδο των πυροσβεστικών οχηµάτων, και συνεχίζεται µε την πίεση

διακόπτη STOP. Για την αποφυγή σφαλµάτων χειρισµού ο Φ1 µένει πράσινος τουλάχιστον

για ένα ορισµένο χρονικό διάστηµα (ϐλ. πίνακα στην επόµενη σελίδα), ακόµα κι αν ο

διακόπτης STOP πιεστεί νωρίτερα.

19

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 4

(ΚΟ=κόκκινος, ΚΙ=κίτρινος, ΠΡ=πράσινος, OFF=σβηστός, BLN=αναβοσβήνει περιοδικά ανά 0,5

sec)

κατάσταση Φ1 Φ2 Φ3 διάρκεια (sec) επόµενη κατάσταση παρατηρήσεις

Κ0 (αρχική) ΚΟ ΠΡ OFF 1/4 εάν πιέστηκε το START:

Κ1 αλλιώς : Κ0

περιοδική

ανίχνευση για πίεση

START, ο διακόπτης

αυτός ϑέτει ένα flag

‘‘request_service’’

Κ1 ΚΟ ΠΡ BLN 10 Κ2

Κ2 ΚΟ ΚΙ BLN 3 Κ3

Κ3 ΚΟ ΚΟ BLN 2 Κ4

Κ4 ΠΡ ΚΟ BLN 10 Κ5 τουλάχιστον 10 sec

Κ5 ΠΡ ΚΟ BLN 1/4 εάν πιέστηκε το STOP: Κ6

αλλιώς : Κ5

το STOP απενερ-

γοποιεί το flag ‘‘re­

quest_service’’

Κ6 ΚΟ ΚΟ OFF 5 Κ0 επιστροφή στην αρ-

χική κατάσταση

Η ακολουθία ενδείξεων των σηµατοδοτών ορίζεται από την ακόλουθη µηχανή πεπερασ-

µένων καταστάσεων (Finite State Machine FSM).

20

4. Φωτεινοί Σηµατοδότες Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

ii. Κύκλωµα

Υλικά

Τα υλικά που ϑα χρειαστείτε για την υλοποίηση του κυκλώµατος είναι 2 πολ-

λαπλές αντιστάσεις 1Κ, 2 διακόπτες τύπου push­button, 10 LEDs (3 ΚΟ, 3 ΠΡ,

4 ΚΙ) και 1 ULN2003 κύκλωµα οδήγησης.

Το λογικό διάγραµµα του κυκλώµατος που ϑα πρέπει να αναπτύξετε στην πλακέτα επέκε-

τασης είναι το ακόλουθο :

Οι ακροδέκτες 0 έως 6 της µονάδας εισόδου / εξόδου ϑα πρέπει να χρησιµοποιοηθούν ως

έξοδοι, ενώ οι ακροδέκτες 7 και 8 ως είσοδοι µε pull­up αντίσταση.

21

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 4

22

Παιχνίδι Pong

Εργαστηριακή ΄Ασκηση 5

i. Σκοπός

Ο σκοπός αυτής της άσκησης είναι η σχεδίαση και ανάπτυξη του παιχνιδιού pong. Το

παιχνίδι αυτό προσοµοιώνει ένα παιχνίδι ping­pong, όπου ο κάθε παίκτης προσπαθεί να

προλάβει το µπαλάκι που του πετά ο αντίπαλος, χτυπώντας το µε µια ϱακέτα. Στην ηλεκ-

τρονική του έκδοση, το µπαλάκι αντικαθίσταται µε ένα LED και η ϱακέτα µε ένα διακόπτη

τύπου push­button. Οι κανόνες του παιχνιδιού είναι :

Το µπαλάκι ξεκινά από έναν παίκτη µε συγκεκριµένη/σταθερή ταχύτητα και κινείται προς τον

αντίπαλό του. Μόλις ϕτάσει στο τελευταίο σηµείο της τροχιάς του, ο αντίπαλος καλείται να πιέσει τον

διακόπτη του, ώστε να αναγκάσει το µπαλάκι να αλλάξει κατεύθυνση. Αυτά τα ϐήµατα επαναλαµ-

ϐάνονται µέχρι να χάσει ένας παίκτης το µπαλάκι (να µην προλάβει να πατήσει το διακόπτη του

έγκαιρα). Ο αντίπαλος του παίκτη που δεν πίεσε το διακόπτη έγκαιρα, ανταµοίβεται µε έναν πόντο.

Μόλις κάποιος παίκτης συγκεντρώσει 3 πόντους ϑεωρείται νικητής και το παιχνίδι σταµατά.

Το µπαλάκι ϑα προσοµοιωθεί µε τη χρήση του LED bar. Κάθε στιγµή ϑα είναι ενερ-

γοποιηµένο µόνο ένα από τα LEDs, το οποίο ϑα συµβολίζει τη ϑέση της µπάλας. Ανάλογα

µε την κατεύθυνση της µπάλας, ϑα σβήνει το τρέχον και ϑα ανάβει το επόµενο LED. ΄Οταν

το µπαλάκι ϕτάσει στα όρια και δεν έχει πατηθεί ο αντίστοιχος διακόπτης, ϑα απενερ-

γοποιούνται όλα τα LEDs (κανένα από τα LEDs δεν ϑα παραµένει αναµένο). Η ανίχνευση

της κατάστασης των διακοπτών (πατηµένοι ή ελεύθεροι) ϑα γίνεται µε polling και όχι µε

interrupts. ΄Οταν ολοκληρώνεται το παιχνίδι, πρέπει να ενεργοποιούνται όλα τα LEDs του

LED bar και να παραµένουν σε αυτή την κατάσταση µέχρι να ξεκινήσει νέος γύρος. Για να

ξεκινήσει νέος γύρος παιχνιδιού, πρέπει να πατηθεί κάποιος διακόπτης. Ο παίκτης που

ϑα πατήσει πρώτος το διακόπτη του για να ξεκινήσει το παιχνίδι, ϑα έχει αρχικά την µπάλα

στην κατοχή του (η µπάλα ϑα ξεκινά από την πλευρά του προς τον αντίπαλο). Σχεδιάστε το

διάγραµµα µετάβασης καταστάσεων και στη συνέχεια υλοποιήστε το στο σύστηµα ΑΤ91.

23

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 5

ii. Κύκλωµα

Τα υλικά που ϑα χρειαστείτε για την υλοποίηση του κυκλώµατος είναι 2 πολλαπλές

αντιστάσεις 1Κ, 2 διακόπτες τύπου push­button, 1 LED bar και 2 ULN2003 κυκλώµατα

οδήγησης.

Το λογικό διάγραµµα του κυκλώµατος που ϑα πρέπει να αναπτύξετε στην πλακέτα

επέκετασης είναι το ακόλουθο :

Οι ακροδέκτες 0 έως 9 της µονάδας εισόδου / εξόδου ϑα πρέπει να χρησιµοποιοηθούν ως

έξοδοι, ενώ οι ακροδέκτες 10 και 11 ως είσοδοι µε pull­up αντίσταση.

iii. Επιπλέον χαρακτηριστικά (Προαιρετικό)

Για να ϐελτιωθεί η ποιότητα του παιχνιδιού, είναι επιθυµητό να προστεθούν τα εξής

χαρακτηριστικά :

1. Κάθε ϕορά που ένας παίκτης χάνει την µπάλα, ϑα εµφανίζεται το τρέχον σκορ για 1 δευτερόλεπτο

και µετά ϑα συνεχίζεται το παιχνίδι.

2. Η ταχύτητα της µπάλας ϑα αυξάνεται µετά από 10 συνεχόµενες αλλαγές κατεύθυνσης. Το ϐήµα

αύξησης της ταχύτητας µπορείτε να το επιλέξετε εσείς.

24

5. Παιχνίδι Pong Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

3. Για να αποφευχθούν περιπτώσεις συνεχούς πατήµατος του διακόπτη, ϑα πρέπει να τεθούν όρια. Σε

κάθε πάτηµα, η διάρκεια του πατήµατος δεν ϑα ξεπερνά το χρόνο που χρειάζεται η µπάλα να διανύσει

2 σηµεία (δηλαδή να εµφανιστεί 2 LEDs παραπέρα) και δεν ϑα λαµβάνεται υπόψη οποιαδήποτε

αλλαγή της κατάστασης του διακόπτη για χρόνο ίσο µε το χρόνο που απαιτεί η µπάλα να διανύσει 4

σηµεία.

iv. Οδηγίες υλοποίησης

Για κάθε παίκτη, η απεικόνιση του σκορ ϑα γίνεται µε την ενεργοποίηση LEDs του LED

bar. Ξεκινώντας από το LED που αντιστοιχεί στην πλησιέστερη ϑέση της µπάλας προς τον

κάθε παίκτη και συνεχίζοντας προς το κέντρο του LED bar, ϑα πρέπει να ενεργοποιούν-

ται τόσα LEDs όσος είναι και ο αριθµός πόντων του κάθε παίκτη. ΄Ενα παράδειγµα

παρουσιάζεται στην επόµενη εικόνα, όπου ο παίκτης στα δεξιά έχει 1 πόντο και ο παίκτης

στα αριστερά έχει 2 πόντους :

Η διάρκεια πατήµατος µπορεί να υλοποιηθεί µε τον εξής τρόπο :

Ορίστε µια µεταβλητή But_activeQ για κάθε διακόπτη, η οποία ϑα ενεργοποιείται

όποτε ανιχνεύεται πάτηµα του διακόπτη και ϑα απενεργοποιείται µετά από 2 χρονικές

περιόδους της µπάλας, ανεξάρτητα από την κατάσταση του διακόπτη. Η απενεργοποίηση

µπορεί να γίνει χρησιµοποιώντας µια µεταβλητή But_DownQ ως µετρητή, η οποία ϑα αρ-

χικοποιείται στην τιµή 6 όταν ανιχνεύεται ένα πάτηµα του διακόπτη και η But_DownQ

έχει την τιµή 0. Η τιµή της µεταβλητής, όσο είναι µεγαλύτερη από το 0, ϑα µειώνεται κατά

1 µονάδα κάθε ϕορά που ολοκληρώνει τη µέτρησή του ο Timer (δηλαδή µέσα στη ϱουτί-

να εξυπηρέτησης). Μόλις η τιµή της But_DownQ γίνει µικρότερη του 4, η But_activeQ

πρέπει να απενεργοποιηθεί. Στο πρόγραµµα, στα σηµεία όπου ελέγχεται η τρέχουσα

κατάσταση του διακόπτη, χρησιµοποιείστε την µεταβλητή But_activeQ αντί για την τιµή

που λαµβάνετε από την γραµµή της µονάδας εισόδου/εξόδου που είναι συνδεδεµένη µε

τον διακόπτη.

Από τη στιγµή που ανιχνεύεται το πάτηµα του διακόπτη, η δυνατότητα επόµενης

ανίχνευσης πρέπει να αναστέλεται για 6 χρονικές περιόδους της µπάλας. Αυτό µπορεί

25

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 5

να υλοποιηθεί πάλι µε τη χρήση της µεταβλητής But_DownQ. Μόλις ανιχνευτεί το πάτηµα

του διακόπτη, πρέπει να γίνει έλεγχος της τιµής της But_DownQ. Αν είναι µεγαλύτερη του

0 δεν ϑα γίνει καµία ανανέωση της µεταβλητής But_activeQ. Αν έχει την τιµή 0, τότε και

µόνο τότε ϑα πρέπει να τεθεί η But_activeQ στην τιµή 1.

Σχήµα 5.1: Αρχικοποίηση των µεταβλητών κατά την έναρξη του κάθε παιχνιδιού

Τα ενδεικτικά ϐήµατα που περιγράφει το διάγραµµα ϱοής 5.1 πρέπει να εκτελούνται κατά

την αρχικοποίηση των µεταβλητών της µηχανής πεπερασµένων καταστάσεων, όταν δηλαδή

ξεκινά ένας γύρος παιχνιδιού.

Σχήµα 5.2: Ρουτίνα εξυπηρέτησης διακοπών του µετρητή συστήµατος

Το διάγραµµα 5.2 περιγράφει τα ϐήµατα µιας ενδεικτικής ϱουτίνας εξυπηρέτησης δι-

ακοπών για τον µετρητή του συστήµατος. Οι καταστάσεις Check_player_keys και Move_ball

26

5. Παιχνίδι Pong Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

αναλύονται µε περισσότερες λεπτοµέρειες στα διαγράµµατα 5.3 και 5.4 αντίστοιχα.

Σχήµα 5.3: ΄Ελεγχος χρονικών περιορισµών σχετικά µε το πάτηµα των διακοπτών

Το διάγραµµα 5.3 παραθέτει τα ενδεικτικά ϐήµατα που χρειάζεται να εκτελεστούν, ώστε

να γίνει ο έλεγχος για τους χρονικούς περιορισµούς που τίθενται, όσον αφορά τα χρονικά

διαστήµατα κατά τα οποία οι διακόπτες ϑεωρούνται πατηµένοι ή όχι.

Το διάγραµµα 5.4 παραθέτει τα ενδεικτικά ϐήµατα που χρειάζεται να εκτελεστούν, ώστε

να γίνει ο έλεγχος για τους χρονικούς περιορισµούς που τίθενται, όσον αφορά τα χρονικά

διαστήµατα κατά τα οποία οι διακόπτες ϑεωρούνται πατηµένοι ή όχι.

Το διάγραµµα 5.5 παραθέτει τα ενδεικτικά ϐήµατα που χρειάζεται να εκτελεστούν, για

ανιχνευθεί το αν έχει πατηθεί κάποιος από τους διακόπτες.

27

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 5

Σχήµα 5.4: Υπολογισµός της νέας ϑέσης της µπάλας

Σχήµα 5.5: ΄Ελεγχος για πατηµένους διακόπτες

28

5. Παιχνίδι Pong Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

Σχήµα 5.6: Απεικόνιση της µπάλας στο LED bar

29

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 5

30

Πληκτρολόγιο

Εργαστηριακή ΄Ασκηση 6

i. Σκοπός

Ο σκοπός αυτής της εργαστηριακής άσκησης είναι η υλοποίηση ενός mini πληκ-

τρολογίου (keypad). Η τεχνική που ϑα χρησιµοποιηθεί είναι η σάρωση (scan­code).

Παρότι το mini πληκτρολόγιό µας αποτελείται από ένα µικρό σύνολο πλήκτρων, ο αριθµός

τους είναι σχετικά µεγάλος σε σχέση µε τις γραµµές εισόδου/εξόδου του συστήµατος. Για

το λόγο αυτό ϑα χρησιµοποιήσουµε τεχνικές πολύπλεξης των γραµµών εισόδου/εξόδου. Το

πλεονέκτηµα της πολύπλεξης είναι ο περιορισµός του αριθµού των απαιτούµενων γραµµών

εισόδου/εξόδου για τη διασύνδεση του πληκτρολογίου. Το µειονέκτηµα είναι η κατάργηση

της δυνατότητας ταυτόχρονης πίεσης δύο ή περισσότερων πλήκτρων του.

Η πολύπλεξη ορίζει πως τα πλήκτρα οµαδοποιούνται σε γραµµές και στήλες, σχηµατ΄-

ιζοντας ένα ορθογώνιο πλέγµα (δες την εικόνα που ακολουθεί), όπου κάθε γραµµή και

κάθε στήλη συνδέεται µε γραµµές εισόδου/εξόδου. Τα πλήκτρα της κάθε γραµµής έχουν

τον πρώτο ακροδέκτη τους συνδεδεµένο στην ίδια γραµµή εισόδου/εξόδου, ενώ τα πλήκ-

τρα της κάθε στήλης έχουν τον δεύτερο ακροδέκτη τους συνδεδεµένο στην ίδια γραµµή

εισόδου/εξόδου. ΄Οπως µπορείτε να διαπιστώσετε, ο µέγιστος αριθµός πλήκτρων σε ένα

τέτοιο πλέγµα είναι ίσος µε το γινόµενο γραµµών και στηλών. Οι γραµµές εισόδου/εξόδου

που συνδέονται µε τις γραµµές του πλέγµατος ϱυθµίζονται σε λειτουργία εξόδου, ενώ οι

γραµµές εισόδου/εξόδου που συνδέονται µε τις στήλες του πλέγµατος ϱυθµίζονται σε λει-

τουργία εισόδου.

31

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Εργαστηριακή ΄Ασκηση 6

΄Οπως παρατηρείτε στο διάγραµµα, υπάρχουν 2 γραµµές και 3 στήλες, οι οποίες σχη-

µατίζουν ένα πλέγµα. Οι γραµµές και οι στήλες δεν συνδέονται απευθείας, αλλά µέσω των

διακοπτών που τοποθετούνται στα σηµεία διασταύρωσης των γραµµών και συµβολίζονται

µε την πλάγια γραµµή. Ο διακόπτης της πρώτης γραµµής και τρίτης στήλης έχει πατηθεί

και έχει κλείσει το κύκλωµα που σχηµατίζεται ανάµεσα στον ακροδέκτη που οδηγεί την

πρώτη γραµµή και τον ακροδέκτη που οδηγείται από την τρίτη στήλη. Οι ακροδέκτες που

είναι συνδεδεµένοι µε τις στήλες 1 και 2 δεν οδηγούνται, διότι δεν έχει πατηθεί κάποιος δι-

ακόπτης που να κλείνει το κύκλωµα ανάµεσα σε αυτούς και τους ακροδέκτες που οδηγούν

τις γραµµές.

ii. Κύκλωµα

Υλικά

Τα υλικά που ϑα χρειαστείτε για την υλοποίηση του κυκλώµατος είναι 6 διακόπτες

τύπου push­button.

iii. Οδηγίες υλοποίησης

Επειδή οι γραµµές εισόδου δεν οδηγούνται όταν οι διακόπτες δεν είναι πατηµένοι, είναι

απαραίτητο να ενεργοποιηθούν οι εσωτερικές pull­up αντιστάσεις. Κάθε ϕορά που είναι

επιθυµητή η ανάγνωση της κατάστασης του keypad, εκτελούνται τα παρακάτω ϐήµατα,

τόσες ϕορές όσες και ο αριθµός των γραµµών του πλέγµατος :

32

6. Πληκτρολόγιο Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

Σε κάθε επανάληψη, µια από τις γραµµές εξόδου (που συνδέεται σε µια γραµµή του πλέγ-

µατος) οδηγείται µε χαµηλό δυναµικό και οι υπόλοιπες γραµµές εξόδου οδηγούνται µε

υψηλό δυναµικό.

Εκτελείται ανάγνωση της κατάστασης των γραµµών εισόδου και εντοπίζεται αν υπάρχει

κάποια γραµµή µε χαµηλό δυναµικό. Αν εντοπιστεί τέτοια γραµµή, σηµαίνει πως εί-

ναι πατηµένο το πλήκτρο στην γραµµή που οδηγήθηκε και στην στήλη όπου εµφανίζεται

χαµηλό δυναµικό.

Ο αριθµός της γραµµής του πατηµένου πλήκτρου και ο αριθµός της στήλης του,

συνδιάζονται µεταξύ τους για να παράγουν ένα διακριτό/µοναδικό αριθµό ο οποίος αντισ-

τοιχεί στο πλήκτρο που πατήθηκε (ονοµαζεται scan­code). ΄Ενας εύκολος τρόπος παραγ-

ωγής του διακριτού κωδικού είναι ο πολλαπλασιασµός του αριθµού της γραµµής του πλέγ-

µατος του πατηµένου πλήκτρου µε τον αριθµό των πλήκτρων που υπάρχουν σε κάθε γραµ-

µή και η πρόσθεση του αριθµού της στήλης του πατηµένου πλήκτρου. Για παράδειγµα,

αν σε ένα πλέγµα 4x4 πατηθεί το πλήκτρο (2,1), ο διακριτός κωδικός του πλήκτρου είναι

2*4 + 1 = 9 (η αρίθµηση γραµµών και στηλών γίνεται ξεκινώντας από το 0).

Η ανάγνωση της κατάστασης του keypad είναι επιθυµητό να γίνεται ανά τακτά χρονικά

διαστήµατα, κάτι που µπορεί να υλοποιηθεί µε τη χρήση του Timer και µε συχνότητα 5

Hz. Η επαναληπτική διαδικασία ανίχνευσης ϑα γίνει µέσα στην ϱουτίνα εξυπηρέτησης δι-

ακοπών. Το scan­code που υπολογίζεται µπορεί να καταχωρηθεί σε µια καθολική µεταβλ-

ητή1 και να γίνεται συνεχής έλεγχος στον κεντρικό ϐρόγχο για το πότε η µεταβλητή έχει

τιµή διαφορετική από 255. ΄Οταν ανιχνευτεί ότι η τιµή της µεταβλητής είναι διαφορετική

του 255, πρέπει η τιµή της να προβάλεται στο lcd (µε τη χρήση της συνάρτησης printf) και

στη συνέχεια η µεταβλητή να τίθεται πάλι στην τιµή 255.

1Μεταβλητή δηλωµένη εκτός συναρτήσεων και προσπελάσιµη από όλες τις συναρτήσεις.

33

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

34

Παράρτηµα Α΄

HEADER.H

typedef volatile struct _PIO
{

unsigned int PER; /∗∗ PIO Enable r e g i s t e r (Wri te−only) ∗/
unsigned int PDR; /∗∗ PIO Disable r e g i s t e r (Wri te−only) ∗/
unsigned int PSR; /∗∗ PIO Sta tus r e g i s t e r (Read−only) ∗/
unsigned int Reserved0; /∗∗ Unused r e g i s t e r ∗/

unsigned int OER; /∗∗ Output Enable r e g i s t e r (Wri te−only) ∗/
unsigned int ODR; /∗∗ Output D isab le r e g i s t e r (Wri te−only) ∗/
unsigned int OSR; /∗∗ Output Sta tus r e g i s t e r (Read−only) ∗/
unsigned int Reserved1; /∗∗ Unused r e g i s t e r ∗/

unsigned int IFER; /∗∗ G l i t c h Input f i l t e r Enable (Wri te−only) ∗/
unsigned int IFDR; /∗∗ G l i t c h Input f i l t e r D isab le (Wri te−only) ∗/
unsigned int IFSR; /∗∗ G l i t c h Input f i l t e r S ta tus (Read−only) ∗/
unsigned int Reserved2; /∗∗ Unused r e g i s t e r ∗/

unsigned int SODR; /∗∗ Set Output Data r e g i s t e r (Wri te−only) ∗/
unsigned int CODR; /∗∗ Clear Output Data r e g i s t e r (Wri te−only) ∗/
unsigned int ODSR; /∗∗ Output Data Sta tus r e g i s t e r (Read−only) ∗/
unsigned int PDSR; /∗∗ Pin Data Sta tus r e g i s t e r (Read−only) ∗/

unsigned int IER; /∗∗ I n t e r r u p t Enable r e g i s t e r (Wri te−only) ∗/
unsigned int IDR; /∗∗ I n t e r r u p t D isab le r e g i s t e r (Wri te−only) ∗/
unsigned int IMR; /∗∗ I n t e r r u p t Mask r e g i s t e r (Wri te−only) ∗/
unsigned int ISR; /∗∗ I n t e r r u p t S ta tus r e g i s t e r (Read−only) ∗/

unsigned int MDER; /∗∗ Mul t i−d r i v e r Enable (Wri te−only) ∗/
unsigned int MDDR; /∗∗ Mul t i−d r i v e r D isab le (Wri te−only) ∗/
unsigned int MDSR; /∗∗ Mul t i−d r i v e r S ta tus (Read−only) ∗/
unsigned int Reserved3; /∗∗ Unused r e g i s t e r ∗/

unsigned int PUDR; /∗∗ Pu l l−up Disable r e g i s t e r (Wri te−only) ∗/
unsigned int PUER; /∗∗ Pu l l−up Enable r e g i s t e r (Wri te−only) ∗/
unsigned int PUSR; /∗∗ Pu l l−up Sta tus r e g i s t e r (Read−only) ∗/
unsigned int Reserved4; /∗∗ Unused r e g i s t e r ∗/

unsigned int ASR; /∗∗ P e r i p h e r a l A s e l e c t (Wri te−only) ∗/
unsigned int BSR; /∗∗ P e r i p h e r a l B s e l e c t (Wri te−only) ∗/
unsigned int ABSR; /∗∗ P e r i p h e r a l AB Sta tus (Read−only) ∗/
unsigned int Reserved5[9]; /∗∗ Unused r e g i s t e r ∗/

unsigned int OWER; /∗∗ Output wr i t e enable (Wri te−only) ∗/

35

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών A. HEADER.H

unsigned int OWDR; /∗∗ Output wr i t e d i sa b l e (Wri te−only) ∗/
unsigned int OWSR; /∗∗ Output wr i t e Sta tus (Read−only) ∗/

}PIO;

typedef volatile struct _AIC
{

unsigned int SMR[32]; /∗∗ Source mode r e g i s t e r (Read−Wri te) ∗/
unsigned int SVR[32]; /∗∗ Source v e c t o r r e g i s t e r (Read−Wri te) ∗/

unsigned int IVR; /∗∗ I n t e r r u p t v e c t o r r e g i s t e r (Read−only) ∗/
unsigned int FVR; /∗∗ Fast I n t e r r u p t v e c t o r r e g i s t e r (Read−only) ∗/
unsigned int ISR; /∗∗ I n t e r r u p t s t a t u s r e g i s t e r (Read−only) ∗/
unsigned int IPR; /∗∗ I n t e r r u p t pending r e g i s t e r (Read−only) ∗/
unsigned int IMR; /∗∗ I n t e r r u p t mask r e g i s t e r (Read−only) ∗/
unsigned int CISR; /∗∗ Core I n t e r r u p t s t a t u s r e g i s t e r (Read−only) ∗/
unsigned int Reserved1[2]; /∗∗ Unused r e g i s t e r ∗/

unsigned int IECR; /∗∗ I n t e r r u p t enable command r e g i s t e r (Wri te−only) ∗/
unsigned int IDCR; /∗∗ I n t e r r u p t d i sa b l e command r e g i s t e r (Wri te−only) ∗/
unsigned int ICCR; /∗∗ I n t e r r u p t c l e a r command r e g i s t e r (Wri te−only) ∗/
unsigned int ISCR; /∗∗ I n t e r r u p t se t command r e g i s t e r (Wri te−only) ∗/
unsigned int EICR; /∗∗ End o f I n t e r r u p t command r e g i s t e r (Wri te−only) ∗/

unsigned int SPUR; /∗∗ Spur ious I n t e r r u p t v e c t o r r e g i s t e r (Read−Wri te) ∗/
unsigned int DCR; /∗∗ Debug c o n t r o l r e g i s t e r (Read−Wri te) ∗/
unsigned int Reserved2; /∗∗ Unused r e g i s t e r ∗/

unsigned int FFER; /∗∗ Fast F o r c i n g enable r e g i s t e r (Wri te−only) ∗/
unsigned int FFDR; /∗∗ Fast F o r c i n g d i sa b l e r e g i s t e r (Wri te−only) ∗/
unsigned int FFSR; /∗∗ Fast F o r c i n g s t a t u s r e g i s t e r (Wri te−only) ∗/

}AIC;

typedef volatile struct _TCCHAN
{

unsigned int CCR; /∗∗ Channel Con t r o l R e g i s t e r (Wri te−only) ∗/
unsigned int CMR; /∗∗ Channel Mode R e g i s t e r (Read−Wri te) ∗/
unsigned int Reserved1[2]; /∗∗ Unused r e g i s t e r ∗/
unsigned int CV; /∗∗ Counter Value (Read−only) ∗/
unsigned int RA; /∗∗ R e g i s t e r A (Read−Wri te) ∗/
unsigned int RB; /∗∗ R e g i s t e r B (Read−Wri te) ∗/
unsigned int RC; /∗∗ R e g i s t e r C (Read−Wri te) ∗/
unsigned int SR; /∗∗ Sta tus R e g i s t e r (Read−only) ∗/
unsigned int IER; /∗∗ I n t e r r u p t Enable R e g i s t e r (Wri te−only) ∗/
unsigned int IDR; /∗∗ I n t e r r u p t D isab le R e g i s t e r (Wri te−only) ∗/
unsigned int IMR; /∗∗ I n t e r r u p t Mask R e g i s t e r (Read−only) ∗/
unsigned int Reserved2[4]; /∗∗ Unused r e g i s t e r ∗/

}TCCHAN;

typedef volatile struct _TC
{

TCCHAN Channel_0;
TCCHAN Channel_1;
TCCHAN Channel_2;

unsigned int BCR; /∗∗ Block Con t r o l R e g i s t e r (Wri te−only) ∗/
unsigned int BMR; /∗∗ Block Mode R e g i s t e r (Read−Wri te) ∗/

}TC;

/// ΕΝΑΡΞΗ ΑΡΧΙΚΟΠΟΙΗΣΗΣ ΣΥΣΤΗΜΑΤΟΣ
/// ΠΡΕΠΕΙ ΝΑ ΓΙΝΕΤΑΙ ΠΑΝΤΑ ΣΤΗΝ ΑΡΧΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ
#define STARTUP \

unsigned int _FIQtmp; \
/∗ ΑΠΑΡΑΙΤΗΤΟ ΓΙΑ ΠΡΟΣΠΕΛΑΣΗ ΜΝΗΜΗΣ ΣΥΣΤΗΜΑΤΟΣ ∗/ \

36

Α΄. HEADER.H Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

int fd = open("/dev/mem", O_RDWR | O_SYNC); \
/∗ ΑΠΑΡΑΙΤΗΤΟ ΓΙΑ ΕΓΓΡΑΦΗ ΡΟΥΤΙΝΑΣ ΕΞΥΠΗΡΕΣΗΣ ∆ΙΑΚΟΠΩΝ ∗/ \
int fd2 = open("/proc/FIQ", O_RDWR | O_SYNC); \
/∗ ΕΝΕΡΓΟΠΟΙΗΣΗ ∆ΙΚΑΙΩΜΑΤΩΝ ΠΡΟΣΠΕΛΑΣΗΣ ΣΤΗΝ∗/ /∗∗PIOA & AIC∗/ \
char* mptr = mmap(0, 0x1000, PROT_READ | PROT_WRITE, \
MAP_SHARED, fd, 0xFFFFF000); \
/∗ ΑΠΑΡΑΙΤΗΤΟ ΓΙΑ ΠΡΟΣΠΕΛΑΣΗ ΤΩΝ∗/ /∗∗TIMERS∗/ \
char* pptr = mmap(0, 0x1000, PROT_READ | PROT_WRITE, \
MAP_SHARED, fd, 0xFFFA0000); \
/∗ ΕΛΕΓΧΟΣ ΑΠΟΚΤΗΣΗΣ ∆ΙΚΑΙΩΜΑΤΩΝ ∗/ \
if(mptr == MAP_FAILED || pptr == MAP_FAILED){ \

close(fd); \
close(fd2); \
exit(1); \

} \
/∗ ΟΡΙΖΟΥΜΕ ∆ΙΕΥΘΥΝΣΗ ΤΗΣ∗/ /∗∗PIOA∗/ \
pioa = (PIO*)(mptr + 0x400); \
/∗ ΟΡΙΖΟΥΜΕ ∆ΙΕΥΘΥΝΣΗ ΤΗΣ∗/ /∗∗AIC∗/ \
aic = (AIC*)(mptr); \
/∗ ΟΡΙΖΟΥΜΕ ∆ΙΕΥΘΥΝΣΗ ΤΟΥ∗/ /∗∗TC∗/ \
tc = (TC*)(pptr); \
_FIQtmp = (unsigned int)FIQ_handler; \
write(fd2, &_FIQtmp, sizeof(unsigned int)); \
_FIQtmp = fcntl(STDIN_FILENO, F_GETFL, 0); \
_FIQtmp |= O_NONBLOCK; \
fcntl(STDIN_FILENO, F_SETFL, _FIQtmp)

/// ΛΗΞΗ ΑΡΧΙΚΟΠΟΙΗΣΗΣ

/// ΕΝΑΡΞΗ ΕΠΑΝΑΦΟΡΑΣ ΣΥΣΤΗΜΑΤΟΣ
/// ΠΡΕΠΕΙ ΝΑ ΓΙΝΕΤΑΙ ΠΑΝΤΑ ΣΤΟ ΤΕΛΟΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ
#define CLEANUP \

_FIQtmp = fcntl(STDIN_FILENO, F_GETFL, 0); \
_FIQtmp &= O_NONBLOCK; \
fcntl(STDIN_FILENO, F_SETFL, _FIQtmp); \
/∗ ΕΠΙΣΤΡΟΦΗ ∆ΕΣΜΕΥΜΕΝΗΣ ΜΝΗΜΗΣ ∗/ \
munmap(mptr, 0x1000); \
munmap(pptr, 0x1000); \
close(fd); \
close(fd2)

/// ΛΗΞΗ ΕΠΑΝΑΦΟΡΑΣ ΣΥΣΤΗΜΑΤΟΣ

#define DISABLE_FIQ \
{ \

unsigned int __Reg_save; \
asm("mrs %0, cpsr;" \

"orr %0, %0, #0x40;" \
"msr cpsr_c, %0;" \
:"=r" (__Reg_save) \
:"r"(__Reg_save) \
);}

#define ENABLE_FIQ \
{ \

unsigned int __Reg_save; \
asm("mrs %0, cpsr;" \

"bic %0, %0, #0x40;" \
"msr cpsr_c, %0;" \
:"=r" (__Reg_save) \
:"r"(__Reg_save) \
);}

37

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Α΄. HEADER.H

38

Παράρτηµα Β΄

Μονάδα εισόδου/εξόδου

iv. Γενικά

Το σύστηµα ΑΤ91 παρέχει τη δυνατότητα διασύνδεσης µε εξωτερικές περιφερειακές

συσκευές, µέσω 96 προγραµµατιζόµενων γραµµών επικοινωνίας. Για τη διαχείριση της

λειτουργίας των γραµµών, το σύστηµα διαθέτει τρεις εξειδικευµένες περιφερειακές µονάδες

(Parallel Input / Output ­ PIO), τις µονάδες ελέγχου εισόδου / εξόδου Α, Β και C. Η κάθε

µια από αυτές τις τρεις µονάδες ελέγχει 32 γραµµές επικοινωνίας. Για τις ανάγκες του

εργαστηρίου, χρησιµοποιείται µόνο η µονάδα ελέγχου εισόδου / εξόδου Α (PIOA).

Κάθε γραµµή επικοινωνίας µπορεί να προγραµµατιστεί ανεξάρτητα από κάθε άλλη

ως προς τη λειτουργία της. Ο καθορισµός των παραµέτρων λειτουργίας κάθε γραµµής

επικοινωνίας (π.χ. λειτουργία γενικού σκοπού, λειτουργία εισόδου ή εξόδου κλπ.) γίνε-

ται µε την εγγραφή των κατάλληλων τιµών στους καταχωρητές της κάθε µονάδας ελέγχου

εισόδου / εξόδου. Η κάθε γραµµή µπορεί να χρησιµοποιηθεί είτε σαν είσοδος / έξοδος

γενικού σκοπού, είτε σαν είσοδος / έξοδος ελεγχόµενη από κάποιο ενσωµατωµένο περ-

ιφεριακό. Σε όλες τις εργαστηριακές ασκήσεις, οι γραµµές εισόδου / εξόδου ϑα τίθενται

σε λειτουργία γενικού σκοπού. Η λειτουργία κάθε γραµµής επικοινωνίας καθορίζεται από

ένα bit στους καταχωρητές καθορισµού λειτουργίας της κάθε µονάδας. Αυτό σηµαίνει πως

σε κάθε καταχωρητή, το bit i καθορίζει τη συµπεριφορά της γραµµής i.

v. Καταχωρητές ελέγχου

Οι καταχωρητές καθορισµού λειτουργίας αναγράφονται στον ακόλουθο πίνακα. Η

στήλη Access καθορίζει τους δυνατούς τρόπους προσπέλασης κάθε καταχωρητή. Η ϕυσική

υλοποίηση του κυκλώµατος που ελέγχει τη λειτουργία της γραµµής επικοινωνίας 0 ϕαίνε-

ται στην εικόνα Β΄.1 και αποτελείται κατά µεγάλο µέρος από πολυπλέκτες και τα δυαδικά

39

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Β΄. Μονάδα εισόδου/εξόδου

ψηφία των καταχωρητών ελέγχου στη ϑέση 0. Αντίστοιχα κυκλώµατα ελεγχόµενα από τα

κατάλληλα δυαδικά ψηφία των καταχωρητών ελέγχου υπάρχουν για κάθε γραµµή επικοιν-

ωνίας (υπάρχουν δηλαδή 96 αντίτυπα του κυκλώµατος της εικόνας Β΄.1.

Φυσική διεύθυνση: 0xFFFFF400

Offset Register Name Access

0x0000 PIO Enable Register PIO_PER Write­only

0x0004 PIO Disable Register PIO_PDR Write­only

0x0008 PIO Status Register PIO_PSR Read­only

0x000C Reserved

0x0010 Output Enable Register PIO_OER Write­only

0x0014 Output Disable Register PIO_ODR Write­only

0x0018 Output Status Register PIO_OSR Read­only

0x001C Reserved

0x0020 Glitch Input Filter Enable Register PIO_IFER Write­only

0x0024 Glitch Input Filter Disable Register PIO_IFDR Write­only

0x0028 Glitch Input Filter Status Register PIO_IFSR Read­only

0x002C Reserved

0x0030 Set Output Data Register PIO_SODR Write­only

0x0034 Clear Output Data Register PIO_CODR Write­only

0x0038 Output Data Status Register PIO_ODSR Read­only

0x003C Pin Data Status Register PIO_PDSR Read­only

0x0040 Interrupt Enable Register PIO_IER Write­only

0x0044 Interrupt Disable Register PIO_IDR Write­only

0x0048 Interrupt Mask Register PIO_IMR Read­only

0x004C Interrupt Status Register PIO_ISR Read­only

0x0050 Multi­driver Enable Register PIO_MDER Write­only

0x0054 Multi­driver Disable Register PIO_MDDR Write­only

0x0058 Multi­driver Status Register PIO_MDSR Read­only

0x005C Reserved

0x0060 Pull­up Disable Register PIO_PUDR Write­only

0x0064 Pull­up Enable Register PIO_PUER Write­only

0x0068 Pad Pull­up Status Register PIO_PUSR Read­only

0x006C Reserved

0x0070 Peripheral A Select Register PIO_ASR Write­only

0x0074 Peripheral B Select Register PIO_BSR Write­only

0x0078 AB Status Register PIO_ABSR Read­only

0x007C ­ 0x009C Reserved

0x00A0 Output Write Enable PIO_OWER Write­only

0x00A4 Output Write Disable PIO_OWDR Write­only

0x00A8 Output Write Status Register PIO_OWSR Read­only

40

Β΄. Μονάδα εισόδου/εξόδου Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

Σχήµα Β΄.1: ∆ιάγραµµα ελέγχου γραµµής

41

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Β΄. Μονάδα εισόδου/εξόδου

Σηµείωση

Για να υπολογιστεί η ϕυσική διεύθυνση κάθε καταχωρητή, πρέπει να προστεθεί η

µετατόπιση που αντιστοιχεί στον καταχωρητή στη ϕυσική διεύθυνση της µονάδας.

Για παράδειγµα, η διεύθυνση του καταχωρητή PIO_OER είναι :

0x10 + 0xFFFFF400 = 0xFFFFF410

Υπενθυµίζεται ότι κάθε bit σε κάθένα από τους παραπάνω καταχωρητές αντιστοιχεί σε

µια γραµµή επικοινωνίας. Το λιγότερο σηµαντικό bit αντιστοιχεί στη γραµµή PIO_0 της

κάθε µονάδας, ενώ το περισσότερο σηµαντικό bit στη γραµµή PIO_31.

Κάθε γραµµή επικοινωνίας pin µπορεί να προγραµµατιστεί σαν γραµµή γενικού σκοπού

(1 στο αντίστοιχο bit του PIO_PER) ή σαν γραµµή ελεγχόµενη από κάποιο ενσωµατωµένο

περιφεριακό (1 στο αντίστοιχο bit του PIO_PDR). Η τρέχουσα κατάσταση εµφανίζεται σ-

τον PIO_PSR, όπου η τιµή 1 σηµαίνει ότι η γραµµή είναι γενικού σκοπού και η τιµή 0

σηµαίνει ότι η γραµµή ελέγχεται από περιφερειακό. Για παράδειγµα, µε την εντολή

pioa­>PIO_PER = 0x802;

ϑέτουµε τις γραµµές 1 και 11 σε κατάσταση γενικού σκοπού. Με την εντολή

status = pioa­>PIO_PSR;

αποθηκεύουµε στη µεταβλητή status την τρέχουσα κατάσταση λειτουργίας.

Μια γραµµή γενικού σκοπού µπορεί να λειτουργήσει είτε σαν είσοδος (γράφοντας 1

στο αντίστοιχο bit του PIO_ODR), είτε σαν έξοδος (γράφοντας 1 στο αντίστοιχο bit του

PIO_OER). Στον PIO_OSR αναφέρεται η τρέχουσα λειτουργία της κάθε γραµµής, όπου η

τιµή 1 σε κάποιο bit σηµαίνει ότι η αντίστοιχη γραµµή είναι έξοδος, ενώ η τιµή 0 σε κάποιο

bit σηµαίνει ότι η αντίστοιχη γραµµή είναι είσοδος.

Αν µια γραµµή γενικού σκοπού λειτουργεί σαν έξοδος, τα δεδοµένα εξόδου της προέρχον-

ται από τον καταχωρητή PIO_ODSR. Τα bits του καταχωρητή ενεργοποιούνται µε την

εγγραφή της τιµής 1 στην αντίστοιχη ϑέση του PIO_SODR και απενεργοποιούνται µε την

εγγραφή της τιµής 1 στην αντίστοιχη ϑέση του PIO_CODR. Για παράδειγµα, οι εντολές

pioa­>PIO_SODR = 0x100;

pioa­>PIO_CODR = 0x1;

42

Β΄. Μονάδα εισόδου/εξόδου Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

ϑα ϑέσουν την έξοδο της 8ης γραµµής σε υψηλό δυναµικό και την έξοδο της γραµµής 0

σε χαµηλό δυναµικό. Μπορείτε να ανατρέχετε στην εικόνα Β΄.1, για να ϐλέπετε την αντισ-

τοιχία µεταξύ του προγραµµατιστικού µοντέλου και της ϕυσικής υλοποίησης.

Υπάρχει και η δυνατότητα απευθείας εγγραφής στον PIO_ODSR, ώστε η ενεργοποίηση

και απενεργοποίηση των εξόδων να γίνει µε µια εντολή. Τα bits που επηρεάζονται από

την απευθείας εγγραφή στον PIO_ODSR είναι όσα έχουν την τιµή 1 στον καταχωρητή

PIO_OWSR. Τα bits του PIO_OWSR ενεργοποιούνται µε την εγγραφή της τιµής 1 στα

αντίστοιχα bits του PIO_OWER και απενεργοποιούνται µε την εγγραφή της τιµής 1 στα

αντίστοιχα bits του PIO_OWDR. Για παράδειγµα, αν ο PIO_OWSR έχει την τιµή 0xF1, η

εγγραφή της τιµής 0xCF στον PIO_ODSR ϑα ενεργοποιήσει τις γραµµές 0,6 και 7 και ϑα

απενεργοποιήσει τις γραµµές 4 και 5.

Αν µια γραµµή γενικού σκοπού λειτουργεί σαν είσοδος, η στάθµη του τρέχοντος

δυναµικού εισόδου της µπορεί να αναγνωστεί από τον καταχωρητή PIO_PDSR, όπου η τιµή

1 σε κάποιο bit σηµαίνει πως η αντίστοιχη γραµµή δέχεται σαν είσοδο υψηλό δυναµικό,

ενώ η τιµή 0 σηµαίνει πως η αντίστοιχη γραµµή δέχεται σαν είσοδο χαµηλό δυναµικό.

Σε πολλές εφαρµογές, η οδήγηση µιας γραµµής εισόδου δεν είναι συνεχής και υπ-

άρχουν διαστήµατα όπου η γραµµή δεν οδηγείται από κάποιο εξωτερικό περιφερειακό (η

στάθµη του δυναµικού εισόδου της γραµµής είναι απροσδιόριστη). ΄Ενα παράδειγµα είναι

η διασύνδεση µιας γραµµής µε ένα εξωτερικό διακόπτη, ο οποίος έχει το ένα άκρο του

συνδεδεµένο στη γραµµή και το άλλο στη γείωση. ΄Οταν δεν είναι πατηµένος, η γραµµή δεν

είναι συνδεδεµένη στο χαµηλό δυναµικό (γείωση). Αυτή η κατάσταση λειτουργίας πρέπει

να αποφεύγεται, διότι µπορεί να προκαλέσει απροσδιόριστη συµπεριφορά στο σύστηµα

(π.χ. µπορεί να ανιχνευθεί χαµηλό δυναµικό χωρίς να έχει πατηθεί ο διακόπτης). Μι-

α λύση σε αυτό το πρόβληµα είναι η ενεργοποίηση των εσωτερικών pull­up αντιστάσεων

που συνδέουν την γραµµή µε την τροφοδοσία, µέσω µιας αντίστασης 100Κ. Το δυναµικό

εισόδου της γραµµής, όταν αυτή δεν οδηγείται, είναι υψηλό λόγω της διασύνδεσης της

γραµµής µε την τροφοδοσία. ΄Οταν ο διακόπτης πατηθεί, το δυναµικό εισόδου ϑα γίνει

χαµηλό (εφόσον δεν παρεµβάλεται µεγάλη αντίσταση ανάµεσα στη γραµµή και την γείωση).

΄Οπως καταλαβαίνετε, το µειονέκτηµα αυτής της λύσης είναι η µεγάλη κατανάλωση

που εµφανίζεται στο µονοπάτι ανάµεσα στην τροφοδοσία, την pull­up αντίσταση και τη

γείωση. Γιάυτό και η pull­up αντίσταση πρέπει να ενεργοποιείται µόνο όταν δεν υπάρχει

συνεχής οδήγηση της γραµµής. Ο καταχωρητής που ενεργοποιεί την pull­up αντίσταση

είναι ο PIO_PUER (η εγγραφή της τιµής 1 σε bits αυτού του καταχωρητή ϑέτει τα αντίσ-

τοιχα bits του PIO_PUSR στην τιµή 0). Ο καταχωρητής που απενεργοποιεί την pull­up

43

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Β΄. Μονάδα εισόδου/εξόδου

αντίσταση είναι ο PIO_PUDR (η εγγραφή της τιµής 1 σε bits αυτού του καταχωρητή ϑέτει

τα αντίστοιχα bits του PIO_PUSR στην τιµή 1). Στον καταχωρητή PIO_PUSR υπάρχει η

τρέχουσα κατάσταση λειτουργίας των pull­up αντιστάσεων.

Μια γραµµή όταν προγραµµατιστεί σαν είσοδος έχει τη δυνατότητα να παράγει in­

terrupts αν ανιχνευθεί αλλαγή της κατάστασης του σήµατος εισόδου (από 0 σε 1 και το

αντίθετο). Οι γραµµές που µπορούν να παράγουν interrupts είναι αυτές για τις οποίες ο

PIO_IMR έχει στα αντίστοιχα bits την τιµή 1. Τα bits αυτού του καταχωρητή ενεργοποιούν-

ται µε την εγγραφή της τιµής 1 στο αντίστοιχο bit του PIO_IER και απενεργοποιούνται µε

την εγγραφή της τιµής 1 στο αντίστοιχο bit του PIO_IDR.

Μόλις ανιχνευθεί η αλλαγή κατάστασης εισόδου, ενεργοποιείται το bit του PIO_ISR

που αντιστοιχεί στη γραµµή που συνέβη η αλλαγή κατάστασης. ΄Οσο είναι ενεργοποιη-

µένο κάποιο bit του PIO_ISR, η µονάδα ελέγχου interrupts δέχεται αιτήσεις διακοπής.

Συνεπώς, µόλις η ϱοή του προγράµµατος µεταβεί στη ϱουτίνα εξυπηρέτησης του inter­

rupt, πρέπει να απενεργοποιηθούν τα ενεργοποιηµένα bits του PIO_ISR. Ο καθαρισµός

των bits αυτού του καταχωρητή γίνεται µε την ανάγνωσή του (δηλαδή αν προσπελαστεί

για να αναγνωστεί το περιεχόµενό του, τα bits του ϑα απενεργοποιηθούν αυτόµατα και

οποιαδήποτε επόµενη ανάγνωσή του, πριν δηµιουργηθεί επόµενο interrupt, ϑα έχει σαν

αποτέλεσµα το 0).

vi. Παράδειγµα

Υποθέστε πως η εφαρµογή που καλείστε να υλοποιήσετε απαιτεί τα εξής :

1. Οι ακροδέκτες 0, 4 και 12 να ϱυθµιστούν σε λειτουργία εξόδου.

2. Οι ακροδέκτες 1, 2, 3, 5 και 8 να ϱυθµιστούν σε λειτουργία εισόδου.

3. Οι γραµµές εισόδου 1 και 2 να παράγουν διακοπή σε κάθε αλλαγή της κατάστασης

του δυναµικού εισόδου τους.

4. Η γραµµή εισόδου 1 είναι συνδεδεµένη σε διακόπτη, ενώ η γραµµή 2 είναι συνδ-

εδεµένη σε εξωτερικό περιφερειακό (η γραµµή οδηγείται συνεχώς).

5. Οι γραµµές 12, 4 και 0 πρέπει να οδηγήσουν εξωτερικό κύκλωµα µε τις τιµές : {010},

{110}, {000}, {101}.

Ρύθµιση λειτουργίας γραµµών επικοινωνίας.

pioa­>PIO_PER = 0x113F; //Ρύθµιση των γραµµών σε λειτουργία γενικού σκοπού.

44

Β΄. Μονάδα εισόδου/εξόδου Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

pioa­>PIO_POER = 0x1011; //Ρύθµιση λειτουργίας εξόδου.

pioa­>PIO_PODR = 0x12E; //Ρύθµιση λειτουργίας εισόδου.

pioa­>PIO_PUER = 0x2; //Ενεργοποίηση της pull­up αντίστασης.

Οδήγηση εξωτερικού κυκλώµατος.

1ος τρόπος 2ος τρόπος Ι/Ο 12 Ι/Ο 4 Ι/Ο 0

pioa­>PIO_CODR = 0x1001; pioa­>PIO_OWDR = 0xFFFFFFFF;

pioa­>PIO_SODR = 0x10; pioa­>PIO_OWER = 0x1011;

pioa­>PIO_ODSR = 0x10; 0 1 0

pioa­>PIO_CODR = 0x1; pioa­>PIO_ODSR = 0x1010;

pioa­>PIO_SODR = 0x1010; 1 1 0

pioa­>PIO_CODR = 0x1011; pioa­>PIO_ODSR = 0x00; 0 0 0

pioa­>PIO_CODR = 0x10; pioa­>PIO_ODSR = 0x1001;

pioa­>PIO_SODR = 0x1001; 1 0 1

45

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Β΄. Μονάδα εισόδου/εξόδου

46

Παράρτηµα Γ΄

Μονάδα ελέγχου διακοπών

i. Γενικά

Οι διακοπές (interrupts) χρησιµοποιούνται ως σήµατα εισόδου στον επεξεργαστή του

συστήµατος, για να του ανακοινώσουν πως κάποιο από τα περιφερειακά απαιτεί εξυπηρέτηση.

Ο επεξεργαστής µε τη σειρά του, διακόπτει τη ϱοή εκτέλεσης του προγράµµατος και

µεταβαίνει σε προσυµφωνηµένη ϑέση µνήµης, ανάλογα µε τον τύπο της διακοπής. Σ-

το σύστηµα ΑΤ91 ο επεξεργαστής µεταβαίνει στις εξής ϑέσεις µνήµης :

΄Ονοµα διακοπής ∆ιεύθυνση Κατάσταση Αιτία

Reset 0xFFFF0000 Supervisor Εκκίνηση του συστήµατος

Undefined instruction 0xFFFF0004 Undefined Εκτέλεση εντολής που δεν ανήκει στο

σύνολο εντολών.

Software Interrupt 0xFFFF0008 Supervisor Εκτέλεση εντολής SWI

Abort prefetch 0xFFFF000C Abort Λήψη εντολής από περιοχή µνήµης που

δεν υπάρχουν δικαιώµατα πρόσβασης

Abort data 0xFFFF0010 Abort Λήψη δεδοµένων από περιοχή µνήµης

που δεν υπάρχουν δικαιώµατα πρόσ-

ϐασης

Reserved 0xFFFF0014 Reserved

IRQ 0xFFFF0018 IRQ Ενεργοποίηση γραµµής IRQ

FIQ 0xFFFF001C FIQ Ενεργοποίηση γραµµής FIQ

Πίνακας Γ΄.2: ∆ιάνυσµα διακοπών

Οι πέντε πρώτες διακοπές σχετίζονται µε τη συµπεριφορά του επεξεργαστή απέναντι σε

ϐασικά σφάλµατα εκτέλεσης. Οι δυο τελευταίες διακοπές σχετίζονται µε σήµατα διακοπής

που στέλνει η µονάδα ελέγχου διακοπών στον επεξεργαστή. Ο επεξεργαστής διαθέτει µόνο

2 γραµµές εξωτερικών διακοπών, την IRQ που αποτελεί τη γραµµή διακοπών κανονικής

προτεραιότητας και την την FIQ που αποτελεί τη γραµµή διακοπών υψηλής προτεραιότη-

47

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών C. Μονάδα ελέγχου διακοπών

τας. Αν δηλαδή ενεργοποιηθεί η γραµµή FIQ κατά της διάρκεια της εκτέλεσης της ϱουτίνας

εξυπηρέτησης ενός IRQ, η ϱοή του προγράµµατος ϑα µεταφερθεί στην ϱουτίνα εκτέλεσης

των FIQ.

Σχήµα Γ΄.1: ∆ιάγραµµα µονάδας ελέγχου διακοπών

Η µονάδα ελέγχου διακοπών είναι υπεύθυνη για τη διαχείριση των διακοπών (interrupts)

που αποστέλλονται από τα περιφερειακά προς τον επεξεργαστή. Η λειτουργία της είναι

η πολύπλεξη των γραµµών διακοπών. Μέσω αυτής της µονάδας γίνεται ο καθορισµός

της προσβασιµότητας των interrupts (ενεργοποίηση/απενεργοποίηση), όπως και η ανάγ-

νωση της τρέχουσας κατάστασής τους (ενεργά, ανενεργά ή προς εξυπηρέτηση). ΄Οπως

παρατηρείτε στο διάγραµµα Γ΄.1, οι πηγές διακοπών προς τη µονάδα ελέγχου διακοπών

είναι οι γραµµές επικοινωνίας εισόδου / εξόδου και τα εσωτερικά περιφερειακά. Η µονά-

δα ελέγχου διακοπών εκτελεί απλούς ελέγχους για να καθορίσει το είδος της τρέχουσας

διακοπής (FIQ ή IRQ), όπως και το αν ϑα προωθηθεί στον επεξεργαστή. Ο επεξεργαστής

ειδοποιείται για την ύπαρξη της διακοπής µέσω των γραµµών FIQ και IRQ και επικοινωνεί

µε τη µονάδα ελέγχου διακοπών µέσω του διαύλου APB, ώστε να αναγνώσει τις πληρο-

ϕορίες σχετικά µε την τρέχουσα διακοπή για την οποία ειδοποιήθηκε.

Οι 32 πηγές διακοπών του συστήµατος είναι :

48

C. Μονάδα ελέγχου διακοπών Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

Πίνακας Κωδικών Περιφερειακών

ID Κωδικός Περιφερειακό ID Κωδικός Περιφερειακό

0 AIC Advanced Interrupt Controller 13 SPI1 Serial Peripheral Interface 1

1 SYSIRQ System Interrupt 14 SSC0 Synchronous Serial Controller

2 PIOA Parallel I/O Controller A 15 SSC1 Synchronous Serial Controller

3 PIOB Parallel I/O Controller B 16 SSC2 Synchronous Serial Controller

4 PIOC Parallel I/O Controller C 17 TC0 Timer/Counter 0

5 Reserved 18 TC1 Timer/Counter 1

6 US0 USART 0 19 TC2 Timer/Counter 2

7 US1 USART 1 20 UHP USB Host Port

8 US2 USART 2 21 LCDC LCD Controller

9 MCI Multimedia Card Interface 22­28 Reserved

10 UDP USB Device Port 29 AIC Advanced Interrupt Controller

11 TWI Two­Wire Interface 30 AIC Advanced Interrupt Controller

12 SPI0 Serial Peripheral Interface 0 31 AIC Advanced Interrupt Controller

ii. Καταχωρητές ελέγχου

Οι καταχωρητές καθορισµού λειτουργίας αναγράφονται στον ακόλουθο πίνακα. Η

στήλη Access καθορίζει τους δυνατούς τρόπους προσπέλασης κάθε καταχωρητή. Η ϕυσική

υλοποίηση του κυκλώµατος που ελέγχει τη λειτουργία της γραµµής επικοινωνίας 0 ϕαίνε-

ται στην εικόνα Γ΄.2.

Φυσική διεύθυνση: 0xFFFFF000

Μετατόπιση ΄Ονοµα Καταχωρητή Access

0x00­0x7C Source Mode Register 0 AIC_SMR0 Read/Write

0x80­0xFC Source Vector Register 0 AIC_SVR0 Read/Write

0x100 Interrupt Vector Register AIC_IVR Read­only

0x104 Fast Interrupt Vector Register AIC_FVR Read­only

0x108 Interrupt Status Register AIC_ISR Read­only

0x10C Interrupt Pending Register AIC_IPR Read­only

0x110 Interrupt Mask Register AIC_IMR Read­only

0x114 Core Interrupt Status Register AIC_CISR Read­only

0x118 Reserved

0x11C Reserved

0x120 Interrupt Enable Command Register AIC_IECR Write­only

0x124 Interrupt Disable Command Register AIC_IDCR Write­only

0x128 Interrupt Clear Command Register AIC_ICCR Write­only

0x12C Interrupt Set Command Register AIC_ISCR Write­only

0x130 End of Interrupt Command Register AIC_EOICR Write­only

0x134 Spurious Interrupt Vector Register AIC_SPU Read/Write

49

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Γ΄. Μονάδα ελέγχου διακοπών

0x138 Debug Control Register AIC_DCR Read/Write

0x13C Reserved

0x140 Fast Forcing Enable Register AIC_FFER Write­only

0x144 Fast Forcing Disable Register AIC_FFDR Write­only

0x148 Fast Forcing Status Register AIC_FFSR Read­only

Σχήµα Γ΄.2: ∆ιάγραµµα ελέγχου διακοπής

Ο καταχωρητής AIC_ISR περιέχει στα 5 λιγότερο σηµαντικά bits του τον κωδικό του

περιφερειακού που προκάλεσε το τρέχον interrupt (Πίνακας Κωδικών Περιφερειακών).

Ο καταχωρητής AIC_IPR περιέχει τα interrupts που δεν έχουν εξυπηρετηθεί ακόµα (το

λιγότερο σηµαντικό bit αντιστοιχεί σε εξωτερική διακοπή, το bit 1 σε διακοπή συστήµατος

και τα υπόλοιπα αντιστοιχούν στα περιφερειακά).

Οι διακοπές που προωθούνται στον επεξεργαστή καθορίζονται από τον καταχωρητή

AIC_IMR, όπου η τιµή 1 σε κάποιο bit σηµαίνει πως οι διακοπές από το αντίστοιχο περ-

ιφερειακό ϑα προωθηθούν, ενώ η τιµή 0 σηµαίνει πως οι διακοπές δεν ϑα προωθηθούν. Η

ενεργοποίηση ενός bit του AIC_IMR γίνεται µε την εγγραφή της τιµής 1 στο αντίστοιχο bit

του AIC_IECR, ενώ η απενεργοποίηση ενός bit του AIC_IMR γίνεται µε την εγγραφή της

τιµής 1 στο αντίστοιχο bit του AIC_IDCR. Για παράδειγµα, η εντολή

aic­>IECR = (1<<2);

ενεργοποιεί την προώθηση των διακοπών από τη µονάδα PIOA.

50

Γ΄. Μονάδα ελέγχου διακοπών Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

Μια διακοπή µπορεί να χαρακτηριστεί είτε ως IRQ, είτε ως FIQ. Οι διακοπές που ϑα

χρησιµοποιηθούν για την υλοποίηση των εργαστηριακών ασκήσεων πρέπει να είναι αποκ-

λειστικά τύπου FIQ. Ο χαρακτηρισµός γίνεται µέσω του καταχωρητή AIC_FFSR, όπου η

τιµή 1 σε κάποιο bit σηµαίνει πως το αντίστοιχο περιφερειακό ϑα δηµιουργεί διακοπές

τύπου FIQ, ενώ η τιµή 0 σηµαίνει πως το αντίστοιχο περιφερειακό ϑα δηµιουργεί διακοπές

τύπου IRQ. Η ενεργοποίηση ενός bit του AIC_FFSR γίνεται µε εγγραφή της τιµής 1 στο

αντίστοιχο bit του AIC_FFER, ενώ η απενεργοποίηση ενός bit του AIC_FFSR γίνεται µε

εγγραφή της τιµής 1 στο αντίστοιχο bit του AIC_FFDR.

΄Οταν ενεργοποιηθεί µια διακοπή και εκτελεστεί η ϱουτίνα εξυπηρέτησης της, πρέπει

πρώτα να καθαριστεί η ένδειξη από την πηγή της (δηλαδή από τον υπεύθυνο καταχωρητή

του περιφερειακού που δηµιούργησε τη διακοπή) και στη συνέχεια από την µονάδα

ελέγχου διακοπών. Ο καθαρισµός στην µονάδα ελέγχου διακοπών γίνεται µε την εγγραφή

της τιµής 1 στο bit του AIC_ICCR που αντιστοιχεί στο εκάστοτε περιφερειακό.

iii. Παράδειγµα

Η δυνατότητα χρήσης της ϱουτίνας εξυπηρέτησης διακοπών ενεργοποιείται µε την

εγγραφή της διεύθυνσης της ϱουτίνας στην κατάλληλη ϑέση του διανύσµατος διακοπών

που περιγράφηκε στον πίνακα Γ΄.2. Το είδος των διακοπών που ϑα χρησιµοποιηθεί για τις

ασκήσεις που ϑα υλοποιηθούν στο σύστηµα ΑΤ91 είναι οι FIQ διακοπές. Το λειτουργικό

σύστηµα Linux έχει ήδη τοποθετήσει στη ϑέση µνήµης 0xFFFF001C τη δική του ϱουτίνα

εξυπηρέτησης διακοπών, η οποία εκτελεί τις ϱουτίνες που έχουν εισαχθεί στο σύστηµα

µε την εγγραφή στο αρχείο συστήµατος /proc/FIQ. Αυτό σηµαίνει πως για να εισάγετε

τη δική σας ϱουτίνα εξυπηρέτησης στο σύστηµα, αρκεί η εγγραφή της διεύθυνσής της

στο αρχείο /proc/FIQ. Η διαδικασία αυτή έχει υλοποιηθεί στο αρχείο HEADER.H και α-

παιτεί το όνοµα της ϱουτίνας εξυπηρέτησης διακοπών να είναι FIQ_handler. Στο ακόλουθο

πρόγραµµα, ϑα γίνει η ϱύθµιση της γραµµής εισόδου PIOA_9 σε λειτουργία εισόδου και

ϑα ενεργοποιηθεί η δυνατότητα παραγωγής διακοπών µε την αλλαγή της στάθµης του

δυναµικού εισόδου της. Η ϱουτίνα εξυπηρέτησης διακοπών ϑα αυξάνει ένα µετρητή.

Ρύθµιση λειτουργίας γραµµών επικοινωνίας.

unsigned int tmp; //Μεταβλητή γενικού σκοπού.

pioa­>PIO_PER = 0x200; //Ρύθµιση της γραµµής 9 σε λειτουργία γενικού σκοπού.

pioa­>PIO_PODR = 0x200; //Ρύθµιση της γραµµής 9 σε λειτουργία εισόδου.

pioa­>PIO_PUER = 0x200; //Ενεργοποίηση της pull­up αντίστασης.

tmp = pioa­>PIO_ISR; //Μηδενισµός καταχωρητή διακοπών µε την ανάγνωση.

pioa­>PIO_IER = 0x200; //Ενεργοποίηση παραγωγής διακοπών.

51

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών Γ΄. Μονάδα ελέγχου διακοπών

aic­>ICCR = (1<<2); //Μηδενισµός υπαρχόντων διακοπών από PIOA.

aic­>FFER = (1<<2); //Οι διακοπές από την PIOA είναι FIQ.

aic­>IECR = (1<<2); //Ενεργοποίηση προώθησης διακοπών από PIOA.

volatile unsigned int count = 0;

void FIQ_handler(void){

unsigned int fiq = 0; //Μεταβλητή που ϑα περιέχει την πηγή της διακοπής.

fiq = aic­>IPR; //Εντοπισµός περιφερειακού που προκάλεσε τη διακοπή.

if(fiq & 1<<2){ //Αν το προκάλεσε η PIOA.

fiq = pioa­>ISR; //Μηδενισµός καταχωρητή διακοπών µε την ανάγνωση.

aic­>ICCR = (1<<2); //Μηδενισµός διακοπής από την AIC.

count++;}} //Αύξηση µετρητή.

52

Παράρτηµα ∆΄

Μονάδα Μετρητή

iv. Γενικά

Η µονάδα µετρητή περιλαµβάνει 3 ανεξάρτητους µετρητές καθένας εύρους 16 bit.

Κάθε µετρητής ξεκινά από το 0 και µετρά µέχρι το 0xFFFF. ΄Οταν ϕτάσει σε αυτή την

τιµή δηµιουργεί διακοπή λόγω υπερχείλισης και ξεκινά πάλι την µέτρηση από το 0. Κάθε

µετρητής µπορεί να δεχτεί σήµα ϱολογιού από 8 διαφορετικές πηγές, εκ των οποίων οι

πρώτες 5 αφορούν εσωτερικά ϱολόγια, ενώ οι υπόλοιπες 3 αφορούν εξωτερικά σήµατα.

Στις εργαστηριακές ασκήσεις ϑα χρησιµοποιήσετε µόνο τον µετρητή 0.

v. Καταχωρητές ελέγχου

Η εικόνα ∆΄.1 παρουσιάζει τη ϕυσική υλοποίηση κάθε µετρητή. Η επιθυµητή λει-

τουργία κάθε µετρητή καθορίζεται από τις τιµές διάφορων καταχωρητών ελέγχου που

αναφέρονται στον ακόλουθο πίνακα :

Φυσική διεύθυνση: 0xFFFA0000

Μετατόπιση ΄Ονοµα Καταχωρητή Access

0x00 Channel Control Register TC_CCR Write­only

0x04 Channel Mode Register TC_CMR Read­Write

0x08 Reserved

0x0C Reserved

0x10 Counter Value TC_CV Read­only

0x14 Register A TC_RA Read­Write

0x18 Register B TC_RB Read­Write

0x1C Register C TC_RC Read­Write

0x20 Status Register TC_SR Read­only

0x24 Interrupt Enable Register TC_IER Write­only

0x28 Interrupt Disable Register TC_IDR Write­only

53

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών ∆΄. Μονάδα Μετρητή

0x2C Interrupt Mask Register TC_IMR Read­only

Ο µετρητής ενεργοποιείται µε εγγραφή της τιµής 1 στο λιγότερο σηµαντικό bit του

TC_CCR (bit 0) και απενεργοποιείται µε την εγγραφή της τιµής 1 στο 1ο bit του καταχωρητή

TC_CCR. Ο µετρητής επανατίθεται στην τιµή 0 µε την εγγραφή της τιµής 1 στο 2ο bit του

καταχωρητή TC_CCR. Για παράδειγµα, η εντολή :

tc­>Channel_0.CCR = 0x5;

ϑα ενεργοποιήσει τον µετρητή και ϑα ξεκινήσει τη µέτρηση από την τιµή 0.

Οι παράµετροι λειτουργίας του µετρητή καθορίζονται από τον TC_CMR, όπου τα 3

λιγότερο σηµαντικά bits καθορίζουν το ϱολόι που ϑα χρησιµοποιηθεί, το 7ο bit ορίζει

το αν ο µετρητής ϑα σταµατήσει τη µέτρηση µόλις η τιµή του γίνει ίση µε τον RC (αυτό

συµβαίνει όταν το bit 7 έχει την τιµή 1) και το bit 15 που ορίζει ότι η λειτουργία είναι τύπου

µέτρησης και πρέπει πάντα να έχει την τιµή 1. Τα υπόλοιπα bits πρέπει να διατηρούνται

στην τιµή 0.

Bit 2 Bit 1 Bit 0 Clock Description

0 0 0 TIMER_CLOCK1 48 MHz

0 0 1 TIMER_CLOCK2 12 MHz

0 1 0 TIMER_CLOCK3 3 MHz

0 1 1 TIMER_CLOCK4 750 KHz

1 0 0 TIMER_CLOCK5 8,192 KHz

1 0 1 XC0 External

1 1 0 XC1 External

1 1 1 XC2 External

Στον καταχωρητή TC_CV υπάρχει η τρέχουσα τιµή του µετρητή. Στους καταχωρητές

TC_RA, TC_RB και TC_RC µπορεί να γίνει εγγραφή τιµών, οι οποίες συγκρίνονται µε την

τρέχουσα τιµή του µετρητή. ΄Οταν η τιµή του µετρητή ξεπεράσει την τιµή κάποιου από τους

3 καταχωρητές, ενεργοποιούνται γραµµές εξόδου ή δηµιουργούνται διακοπές, ανάλογα µε

τις παραµέτρους που έχουν εγγραφεί στον TC_CMR.

Ο καταχωρητής TC_IMR καθορίζει το ποιες διακοπές ϑα προωθηθούν στην µονάδα

ελέγχου. Αν η τιµή ενός bit του TC_IMR είναι ίση µε το 1, τότε η αντίστοιχη διακοπή

ϑα προωθηθεί, ενώ αν είναι 0 δεν ϑα προωθηθεί. Τα bits του TC_IMR ενεργοποιούνται

µε την εγγραφή της τιµής 1 στα αντίστοιχα bits του TC_IER και απενεργοποιούνται µε

54

∆΄. Μονάδα Μετρητή Εργαστηριακές Ασκήσεις Μικροϋπολογιστών

Σχήµα ∆΄.1: ∆ιάγραµµα µονάδας µετρητή

55

Εργαστηριακές Ασκήσεις Μικροϋπολογιστών ∆΄. Μονάδα Μετρητή

την εγγραφή της τιµής 1 στα αντίστοιχα bits του TC_IDR. Ο καταχωρητής TC_SR διατηρεί

τα γεγονότα που έχουν συµβεί µετά από την τελευταία ανάγνωσή του και µηδενίζεται µε

προσπέλαση για ανάγνωση. Αν είναι ενεργοποιηµένο στον καταχωρητή TC_IMR το αντίσ-

τοιχο bit κάποιου γεγονότος, η διακοπή που ϑα δηµιουργηθεί ϑα προωθείται στη µονάδα

ελέγχου διακοπών µέχρι να γίνει ανάγνωση του TC_SR. Τα γεγονότα που υποστηρίζονται

είναι :

Bit Event Bit Event

0 COVFS Counter Overflow 4 CPCS RC Compare

1 LOVRS Load Overrun 5 LDRAS RA Loading

2 CPAS RA Compare 6 LDRBS RB Loading

3 CPBS RB Compare 7 ETRGS External Trigger

vi. Παράδειγµα

Υποθέστε πως η εφαρµογή που καλείστε να υλοποιήσετε απαιτεί την ενεργοποίηση διακοπής µε

συχνότητα 5 Hz. Αυτό µπορεί να επιτευχθεί µε την χρήση της µονάδας µετρητή και την ϱύ-

ϑµιση µέτρησης χρονικού διαστήµατος ίσου µε 200ms. Χρησιµοποιούµε µόνο το µετρητή 0, οι

καταχωρητές του οποίου µπορούν να προσπελαστούν µέσω της δοµής tc­>Channel_0.

Ρύθµιση λειτουργίας µετρητή.

tc­>Channel_0.RC = 1638; //Περίπου 200 ms

tc­>Channel_0.CMR = 0x2084; //Slow clock, count, stop on RC compare

tc­>Channel_0.IDR = 0xFF; //Απενεργοποίηση όλων των διακοπών

tc­>Channel_0.IER = 0x10; //Ενεργοποίηση διακοπής µόλις ο RC γίνει ίσος µε τον µετρητή

tc­>Channel_0.CCR = 5; //΄Εναρξη µέτρησης

Μέσα στη ϱουτίνα εξυπηρέτησης διακοπών, όταν ανιχνευτεί διακοπή από το µετρητή, πρέπει να

εκτελεστούν οι εξής εντολές :

Ρουτίνα εξυπηρέτησης διακοπής µετρητή.

dummy = tc­>Channel_0.SR; //Μηδενισµός της πηγής διακοπής

tc­>Channel_0.CCR = 5; //΄Εναρξη µέτρησης

56

