
Abstract

In this work we examine a task scheduling and data

migration problem for Grid Networks, which we refer to as the
Data Consolidation (DC) problem. DC arises when a task
needs for its execution two or more pieces of data, possibly
scattered throughout the Grid Network. In such a case, the
scheduler and the data manager must select the data replicas
to be used and the site where these will accumulate for the task
to be executed. The policies for selecting the data replicas and
the data consolidating site comprise the Data Consolidation
problem. We propose and experimentally evaluate a number of
DC techniques. Our simulation results brace our belief that
DC is an important technique for Data Grids since it can
substantially improve task delay, network load and other
performance related parameters.

1. Introduction
The continuing deployment of high speed networks is making
the vision of Grid Networks a reality. Grids consist of
geographically distributed and heterogeneous computational
and storage resources that may belong to different
administrative domains, but are shared among users by
establishing a global resource management architecture.

There is a variety of applications that can benefit from Grid
computing; some involve computationally intensive problems
on small datasets, while others, called data-intensive
applications, perform computations on large sized data, stored
at geographically distributed resources. In the latter case the
Grid is usually referred to as a Data-Grid. Examples of data-
intensive applications appear in life sciences, high-energy
physics and astrophysics, where large amounts of data are
created, processed and stored in a distributed manner. It is
evident that in such applications data network communication
delays play a key role and considerably affect task completion
times. In such an environment the collaboration of task
scheduling and data management is essential for boosting Grid
performance.

Generally, the scheduling of tasks to resources is a difficult
problem, since Grids are quite dynamic, with resource
availability and load varying rapidly with time, while at the
same time tasks have very diverse characteristics and
requirements. The extent to which scheduling is able to cope
with such an unpredictable environment significantly affects
the utilization of the resources and the Quality of Service
(QoS) provided to the users. On the other hand, data
management involves various data handling issues related to
the sites data are stored, the way data are replicated (migrated),
and the times they are replaced-reshuffled or moved over the
network. Data replication is regarded as one of the main
optimization techniques available for providing fast data
access and reliability. In data replication, data are replicated in
a number of sites throughout the Grid Network so that the
tasks can achieve efficient and fast access to the huge and
widely distributed data.

In this work we evaluate a task scheduling and data
migration problem, called Data Consolidation (DC). DC
applies to data-intensive applications that need for their
execution more than one pieces of data. In such a case the
scheduler must select both the replica of each dataset
(meaning the data repository site from which to obtain the
dataset) that will be used by the task, and the site where
these pieces of data will accumulate and the task will be
executed. The delay required for transferring the output
data files to the originating user (or to a site specified by
him) should also be accounted for. The policies for
selecting the data replicas and choosing the data
consolidating site, compromise the DC problem. We
propose and experimentally evaluate a number of DC
techniques. Our simulation results show that if DC is
performed efficiently, important benefits can be obtained
in terms of task delay, network load and other performance
parameters of interest. Note that DC can be considered as
the dual of the data replication problem, where from one
site the data are scattered to many repository sites.
Through this dual relationship we will show that DC can
also provide, by reversing the procedure, data replication
services. More complex scenarios can also be considered.
An example is the case where the task’s execution
produces intermediate results that are transferred to
another site in order to be used for the execution of a
second task, defining in this way a complex workflow.
Such complex workflows are outside the scope of the
current report, and are left for future work.

DC applies to the case where a task needs for its
execution multiple pieces of data (datasets). An example
application of DC is Montage [19], which is a toolkit for
constructing custom, science-grade mosaics by composing
multiple astronomical images. The mosaic to be
constructed is specified by the user in terms of a set of
parameters, including dataset, location and size on the sky,
coordinate system and projection, and spatial sampling
rate. In most cases, the astronomical datasets are massive,
and are stored in distributed archives that are, in most
cases, remote with respect to the available computational
resources. The Montage toolkit is used by a number of
NASA projects and is usually run on both single- and
multi-processor computers, including clusters and Grids.

The remainder of the paper is organized as follows. In
Section 2 we report on previous work. In Section 3 we
formulate the Data Consolidation problem. In Section 4 we
analyze the DC problem and propose a number of DC
techniques. In Section 5 we present the simulation
environment and the performance results obtained for the
proposed techniques. Finally, conclusions are presented in
Section 6.

2. Previous Work
Grid Networks can be distinguished into Computational
and Data Grids based on whether they serve

Data Consolidation: A Task Scheduling and Data Migration Technique
for Grid Networks

P. Kokkinos, K. Christodoulopoulos, A. Kretsis, and E. Varvarigos
Department of Computer Engineering and Informatics, University of Patras, Greece and

Research Academic Computer Technology Institute, Patras, Greece.

Eighth IEEE International Symposium on Cluster Computing and the Grid

978-0-7695-3156-4/08 $25.00 © 2008 IEEE
DOI 10.1109/CCGRID.2008.18

722

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

computationally intensive (cpu-intensive) or data-intensive
applications. A number of task scheduling and data
management algorithms have been proposed so far in the
literature. The scheduling of tasks to resources has been
considered, among others works, in [1][2][3], where several
centralized, hierarchical or distributed scheduling schemes are
presented. Most scheduling algorithms try to minimize the
total average task delay [3] and maximize resource utilization.
Other performance metrics used are the average task slowdown
[2], defined as the ratio of the task's total delay to its actual run
time, the probability to miss the deadline, and several other
metrics. Other works incorporate economic models in Grid
scheduling. For example, [4] proposes scheduling algorithms
that take into account deadline and budget constraints. Fair
scheduling in Grid Networks has also been addressed in [5][6].

Data management in Grids deals mainly with data migration,
that is, with the decisions regarding the place and the time
application-related datasets should be moved. The data
migration cost depends on the storage resources, data transfer
protocols, network topology and network conditions. A
number of works have considered the effects of data migration
in Grids [11]. The most common data migration technique is
data replication, which is the process of distributing replicas of
data across sites. Data replication reduces access latency and
bandwidth consumption and improves the reliability and the
resilience of the Grids by increasing data availability. When
different sites hold replicas of a particular dataset, there is a
significant benefit realized by selecting the best replica among
them. The best replica is the one that optimizes a desired
performance criterion such as the access latency, the cost and
the security [9][10][13]. To better select a replica, a predictive
approach can be used. Under this approach the history of data
transfer times helps in predicting the current data transfer
throughput [9]. In [19] alternative dynamic replication
strategies were evaluated, and it was found that significant
savings in latency and bandwidth can be obtained if the access
patterns are characterized by some degree of geographical
locality.

Techniques that jointly address the task scheduling and data
replication problems are proposed in [10][11][12][15][17].
Specifically, in [10] the task scheduling and the data
replication problems are decoupled, and algorithms for both
problems are proposed and evaluated. In [12] the data
management service proactively replicates the datasets at
selected sites, while an intelligent Tabu-search scheduler
dispatches tasks to resources so as to optimize execution time
and system utilization metrics. The authors in [15] deal with
the problem of integrating scheduling and replication
strategies. An Integrated Replication and Scheduling Strategy
(IRS) scheduler is proposed, aiming at improving performance
based on the coupling between the scheduling and replication
strategies. In [17] the authors develop a suite of task
scheduling and data replication algorithms. Their simulation
results show that scheduling tasks to sites that contain the
needed datasets and asynchronously replicating popular
datasets to remote sites work well.

Our proposed Data Consolidation (DC) scheme is performed
when a task needs for its execution multiple pieces of data
stored at different sites. Though this seems like a very obvious
scenario, especially for data-intensive application, most of the
related works seems to ignore it. Specifically, most related
works assume that each task needs for its execution only one
large piece of data [10][11]. There is, however, a small number
of works that assume that a task needs for its execution more
than one pieces of data [12][15]. In [15] the authors focus on

data replication and integrate scheduling and replication
strategies. In this context, they propose a number of
policies for selecting the data consolidating site,
considering this procedure as a scheduling problem.
Contrary to the aforementioned approach, in this work we
focus on the selection of the Data Consolidating (DC) site,
considering it as problem consisting of two parts. In the
first part, called data management, the data replicas that
the task will use are selected, as in [9][14]. In the second
part, called task scheduling, the site where these datasets
will consolidate (accumulate) for the task’s execution is
decided. The policies for selecting the data replicas and the
DC site comprise the DC problem. In our work we propose
a number of solutions for the DC problem and perform a
large number of simulation experiments to evaluate their
applicability and performance. Furthermore, although we
do not consider in this work data replication strategies (re-
shuffling the data in the network at specific instances), DC
can be used as an indirect data replication technique.

In practice, a Data Grid usually has a hierarchical
structure, as is the case, for example, with the European
DataGrid Testbed [20]. Therefore, a Data Grid usually
consists of multiple “tiers”, where each tier has its own
storage capacity. Tier 0 holds all of the master
files/datasets, Tier 1 consists of national centers and below
that there are regional centers. Datasets can be placed at
each tier to increase data availability among different sites.

The present work is, to the best of our knowledge, the
first time Data Consolidation (DC) is used in the context of
Grids. DC is usually encountered in IT environments,
where it is used to overcome server, storage and
application sprawling by consolidating the data centers
into fewer, centralized locations. Typically, these data
reside in legacy systems and must be migrated into new
systems, a process which is complicated, time-consuming,
resource-intensive and high-risked. A number of
companies are offering DC solutions for the enterprises.
The IT related DC has offline characteristics, where data
are consolidated before the applications’ execution. In
contrast, in a Grid environment, DC is performed online,
in the sense that it takes place when an application tasks
needs to be executed.

3. Problem Formulation
We consider a Grid Network, consisting of a set R of
N R= sites (resources) that are connected through a
Wide Area Network (WAN). Each site r∈R contains at
least one of the following entities: a computational
resource that processes the submitted tasks, a storage
resource where data are stored, and a network resource that
performs routing operations. There are also a number of
simple routers in the network. The path between two sites
ri and rj has maximum usable capacity equal to Ci,j and
propagation delay equal to di,j.

The computation resource of site ri has total
computation capacity Pi, measured in computation units
per second (e.g., Million Instructions Per Second - MIPS).
Each resource also has a local scheduler and a queue.
Tasks arriving at the resource are stored in its queue, until
they are assigned by the local scheduler to an available
CPU. The local scheduler uses the First Come First Served
(FCFS) policy. Other policies can also be used. At any
time, a number of tasks are in the queue of resource ri or
are being executed in its CPU(s) using a space-sharing

723

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

policy. The storage resource of site ri has storage capacity Si,
measured in data units (e.g., bytes). Users located somewhere
in the network generate atomic (undivisible and non-
preemptable) tasks with varying characteristics.

A task needs for its execution L pieces of data (datasets) of
sizes Ik,, k =1,…,L. A dataset Ik has a number of replicas
distributed across various storage resources. The total
computation workload of the task is equal to W, and the final
results produced have size equal to ∆. W and ∆ may depend on
the number and size of datasets the task requires. The datasets
consolidate to a single site, which we will call the data
consolidation (DC) site rDC. The DC site may already contain
some datasets so that no transferring is needed for them. A
piece of data Ik transmitted over a path (ri, rDC) experiences
total communication queuing delay ,

Comm
i DCQ , because of other

pieces of data utilizing the links of the path. The propagation
delay of this path is denoted by di,DC and its usable capacity by
Ci,DC (maximum capacity available at intermediate links). In
general the type of transport media used (opaque packet
switching, transparent networks such as optical WDM
network, OBS etc), determines whether the queuing delay is
counted once (transparent networks) or is present at every
intermediate site (opaque networks). For the rest of the paper
we will denote by ,

Comm
i DCQ the total communication queuing

delay irrespective of the underlying network. Finally, a task
before executed at the DC site experiences a processing
queuing delay Proc

DCQ , because of other tasks utilizing the
resource’s computational capacity.

We assume that a central scheduler is responsible for the
task scheduling and data management. The scheduler has
complete knowledge of the static (computation and storage
capacity etc) and the dynamic (number of running and queued
tasks, data stored etc) characteristics of the sites. We do not
take into account the communication delay of transfering
messages between the user and the scheduler and between the
scheduler and the resources, since they are negligible
compared to the total execution time of the task (at least for the
data-intensive scenarios that we consider in this study).

Figure 1: A Data Consolidation senario

A task created by user located at a site ru, asks the central

scheduler for the site where the task will execute. Upon
receiving the user’s request, the scheduler examines the
computation and data related characteristics of the task, such as
its workload, the number, the type, the size of data needed, the
sites that hold the corresponding data etc. The scheduler based
on the used Data Consolidation algorithm (Section 4.2), selects

(i) the sites that hold replicas of the datasets the task needs
and (ii) the site where these datasets will consolidate and
the task will be executed. The decisions concerning (i) and
(ii) can be made jointly or separately. Note that the
capacity of the storage resource rDC must be larger than the
total size of the datasets that will consolidate:

1
DC

L

r k
k

S I
=

≥∑ .

Next, the scheduler orders the data holding sites to
transfer the datasets to the DC site. The scheduler, also,
orders the user to transfer his task to the DC site (Figure
1). The tasks execution in the DC site starts only when the
task and all of its needed datasets have arrived at the site.
After the task finishes execution, the results return back to
the originating user.

4. Data Consolidation
Data Consolidation (DC) is performed when a task needs
for its execution two or more pieces of data. In this case
the scheduler must select: (i) the sites that hold replicas of
the datasets the task needs and (ii) the site where the data
will consolidate and the task will be executed. The policies
for selecting the data holding sites and the DC site,
compromise the DC problem. In what follows, we propose
and experimentally evaluate a number of DC techniques.

4.1 Theoretical Analysis
We assume that the scheduler has selected the data holding
sites (replicas), rk∈R, for all datasets Ik, k =1,…,L, and the
DC site rDC. Note that the DC site may already have some
pieces of data and thus for these pieces no transferring is
required (i.e., rk=rDC for some k). In general, such a data-
intensive task experiences both communication (Dcomm)
and processing (Dproc) delays. The communication delay
Dcomm of a task, considering also the delay for transferring
the final results from the DC site rDC to the originating
user’s site ru is:

, , , ,1...
, ,

max

comm cons output

Comm Commk
k DC k DC DC u DC uk L

k DC DC u

D D D

I Q d Q d
C C=

= + =

  ∆ + + + + +   
   

where Dcons is the time needed for the task’s data to
consolidate to the DC site rDC and Doutput is the delay of
the output data to be transferred to the originating user’s
site ru. The computational delay is given by:

Proc
proc DC

DC

WD Q
P

= + .

The total delay suffered by a task is:

DC comm procD D D= + .

Note that ,
Comm
k DCQ and Proc

DCQ are difficult to be estimated
since the former depends on the utilization of the network
and the latter depends on the utilization of the computation
resource.

4.2 Proposed Techniques
As stated before the DC problem consists of two sub-
problems: (i) find the repository sites rk from which the
dataset Ik, k=1,2,…,L, will be transferred to DC site and
(ii) find the DC site rDC where the task will be executed. In

724

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

general, DC techniques will make these decision based on
various criteria such as the computation and storage capacity
of the resources, their load, the location and the sizes of the
pieces of data, the bandwidth availability and the expected
latency, the user and application behaviors, the price a user is
willing to pay for using storage and computation resources,
etc.

In this work we propose a number of categories of DC
algorithms and describe for each category some basic and easy
to implement algorithms.

• Random:
o Random-Random (Rand) algorithm: The data replicas
used by the task and the DC site are randomly chosen.
o Random-Origin (RandOrig) algorithm: The data
replicas used by the task are randomly chosen and the DC
site is the one that created the task.

• Time:
o Consolidation-Cost (ConsCost) algorithm: We select
the replicas and the Data Consolidation site that minimize
the data consolidation time (Dcons).
Given a candidate DC site rj, we select for each dataset Ik
the corresponding data holding site ri that minimizes the
transfer time:

, ,, in
,

min
i k i

Commk
i j i jr R I r

i j

I Q d
C∈

 
+ +  

 
,

where R is the set of all resources and di,j the propagation
delay between site ri and rj. The data consolidation time
(Dcons) of candidate DC site rj, is given by:

, ,, in1...
,

() max min
i k

Commk
cons j i j i jr R I rk L

i j

ID r Q d
C∈=

  
= + +      

.

In ConsCost algorithm we select the DC site (rDC) that
minimizes the data consolidation time:

()arg min ()
j

DC cons j
r R

r D r
∈

= .

o Execution-Cost (ExecCost) algorithm: We select the
DC site that minimizes the task’s execution time:

arg min
i

P roc
DC i

r R i

Wr Q
P∈

 
= + 

 
,

while the data replicas are randomly chosen.
Although we cannot always calculate the processing delay

P roc
iQ of a resource ri, it is possible to estimate it based on

the tasks already assigned to it or based on the average
delay the tasks executed on it have experienced, etc.
Moreover, if the computation workload W of a task is not
a-priori known, we can simply choose the resource with
the largest computation capacity Pi.
o Total-Cost (TotalCost) algorithm: We select the
replicas and the DC site that minimize the total task delay.
This delay includes the time needed for transferring the
datasets to the DC site, the task’s execution time, and the
time needed for the output data to be transferred to the
task’s originating user. This algorithm is the combination
of the two above algorithms, and is similar to the Cost
based Job Scheduling algorithm presented in [15].

• Traffic:
o Smallest-Data Transfer (SmallTrans) algorithm: We
select the DC site for which the smallest number of
datasets (or the datasets with the smallest total size) need
to be consolidated for the task’s execution.

5. Simulation
We implemented a Data Grid Network in the Network
Simulator (ns-2) [1]. Ns-2 provides a manageable
environment for simulating the network resources of the
Grid, which is important for the evaluation of DC
techniques. We evaluated the performance of the Random-
Random (Rand), Consolidation-Cost (ConsCost),
Execution-Cost (ExecCost) and the Total-Cost (TotalCost)
algorithms.

5.1 Simulation Environment
In our simulations we used the NSFNET topology [21],
which consists of 14 nodes and 21 links. All link capacities
are equal to 1Gbps. We assume a P2P (opaque) network;
the delay for transmitting between two sites includes the
propagation delays of the links, and the queuing and
transmission delays at intermediate nodes. Only one
transmission is possible at a time over a link, so a queue
exists at every node to hold the data waiting for
transmission. Note that although in the simulation
experiments the communication queuing delay ,

Comm
i jQ

exists, it is not taken into account in the ConsCost and
TotalCost algorithms, since it is hard to estimate.

We assume that only a number of nodes are equipped
with a computational and a storage resource (such nodes
are called sites), while the other nodes act as simple
routers. In our simulations we used 5 sites of equal storage
and computational capacities. In future work, we plan to
use more sites and evaluate the scalability of the proposed
algorithms. Also, a node exists in the network, which acts
as a Tier 0 site. The Tier 0 site holds all the datasets but
does not have any computational capability.

Initially, 50 datasets exist in the network and the size of
each dataset is given by an exponential distribution with
average I. At the beginning two copies of each dataset
exist; the first is distributed among the 5 sites and the
second is placed at Tier 0 site. The storage capacity of
each storage resource is 50% of the total size of all the
datasets. Thus, on average a site can hold 25 datasets.
When a storage resource does not have the necessary
capacity to store a needed dataset, then a randomly chosen,
unused dataset is deleted. It is possible that more than one
unused datasets are deleted until the new dataset can be
stored in the resource.

In each experiment, users generate a total of 50.000
tasks, with exponential interarrival times of average value
1/λ. Unless explicitly stated, we assume that 1/λ=0.01 sec.
In all our experiments we keep constant the average total
data size S that the tasks require:

 S L I= ⋅ , (1)
where L is the number of datasets a task requests and I is
the average size of each dataset. More specifically, in our
experiments we use average total data size S equal to
15000 MB and we examine the following (L, I) pair
values: (2, 7500), (3, 5000), (4, 3750), (6, 2500), (8, 1875),
(10, 1500).

The workload W of a task correlates with the average
total data size S, through a parameter denoted as a:

 W a S= ⋅ . (2)
In our simulations we use parameter a as follows: given

the total data size S of a task (different for each task) and
a, we use Eq. (2) to calculate the workload of this task.
The parameter a defines a tradeoff between computation

725

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

and data-intensive tasks. As a increases the tasks become more
cpu-intensive, while as a decreases the tasks have less
computation demands. We alter the parameter a (0.01, 0.1, 0.5,
1, 2, 4, 8, 11) and examine how our DC strategies behave.
Unless explicitly stated, in our experiments we create data-
intensive tasks by setting a = 0.01. Also, when a task
completes its execution we assume that there is no output data
returned to the originating user.

Each experimental scenario was run 5 times, using an
independent random seed. In every repetition, the placement in
the network of the 5 sites and the Tier 0 was random. Finally,
to account for the transient regime at the beginning and at the
end of simulations, measurements start when we have reached
a steady load and stop when the last task has been submitted.

5.2 Simulation Metrics
We use the following metrics to measure the performance of
the algorithms examined:

• The average task delay. A task's delay is defined as the
time that elapses between its creation and the time its
execution is completed at a site.
• The average load per task imposed in the network. This
network load depends on the size of datasets transferred and
on the number of hops these datasets traverse.
• The Data Consolidation (DC) probability. The probability
that the selected DC site will not have all the datasets
required by a task and as a results DC will be necessary.

The first metric characterizes the efficiency of the DC
strategy with respect to the execution of a single task, while the
second expresses the overhead the DC strategy induces to the
network. The third metric gives information on the way the DC
site is selected, with respect to the datasets that are located (or
not) at this DC site.

5.3 Simulation Results
Figure 2, 3 and 4 present results when tasks request different
number of datasets L for their execution. In these experiments
the average total data size per task is S = 15000 MB, and L and
I take values as described previously.

Figure 2 shows the DC probability for the various DC
algorithms examined, that is, the probability that the datasets a
task requests are not found in the chosen DC site. The higher
the number L of datasets a task requests, the higher is the
probability (for all algorithms) that these datasets will not be
located at the DC site, given that the size of datasets a site can
hold is limited. The ConsCost and TotalCost algorithms
exhibit smaller DC probability than the Rand and ExecCost
algorithms. This is because the ConsCost and TotalCost
algorithms select a DC site by taking into account the
consolidation delay, which is small for sites holding many or
all of the datasets needed by a task. On the other hand, the
Rand and ExecCost algorithms select the DC site at random or
almost at random (as is the case for ExecCost, given that the
tasks have negligible computation complexity). As L increases
the probability of not finding all the data at a site increases and
converges to 1 for all examined algorithms.

Figure 3 shows the average task delay for the various DC
algorithms examined. We observe that the algorithms that take
the data consolidation delay into account (namely, the
ConsCost and TotalCost algorithms) behave better than the
algorithms that do not consider this parameter (that is, the
Rand and ExecCost algorithms), in terms of the task delay. As
the number L of datasets a task requires increases, the average

task delays of all the algorithms converge. Specifically, for
the ConsCost and TotalCost algorithms the average task
delay increases. This is because the probability that a DC
site will not hold all the data a task needs (i.e., the DC
probability) increases as the number of datasets a task
requires increases (Figure 2), resulting in more data
transfer, and an increase in the average task delay. On the
contrary, for the Rand and ExecCost algorithms the
average task delay decreases. This happens because the
size of the transferred datasets I decrease as L increases
(Eq. (1)). Thus, for the Rand and ExecCost algorithms that
(almost) randomly select the DC site, as L increases the
overhead of the data consolidation time and its impact on
the average task delay decreases.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12
Number of Datasets Requested (L)

D
C

 p
ro

ba
bi

lit
y

Rand
ConsCost
ExecCost
TotalCost

Figure 2: The DC probability for the proposed DC algorithms, when tasks
request different number of datasets, L, for their execution. The average
total data size per task is S=15000 MB.

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12

Number of Datasets Requested (L)

A
ve

ra
ge

 T
as

k
D

el
ay

 (s
ec

)

Rand
ConsCost
ExecCost
TotalCost

Figure 3: The average task delay (sec) for the proposed DC algorithms,
when tasks requests different number of datasets, L, for their execution.
The average total data size per task is S=15000 MB.

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8 10 12

Number of Datasets Requested (L)

A
ve

ra
ge

 N
et

w
or

k
Lo

ad
 p

er
 T

as
k

(M
B

)

Rand
ConsCost
ExecCost
TotalCost

Figure 4: The average network load per task (MBytes) for the proposed
DC algorithms, when tasks request different number of datasets, L, for
their execution. The average total data size per task is S=15000 MB.

Figure 4 shows the average network load per task (in

Mbytes) for the various DC algorithms, when tasks request
different number of datasets L for their execution. We
observe that the algorithms that do not take into account
the data consolidation delay (that is, the Rand and

726

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

ExecCost algorithms) induce, on average, largest load to the
network than the algorithms that do take the data consolidation
delay into account (ConsCost and TotalCost algorithms). This
is because the former algorithms transfer on average more
data, over longer paths. Moreover, the decisions made by these
algorithms are not affected by the dataset sizes I or their
number L, and as a result they induce on average the same
network load. By analyzing our results, we observed that these
algorithms transfer on average the same number of bytes over
paths of equal on average length, irrespectively of L and I. The
superior performance of ExecCost over that of Rand is because
ExecCost assigns task to resources in a more uniform way,
based on the task execution times. On the other hand, the
algorithms that take into account the data consolidation delay
(namely, the ConsCost and TotalCost algorithm), induce a
smaller load in the network. This load increases as the number
of datasets L increase. This can be explained by the increasing
probability that a DC site will not hold all the data a task needs
(Figure 2), and thus having to transfer more datasets as L
increases.

Figure 5 and 6 illustrate the average delay and the average
network load per task for the proposed DC algorithms, when
tasks become more cpu- than data-intensive. In order to
examine this effect we increased the parameter a. We observe
that the TotalCost algorithm behaves better in all cases. When
tasks are data-intensive, it achieves small task delay and
network load and behaves similar to the ConsCost algorithm.
As tasks become more cpu-intensive the TotalCost algorithm
continues to achieve small task delay and behaves similarly to
the ExecCost algorithm, while the average task delay achieved
by the ConsCost algorithm becomes very large. Finally, the
network load induced by the TotalCost algorithm increases as
tasks become more cpu-intensive, although it remains smaller
than that induced by the ExecCost and Rand algorithms.

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12

Data-intensive Vs CPU-intensive

A
ve

ra
ge

 T
as

k
de

la
y

(s
ec

)

Rand
ConsCost
ExecCost
TotalCost

Figure 5: The average task delay (sec) for the proposed DC algorithms, when
tasks become more cpu- than data-intensive. The average total data size per
task is S=15000 MB.

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8 10 12
Data-intensive Vs CPU-intensive

A
ve

ra
ge

 N
et

w
or

k
Lo

ad
 p

er
 T

as
k

(M
B

)

Rand
ConsCost
ExecCost
TotalCost

Figure 6: The average network load per task (Mbytes) for the proposed DC
algorithms, when tasks become more cpu than data-intensive. The average
total data size per task is S=15000 MB.

6. Conclusions
In this work we examined Data Consolidation (DC) in
Grid Networks, which is a task scheduling and data
migration technique that is performed when a task needs
for its execution two or more pieces of data, possibly
scattered throughout the Grid Network. We proposed a
number of DC policies that consider data consolidation
or/and task execution delay. We showed that if DC is
performed efficiently, important benefits can be obtained
in terms of task delay, network load and other performance
parameters of interest.

Acknowledgment
This work has been supported by the European
Commission through the IP Phosphorus project.

References
[1] T. Braun et al, A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous Distributed
Computing Systems, J. of Parallel and Distributed Computing, Vol. 61,
No. 6, pp. 810-837, 2001.
[2] V. Subramani, R. Kettimuthu, S. Srinivasan, P. Sadayappan,
Distributed job scheduling on computational grids using multiple
simultaneous requests, HPDC, USA, 2002.
[3] Y. Cardinale, H. Casanova, An evaluation of Job Scheduling
Strategies for Divisible Loads on Grid Platforms, HPC&S, 2006.
[4] R. Buyya, M. Murshed, D. Abramson, S. Venugopal, Scheduling
Parameter Sweep Applications on Global Grids: A Deadline and Budget
Constrained Cost-Time Optimisation Algorithm, Intl J. of Software:
Practice and Experience (SPE), Vol. 35, No. 5, pp. 491-512, 2005.
[5] K. H. Kim, R. Buyya, Fair Resource Sharing in Hierarchical Virtual
Organizations for Global Grids, Intl Conf. on Grid Computing, 2007.
[6] N. Doulamis, E. Varvarigos, T. Varvarigou, Fair Scheduling
Algorithms in Grids, Tran. on Parallel and Distributed Systems, Vol. 18,
No. 11, pp. 1630-1648, 2007.
[7] G. Shao, R. Wolski, F. Berman, Modeling the Cost of
Redistribution in Scheduling, SIAM Conference on Parallel Processing
for Scientific Computing, 1997.
[8] S. Frechette, D. R. Avresky, Method for Task Migration in Grid
Environments, Intl Symposium on Network Computing and Applications.
[9] R. M. Rahman, K. Barker, R. Barker, A Predictive Technique for
Replica Selection in Grid Environment, Intl Symposium on Cluster
Computing and the Grid , pp 163-170, 2007.
[10] K. Ranganathan, I. Foster, Decoupling Computation and Data
Scheduling in Distributed Data-Intensive Applications, Intl High
Performance Distributed Computing Sumposium, pp 352-358, 2002.
[11] H. Shan, L. Oliker, W. Smith, R. Biswas, Scheduling in
Heterogeneous Grid Environments: The Effects of Data Migration, Intl
Conference on Advanced Computing and Communication, 2004.
[12] A. Elghirani, R. Subrata, A. Zomaya, Intelligent Scheduling and
Replication in Datagrids: a Synergistic Approach, Intl Symposium on
Cluster Computing and the Grid , pp 179-182, 2007.
[13] W.H Bell , D.G Cameron, L. Capozza, A. P. Millar, K. Stockinger,
F. Zini, Simulation of Dynamic Grid Replication Strategies, OptorSim,
LNCS, Vol 2536 , pp 46-57, 2002.
[14] Vazhkudai, S., Tuecke, S., and Foster, I., Replica Selection in the
Globus Data Grid, Intl Symp. on Cluster Computing and the Grid, 2001.
[15] A Chakrabarti, R. Dheepak, S Sengupta, Integration of Scheduling
and Replication in Data Grids, LNCS, Vol 3296 , pp 375-385, 2004.
[16] K. Ranganathan, I. Foster, Identifying Dynamic Replication
Strategies for a High – Performance Data Grid, LNCS Vol 2242, pp 75-
86, 2001.
[17] K. Ranganathan, I. Foster, Simulation Studies of Computation and
Data Scheduling Algorithms for Data Grids, J. of Grid Computing Vol 1,
pp 53-62, 2001.
[18] Ns - network simulator, http://www.isi.edu/nsnam/.
[19] D. S. Katz at al, Astronomical Image Mosaicking on a Grid: Initial
Experiences, Engineering the Grid - Status and Perspective, (Editors: B.
Di Martino, J. Dongarra, A. Hoisie, L. Yang, and H. Zima), American
Scientific Publishers, 2006.
[20] W. Hoschek, F. Jaén-Martínez, A. Samar, H. Stockinger, and K.
Stockinger, Data Management in an International Data Grid Project, Intl
Workshop on Grid Computing, 2000.
[21] NSFNET: http://www.nsfnet-legacy.org/

727

Authorized licensed use limited to: University of Patras. Downloaded on January 28, 2009 at 13:55 from IEEE Xplore. Restrictions apply.

