
Abstract 
 
In this work we examine a task scheduling and data 

migration problem for Grid Networks, which we refer to as the 
Data Consolidation (DC) problem. DC arises when a task 
needs for its execution two or more pieces of data, possibly 
scattered throughout the Grid Network. In such a case, the 
scheduler and the data manager must select the data replicas 
to be used and the site where these will accumulate for the task 
to be executed. The policies for selecting the data replicas and 
the data consolidating site comprise the Data Consolidation 
problem. We propose and experimentally evaluate a number of 
DC techniques. Our simulation results brace our belief that 
DC is an important technique for Data Grids since it can 
substantially improve task delay, network load and other 
performance related parameters.  

1. Introduction 
The continuing deployment of high speed networks is making 
the vision of Grid Networks a reality. Grids consist of 
geographically distributed and heterogeneous computational 
and storage resources that may belong to different 
administrative domains, but are shared among users by 
establishing a global resource management architecture.  

There is a variety of applications that can benefit from Grid 
computing; some involve computationally intensive problems 
on small datasets, while others, called data-intensive 
applications, perform computations on large sized data, stored 
at geographically distributed resources. In the latter case the 
Grid is usually referred to as a Data-Grid. Examples of data-
intensive applications appear in life sciences, high-energy 
physics and astrophysics, where large amounts of data are 
created, processed and stored in a distributed manner. It is 
evident that in such applications data network communication 
delays play a key role and considerably affect task completion 
times. In such an environment the collaboration of task 
scheduling and data management is essential for boosting Grid 
performance.  

Generally, the scheduling of tasks to resources is a difficult 
problem, since Grids are quite dynamic, with resource 
availability and load varying rapidly with time, while at the 
same time tasks have very diverse characteristics and 
requirements. The extent to which scheduling is able to cope 
with such an unpredictable environment significantly affects 
the utilization of the resources and the Quality of Service 
(QoS) provided to the users. On the other hand, data 
management involves various data handling issues related to 
the sites data are stored, the way data are replicated (migrated), 
and the times they are replaced-reshuffled or moved over the 
network. Data replication is regarded as one of the main 
optimization techniques available for providing fast data 
access and reliability. In data replication, data are replicated in 
a number of sites throughout the Grid Network so that the 
tasks can achieve efficient and fast access to the huge and 
widely distributed data.  

In this work we evaluate a task scheduling and data 
migration problem, called Data Consolidation (DC). DC 
applies to data-intensive applications that need for their 
execution more than one pieces of data. In such a case the 
scheduler must select both the replica of each dataset 
(meaning the data repository site from which to obtain the 
dataset) that will be used by the task, and the site where 
these pieces of data will accumulate and the task will be 
executed. The delay required for transferring the output 
data files to the originating user (or to a site specified by 
him) should also be accounted for. The policies for 
selecting the data replicas and choosing the data 
consolidating site, compromise the DC problem. We 
propose and experimentally evaluate a number of DC 
techniques. Our simulation results show that if DC is 
performed efficiently, important benefits can be obtained 
in terms of task delay, network load and other performance 
parameters of interest.  Note that DC can be considered as 
the dual of the data replication problem, where from one 
site the data are scattered to many repository sites. 
Through this dual relationship we will show that DC can 
also provide, by reversing the procedure, data replication 
services. More complex scenarios can also be considered. 
An example is the case where the task’s execution 
produces intermediate results that are transferred to 
another site in order to be used for the execution of a 
second task, defining in this way a complex workflow. 
Such complex workflows are outside the scope of the 
current report, and are left for future work. 

DC applies to the case where a task needs for its 
execution multiple pieces of data (datasets). An example 
application of DC is Montage [19], which is a toolkit for 
constructing custom, science-grade mosaics by composing 
multiple astronomical images. The mosaic to be 
constructed is specified by the user in terms of a set of 
parameters, including dataset, location and size on the sky, 
coordinate system and projection, and spatial sampling 
rate. In most cases, the astronomical datasets are massive, 
and are stored in distributed archives that are, in most 
cases, remote with respect to the available computational 
resources. The Montage toolkit is used by a number of 
NASA projects and is usually run on both single- and 
multi-processor computers, including clusters and Grids.  

The remainder of the paper is organized as follows. In 
Section 2 we report on previous work. In Section 3 we 
formulate the Data Consolidation problem. In Section 4 we 
analyze the DC problem and propose a number of DC 
techniques. In Section 5 we present the simulation 
environment and the performance results obtained for the 
proposed techniques. Finally, conclusions are presented in 
Section 6. 

2. Previous Work 
Grid Networks can be distinguished into Computational 
and Data Grids based on whether they serve 
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computationally intensive (cpu-intensive) or data-intensive 
applications. A number of task scheduling and data 
management algorithms have been proposed so far in the 
literature. The scheduling of tasks to resources has been 
considered, among others works, in [1][2][3], where several 
centralized, hierarchical or distributed scheduling schemes are 
presented. Most scheduling algorithms try to minimize the 
total average task delay [3] and maximize resource utilization. 
Other performance metrics used are the average task slowdown 
[2], defined as the ratio of the task's total delay to its actual run 
time, the probability to miss the deadline, and several other 
metrics. Other works incorporate economic models in Grid 
scheduling. For example, [4] proposes scheduling algorithms 
that take into account deadline and budget constraints. Fair 
scheduling in Grid Networks has also been addressed in [5][6]. 

Data management in Grids deals mainly with data migration, 
that is, with the decisions regarding the place and the time 
application-related datasets should be moved. The data 
migration cost depends on the storage resources, data transfer 
protocols, network topology and network conditions. A 
number of works have considered the effects of data migration 
in Grids [11]. The most common data migration technique is 
data replication, which is the process of distributing replicas of 
data across sites. Data replication reduces access latency and 
bandwidth consumption and improves the reliability and the 
resilience of the Grids by increasing data availability. When 
different sites hold replicas of a particular dataset, there is a 
significant benefit realized by selecting the best replica among 
them. The best replica is the one that optimizes a desired 
performance criterion such as the access latency, the cost and  
the security [9][10][13]. To better select a replica, a predictive 
approach can be used. Under this approach the history of data 
transfer times helps in predicting the current data transfer 
throughput [9]. In [19] alternative dynamic replication 
strategies were evaluated, and it was found that significant 
savings in latency and bandwidth can be obtained if the access 
patterns are characterized by some degree of geographical 
locality.  

Techniques that jointly address the task scheduling and data 
replication problems are proposed in [10][11][12][15][17]. 
Specifically, in [10] the task scheduling and the data 
replication problems are decoupled, and algorithms for both 
problems are proposed and evaluated. In [12] the data 
management service proactively replicates the datasets at 
selected sites, while an intelligent Tabu-search scheduler 
dispatches tasks to resources so as to optimize execution time 
and system utilization metrics. The authors in [15] deal with 
the problem of integrating scheduling and replication 
strategies. An Integrated Replication and Scheduling Strategy 
(IRS) scheduler is proposed, aiming at improving performance 
based on the coupling between the scheduling and replication 
strategies. In [17] the authors develop a suite of task 
scheduling and data replication algorithms. Their simulation 
results show that scheduling tasks to sites that contain the 
needed datasets and asynchronously replicating popular 
datasets to remote sites work well. 

Our proposed Data Consolidation (DC) scheme is performed 
when a task needs for its execution multiple pieces of data 
stored at different sites. Though this seems like a very obvious 
scenario, especially for data-intensive application, most of the 
related works seems to ignore it. Specifically, most related 
works assume that each task needs for its execution only one 
large piece of data [10][11]. There is, however, a small number 
of works that assume that a task needs for its execution more 
than one pieces of data [12][15]. In [15] the authors focus on 

data replication and integrate scheduling and replication 
strategies. In this context, they propose a number of 
policies for selecting the data consolidating site, 
considering this procedure as a scheduling problem. 
Contrary to the aforementioned approach, in this work we 
focus on the selection of the Data Consolidating (DC) site, 
considering it as problem consisting of two parts. In the 
first part, called data management, the data replicas that 
the task will use are selected, as in [9][14]. In the second 
part, called task scheduling, the site where these datasets 
will consolidate (accumulate) for the task’s execution is 
decided. The policies for selecting the data replicas and the 
DC site comprise the DC problem. In our work we propose 
a number of solutions for the DC problem and perform a 
large number of simulation experiments to evaluate their 
applicability and performance. Furthermore, although we 
do not consider in this work data replication strategies (re-
shuffling the data in the network at specific instances), DC 
can be used as an indirect data replication technique.  

In practice, a Data Grid usually has a hierarchical 
structure, as is the case, for example, with the European 
DataGrid Testbed [20]. Therefore, a Data Grid usually 
consists of multiple “tiers”, where each tier has its own 
storage capacity. Tier 0 holds all of the master 
files/datasets, Tier 1 consists of national centers and below 
that there are regional centers. Datasets can be placed at 
each tier to increase data availability among different sites.  

The present work is, to the best of our knowledge, the 
first time Data Consolidation (DC) is used in the context of 
Grids. DC is usually encountered in IT environments, 
where it is used to overcome server, storage and 
application sprawling by consolidating the data centers 
into fewer, centralized locations. Typically, these data 
reside in legacy systems and must be migrated into new 
systems, a process which is complicated, time-consuming, 
resource-intensive and high-risked. A number of 
companies are offering DC solutions for the enterprises. 
The IT related DC has offline characteristics, where data 
are consolidated before the applications’ execution. In 
contrast, in a Grid environment, DC is performed online, 
in the sense that it takes place when an application tasks 
needs to be executed.  

3. Problem Formulation 
We consider a Grid Network, consisting of a set R of 
N R=  sites (resources) that are connected through a 
Wide Area Network (WAN). Each site r∈R contains at 
least one of the following entities: a computational 
resource that processes the submitted tasks, a storage 
resource where data are stored, and a network resource that 
performs routing operations. There are also a number of 
simple routers in the network. The path between two sites 
ri and rj has maximum usable capacity equal to Ci,j and 
propagation delay equal to di,j.  

The computation resource of site ri has total 
computation capacity Pi, measured in computation units 
per second (e.g., Million Instructions Per Second - MIPS). 
Each resource also has a local scheduler and a queue. 
Tasks arriving at the resource are stored in its queue, until 
they are assigned by the local scheduler to an available 
CPU. The local scheduler uses the First Come First Served 
(FCFS) policy. Other policies can also be used. At any 
time, a number of tasks are in the queue of resource ri or 
are being executed in its CPU(s) using a space-sharing 
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policy. The storage resource of site ri has storage capacity Si, 
measured in data units (e.g., bytes). Users located somewhere 
in the network generate atomic (undivisible and non-
preemptable) tasks with varying characteristics.  

A task needs for its execution L pieces of data (datasets) of 
sizes Ik,, k =1,…,L. A dataset Ik has a number of replicas 
distributed across various storage resources. The total 
computation workload of the task is equal to W, and the final 
results produced have size equal to ∆. W and ∆ may depend on 
the number and size of datasets the task requires. The datasets 
consolidate to a single site, which we will call the data 
consolidation (DC) site rDC. The DC site may already contain 
some datasets so that no transferring is needed for them. A 
piece of data Ik transmitted over a path (ri, rDC) experiences 
total communication queuing delay ,

Comm
i DCQ , because of other 

pieces of data utilizing the links of the path. The propagation 
delay of this path is denoted by di,DC and its usable capacity by 
Ci,DC (maximum capacity available at intermediate links). In 
general the type of transport media used (opaque packet 
switching, transparent networks such as optical WDM 
network, OBS etc), determines whether the queuing delay is 
counted once (transparent networks) or is present at every 
intermediate site (opaque networks). For the rest of the paper 
we will denote by ,

Comm
i DCQ  the total communication queuing 

delay irrespective of the underlying network. Finally, a task 
before executed at the DC site experiences a processing 
queuing delay Proc

DCQ , because of other tasks utilizing the 
resource’s computational capacity.  

We assume that a central scheduler is responsible for the 
task scheduling and data management. The scheduler has 
complete knowledge of the static (computation and storage 
capacity etc) and the dynamic (number of running and queued 
tasks, data stored etc) characteristics of the sites. We do not 
take into account the communication delay of transfering 
messages between the user and the scheduler and between the 
scheduler and the resources, since they are negligible 
compared to the total execution time of the task (at least for the 
data-intensive scenarios that we consider in this study).  

 

 
Figure 1: A Data Consolidation senario 

 
A task created by user located at a site ru, asks the central 

scheduler for the site where the task will execute. Upon 
receiving the user’s request, the scheduler examines the 
computation and data related characteristics of the task, such as 
its workload, the number, the type, the size of data needed, the 
sites that hold the corresponding data etc. The scheduler based 
on the used Data Consolidation algorithm (Section 4.2), selects 

(i) the sites that hold replicas of the datasets the task needs 
and (ii) the site where these datasets will consolidate and 
the task will be executed. The decisions concerning (i) and 
(ii) can be made jointly or separately. Note that the 
capacity of the storage resource rDC must be larger than the 
total size of the datasets that will consolidate: 

1
DC

L

r k
k

S I
=

≥∑ . 

Next, the scheduler orders the data holding sites to 
transfer the datasets to the DC site. The scheduler, also, 
orders the user to transfer his task to the DC site (Figure 
1). The tasks execution in the DC site starts only when the 
task and all of its needed datasets have arrived at the site. 
After the task finishes execution, the results return back to 
the originating user.  

4. Data Consolidation 
Data Consolidation (DC) is performed when a task needs 
for its execution two or more pieces of data. In this case 
the scheduler must select: (i) the sites that hold replicas of 
the datasets the task needs and (ii) the site where the data 
will consolidate and the task will be executed. The policies 
for selecting the data holding sites and the DC site, 
compromise the DC problem. In what follows, we propose 
and experimentally evaluate a number of DC techniques. 

4.1 Theoretical Analysis 
We assume that the scheduler has selected the data holding 
sites (replicas), rk∈R, for all datasets Ik, k =1,…,L, and the 
DC site rDC. Note that the DC site may already have some 
pieces of data and thus for these pieces no transferring is 
required (i.e., rk=rDC for some k). In general, such a data-
intensive task experiences both communication (Dcomm) 
and processing (Dproc) delays. The communication delay 
Dcomm of a task, considering also the delay for transferring 
the final results from the DC site rDC to the originating 
user’s site ru is: 

, , , ,1...
, ,

max

comm cons output

Comm Commk
k DC k DC DC u DC uk L

k DC DC u

D D D

I Q d Q d
C C=

= + =

  ∆ + + + + +   
   

 

 

where Dcons is the time needed for the task’s data to 
consolidate to  the DC site rDC and Doutput is the delay of 
the output data to be transferred to the originating user’s 
site ru. The computational delay is given by:  

Proc
proc DC

DC

WD Q
P

= + . 

The total delay suffered by a task is: 

DC comm procD D D= + . 

Note that ,
Comm
k DCQ  and Proc

DCQ are difficult to be estimated 
since the former depends on the utilization of the network 
and the latter depends on the utilization of the computation 
resource. 

4.2 Proposed Techniques 
As stated before the DC problem consists of two sub-
problems: (i) find the repository sites rk from which the 
dataset Ik, k=1,2,…,L, will be transferred to DC site and 
(ii) find the DC site rDC where the task will be executed. In 
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general, DC techniques will make these decision based on 
various criteria such as the computation and storage capacity 
of the resources, their load, the location and the sizes of the 
pieces of data, the bandwidth availability and the expected 
latency, the user and application behaviors, the price a user is 
willing to pay for using storage and computation resources, 
etc. 

In this work we propose a number of categories of DC 
algorithms and describe for each category some basic and easy 
to implement algorithms.  

 

• Random: 
o Random-Random (Rand) algorithm: The data replicas 
used by the task and the DC site are randomly chosen. 
o Random-Origin (RandOrig) algorithm: The data 
replicas used by the task are randomly chosen and the DC 
site is the one that created the task.  
 

• Time:  
o Consolidation-Cost (ConsCost) algorithm: We select 
the replicas and the Data Consolidation site that minimize 
the data consolidation time (Dcons). 
Given a candidate DC site rj, we select for each dataset Ik 
the corresponding data holding site ri that minimizes the 
transfer time: 

, ,, in
,

min
i k i

Commk
i j i jr R I r

i j

I Q d
C∈

 
+ +  

 
, 

where R is the set of all resources and di,j the propagation 
delay between site ri and rj. The data consolidation time 
(Dcons) of candidate DC site rj, is given by: 

, ,, in1...
,

( ) max min
i k

Commk
cons j i j i jr R I rk L

i j

ID r Q d
C∈=

  
= + +      

. 

In ConsCost algorithm we select the DC site (rDC) that 
minimizes the data consolidation time: 

( )arg min  ( )
j

DC cons j
r R

r D r
∈

= . 

o Execution-Cost (ExecCost) algorithm: We select the 
DC site that minimizes the task’s execution time: 

arg min
i

P roc
DC i

r R i

Wr Q
P∈

 
= + 

 
, 

while the data replicas are randomly chosen. 
Although we cannot always calculate the processing delay 

P roc
iQ  of a resource ri, it is possible to estimate it based on 

the tasks already assigned to it or based on the average 
delay the tasks executed on it have experienced, etc. 
Moreover, if the computation workload W of a task is not 
a-priori known, we can simply choose the resource with 
the largest computation capacity Pi. 
o Total-Cost (TotalCost) algorithm: We select the 
replicas and the DC site that minimize the total task delay. 
This delay includes the time needed for transferring the 
datasets to the DC site, the task’s execution time, and the 
time needed for the output data to be transferred to the 
task’s originating user. This algorithm is the combination 
of the two above algorithms, and is similar to the Cost 
based Job Scheduling algorithm presented in [15].  
 

• Traffic: 
o Smallest-Data Transfer (SmallTrans) algorithm: We 
select the DC site for which the smallest number of 
datasets (or the datasets with the smallest total size) need 
to be consolidated for the task’s execution.  

5. Simulation 
We implemented a Data Grid Network in the Network 
Simulator (ns-2) [1]. Ns-2 provides a manageable 
environment for simulating the network resources of the 
Grid, which is important for the evaluation of DC 
techniques. We evaluated the performance of the Random-
Random (Rand), Consolidation-Cost (ConsCost), 
Execution-Cost (ExecCost) and the Total-Cost (TotalCost) 
algorithms. 

5.1 Simulation Environment  
In our simulations we used the NSFNET topology [21], 
which consists of 14 nodes and 21 links. All link capacities 
are equal to 1Gbps. We assume a P2P (opaque) network; 
the delay for transmitting between two sites includes the 
propagation delays of the links, and the queuing and 
transmission delays at intermediate nodes. Only one 
transmission is possible at a time over a link, so a queue 
exists at every node to hold the data waiting for 
transmission. Note that although in the simulation 
experiments the communication queuing delay ,

Comm
i jQ  

exists, it is not taken into account in the ConsCost and 
TotalCost algorithms, since it is hard to estimate. 

We assume that only a number of nodes are equipped 
with a computational and a storage resource (such nodes 
are called sites), while the other nodes act as simple 
routers. In our simulations we used 5 sites of equal storage 
and computational capacities. In future work, we plan to 
use more sites and evaluate the scalability of the proposed 
algorithms. Also, a node exists in the network, which acts 
as a Tier 0 site. The Tier 0 site holds all the datasets but 
does not have any computational capability.  

Initially, 50 datasets exist in the network and the size of 
each dataset is given by an exponential distribution with 
average I. At the beginning two copies of each dataset 
exist; the first is distributed among the 5 sites and the 
second is placed at Tier 0 site. The storage capacity of 
each storage resource is 50% of the total size of all the 
datasets. Thus, on average a site can hold 25 datasets. 
When a storage resource does not have the necessary 
capacity to store a needed dataset, then a randomly chosen, 
unused dataset is deleted. It is possible that more than one 
unused datasets are deleted until the new dataset can be 
stored in the resource.  

In each experiment, users generate a total of 50.000 
tasks, with exponential interarrival times of average value 
1/λ. Unless explicitly stated, we assume that 1/λ=0.01 sec. 
In all our experiments we keep constant the average total 
data size S that the tasks require: 

   S L I= ⋅ ,  (1) 
where L is the number of datasets a task requests and I is 
the average size of each dataset. More specifically, in our 
experiments we use average total data size S equal to 
15000 MB and we examine the following (L, I) pair 
values: (2, 7500), (3, 5000), (4, 3750), (6, 2500), (8, 1875), 
(10, 1500).  

The workload W of a task correlates with the average 
total data size S, through a parameter denoted as a: 

   W a S= ⋅ .          (2) 
In our simulations we use parameter a as follows: given 

the total data size S of a task (different for each task) and 
a, we use Eq. (2) to calculate the workload of this task. 
The parameter a defines a tradeoff between computation 
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and data-intensive tasks. As a increases the tasks become more 
cpu-intensive, while as a decreases the tasks have less 
computation demands. We alter the parameter a (0.01, 0.1, 0.5, 
1, 2, 4, 8, 11) and examine how our DC strategies behave. 
Unless explicitly stated, in our experiments we create data-
intensive tasks by setting a = 0.01. Also, when a task 
completes its execution we assume that there is no output data 
returned to the originating user.  

Each experimental scenario was run 5 times, using an 
independent random seed. In every repetition, the placement in 
the network of the 5 sites and the Tier 0 was random. Finally, 
to account for the transient regime at the beginning and at the 
end of simulations, measurements start when we have reached 
a steady load and stop when the last task has been submitted.  

5.2 Simulation Metrics 
We use the following metrics to measure the performance of 
the algorithms examined: 

• The average task delay. A task's delay is defined as the 
time that elapses between its creation and the time its 
execution is completed at a site. 
• The average load per task imposed in the network. This 
network load depends on the size of datasets transferred and 
on the number of hops these datasets traverse. 
• The Data Consolidation (DC) probability. The probability 
that the selected DC site will not have all the datasets 
required by a task and as a results DC will be necessary.  

 

The first metric characterizes the efficiency of the DC 
strategy with respect to the execution of a single task, while the 
second expresses the overhead the DC strategy induces to the 
network. The third metric gives information on the way the DC 
site is selected, with respect to the datasets that are located (or 
not) at this DC site. 

5.3 Simulation Results  
Figure 2, 3 and 4 present results when tasks request different 
number of datasets L for their execution. In these experiments 
the average total data size per task is S = 15000 MB, and L and 
I take values as described previously. 

Figure 2 shows the DC probability for the various DC 
algorithms examined, that is, the probability that the datasets a 
task requests are not found in the chosen DC site. The higher 
the number L of datasets a task requests, the higher is the 
probability (for all algorithms) that these datasets will not be 
located at the DC site, given that the size of datasets a site can 
hold is limited. The ConsCost and TotalCost algorithms 
exhibit smaller DC probability than the Rand and ExecCost 
algorithms. This is because the ConsCost and TotalCost 
algorithms select a DC site by taking into account the 
consolidation delay, which is small for sites holding many or 
all of the datasets needed by a task. On the other hand, the 
Rand and ExecCost algorithms select the DC site at random or 
almost at random (as is the case for ExecCost, given that the 
tasks have negligible computation complexity). As L increases 
the probability of not finding all the data at a site increases and 
converges to 1 for all examined algorithms. 

Figure 3 shows the average task delay for the various DC 
algorithms examined. We observe that the algorithms that take 
the data consolidation delay into account (namely, the 
ConsCost and TotalCost algorithms) behave better than the 
algorithms that do not consider this parameter (that is, the 
Rand and ExecCost algorithms), in terms of the task delay. As 
the number L of datasets a task requires increases, the average 

task delays of all the algorithms converge. Specifically, for 
the ConsCost and TotalCost algorithms the average task 
delay increases. This is because the probability that a DC 
site will not hold all the data a task needs (i.e., the DC 
probability) increases as the number of datasets a task 
requires increases (Figure 2), resulting in more data 
transfer, and an increase in the average task delay. On the 
contrary, for the Rand and ExecCost algorithms the 
average task delay decreases. This happens because the 
size of the transferred datasets I decrease as L increases 
(Eq. (1)). Thus, for the Rand and ExecCost algorithms that 
(almost) randomly select the DC site, as L increases the 
overhead of the data consolidation time and its impact on 
the average task delay decreases. 
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Figure 2: The DC probability for the proposed DC algorithms, when tasks 
request different number of datasets, L, for their execution. The average 
total data size per task is S=15000 MB. 
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Figure 3: The average task delay (sec) for the proposed DC algorithms, 
when tasks requests different number of datasets, L, for their execution. 
The average total data size per task is S=15000 MB. 
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Figure 4: The average network load per task (MBytes) for the proposed 
DC algorithms, when tasks request different number of datasets, L, for 
their execution. The average total data size per task is S=15000 MB. 
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ExecCost algorithms) induce, on average, largest load to the 
network than the algorithms that do take the data consolidation 
delay into account (ConsCost and TotalCost algorithms). This 
is because the former algorithms transfer on average more 
data, over longer paths. Moreover, the decisions made by these 
algorithms are not affected by the dataset sizes I or their 
number L, and as a result they induce on average the same 
network load. By analyzing our results, we observed that these 
algorithms transfer on average the same number of bytes over 
paths of equal on average length, irrespectively of L and I. The 
superior performance of ExecCost over that of Rand is because 
ExecCost assigns task to resources in a more uniform way, 
based on the task execution times. On the other hand, the 
algorithms that take into account the data consolidation delay 
(namely, the ConsCost and TotalCost algorithm), induce a 
smaller load in the network. This load increases as the number 
of datasets L increase. This can be explained by the increasing 
probability that a DC site will not hold all the data a task needs 
(Figure 2), and thus having to transfer more datasets as L 
increases. 

Figure 5 and 6 illustrate the average delay and the average 
network load per task for the proposed DC algorithms, when 
tasks become more cpu- than data-intensive. In order to 
examine this effect we increased the parameter a. We observe 
that the TotalCost algorithm behaves better in all cases. When 
tasks are data-intensive, it achieves small task delay and 
network load and behaves similar to the ConsCost algorithm. 
As tasks become more cpu-intensive the TotalCost algorithm 
continues to achieve small task delay and behaves similarly to 
the ExecCost algorithm, while the average task delay achieved 
by the ConsCost algorithm becomes very large. Finally, the 
network load induced by the TotalCost algorithm increases as 
tasks become more cpu-intensive, although it remains smaller 
than that induced by the ExecCost and Rand algorithms. 
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Figure 5: The average task delay (sec) for the proposed DC algorithms, when 
tasks become more cpu- than data-intensive. The average total data size per 
task is S=15000 MB. 
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Figure 6: The average network load per task (Mbytes) for the proposed DC 
algorithms, when tasks become more cpu than data-intensive. The average 
total data size per task is S=15000 MB. 

6. Conclusions 
In this work we examined Data Consolidation (DC) in 
Grid Networks, which is a task scheduling and data 
migration technique that is performed when a task needs 
for its execution two or more pieces of data, possibly 
scattered throughout the Grid Network. We proposed a 
number of DC policies that consider data consolidation 
or/and task execution delay. We showed that if DC is 
performed efficiently, important benefits can be obtained 
in terms of task delay, network load and other performance 
parameters of interest.  
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