

Abstract—We propose a dynamic connection establishment
algorithm for flexible optical networks. When the spectrum is
fragmented, blocking a connection establishment, the algorithm
re-optimizes the network by shifting (“pushing”) in the spectrum
domain and/or rerouting established connections. We devised
appropriate algorithms that search among different combinations
of shifting and rerouting alternatives and select the one with the
minimum cost. Since shifting or rerouting a connection might
trigger more shifting and rerouting actions, the proposed
algorithms are recursive. Since the solution space can be very
large, we use a threshold on the recursion depth to reduce the
complexity, and also provide a tradeoff between performance and
running time.

Index Terms—Flexible/Elastic optical networks, dynamic
Routing and Spectrum Allocation, spectrum defragmentation.

I. INTRODUCTION

lexible optical networks (the term elastic is also widely
used) are regarded as the most promising architecture for
next generation backbone and metro area networks, since

their increased spectral efficiency and adaptability is considered
suitable for future requirements. These networks are based on
the flex-grid technology where the spectrum is divided into
12.5 GHz spectrum slots, a smaller granularity than in
traditional WDM networks. Moreover, the slots can be
combined to create channels that are as wide as needed. With
the Bandwidth Variable Transponders (BVT) that can adapt
their transmission parameters, flexible networks become more
dynamic, adaptive and efficient than traditional solutions [1].

During the operation of an optical network, new
connections are established and torn down dynamically with
time. In contrast to traditional WDM networks, where
bandwidth assignment is uniform, in flexible networks the
spectrum eventually becomes fragmented, a problem that
becomes more severe as time progresses. Thus, after a point the
available spectrum is inefficiently utilized, the network serves
fewer demands than one would expect at its actual load level,
and connections are blocked even though there are enough
resources on the links that could be used to serve them.

To address this problem, two types of defragmentation
methods have appeared: proactive and reactive methods.
Reactive defragmentation is triggered when a new demand
cannot be served, while proactive defragmentation is performed
in a periodic or in an event-driven manner without being
triggered by connection blocking (e.g. at connection release).
The latter method aims at maintaining the network in a good
shape without a priori knowing if the changes made will be
needed or not. The former method is triggered only when
needed, meaning that spectrum fragmentation has reached a
critical point, and thus it has to be fast and efficient.

Rearranging as few connections as possible and achieving low
running time and little disruption in the network are the
objectives that matter most in this case.

In this paper we propose a Dynamic RSA (D-RSA)
algorithm for establishing transparent (without regenerators)
and translucent (with regenerators) connections in a flexible
optical network and reactively defragment it when deemed
appropriate. We assume an optical network that encompasses
slotted flex-grid and tunable BVT transponders, and a generic
traffic scenario where demands arrive dynamically, each
requesting a specific rate between a specific source and
destination. Serving this demand requires the establishment of
one or several connections, depending on the requested rate, the
distance between the end-points and the capabilities of the
transponders. So the D-RSA algorithm has to decide on how to
break the requested connection demand into connections (if
useful), determine where to use regenerators (if needed and if
provisioned in the network), and allocate path(s) and spectrum
to the connection(s). If the required resources are free the
demand is served and the connection(s) is (are) established;
otherwise, we use two defragmentation techniques to reactively
re-optimize the network and serve the demand: (i) the push-
pull technique, where established connections continue using
the same path but are shifted in the spectrum domain without
tearing them down, and (ii) the rerouting technique, where
established connections are torn down and are routed over the
same or different paths in a make-before-break manner. The
two techniques can also be used jointly to achieve even better
performance.

The long term goal of the D-RSA algorithm is to serve the
demands so as to minimize network blocking. If a demand
cannot be served at the current network configuration state, the
algorithm applies the two aforementioned techniques to
defragment the spectrum. A secondary objective while doing so
is to affect as little as possible the current state of the network,
that is, to minimize the disruptions/changes in existing
connections. We define the re-optimization cost in terms of the
spectrum slots that are shifted by the push-pull technique, or in
terms of the number of rerouted connections for the rerouting
technique. We devised appropriate algorithms that search
among different combinations of shifting and rerouting
alternatives and select the one with the minimum cost. Since
shifting or rerouting a connection might in turn trigger more
shifting and rerouting actions, the proposed algorithms are
recursive, and the solution space can be enormous. To reduce
the running time we used a threshold on the recursion depth.
Our simulation results show that the blocking probability can be
substantially reduced using the proposed techniques and that
the selection of the recursion threshold is a good way to obtain
a trade-off between the performance and the running time.

Dynamic Connection Establishment and Network Re-
optimization in Flexible Optical Networks

P. Soumplis, K. Christodoulopoulos, E. Varvarigos
Department of Computer Engineering and Informatics, University of Patras, Greece and

Computer Technology Institute and Press – Diophantus, Patra, Greece
Emails: {soumplis,kchristodou,manos}@ceid.upatras.gr

F

II. RELATED WORK
Dynamic flexible optical networks have received increased

recent attention, with much of the research effort focusing on
algorithms to cope with connection establishment and spectrum
fragmentation [2]. One way to reduce spectrum fragmentation,
is to re-optimize the network by rerouting (tearing down and re-
establishing) existing connections. A second and often better
approach is to use the finer granularity and channel adaptability
offered by the advanced transponders envisioned in order to
shift connections in the spectrum domain without interruption.
This is achieved in [3] by the so called push-pull technique.

Irrespectively of the method they use (rerouting or spectrum
shifting), the corresponding defragmentation algorithms can be
divided, as mentioned before, into reactive [8][9] and proactive
[4] [5][6][7] algorithms, according to whether they are triggered
or not by a blocking/critical event.

The authors in [8] defragment the spectrum by rerouting
existing connections so as to pack them into the lower spectrum
slots, while also minimizing connection interruptions. In [9]
different techniques for spectrum sharing between neighbouring
connections are introduced to serve time varying traffic. In [5]
the authors propose an algorithm that is invoked when a
connection or a group of connections are torn down, by
rerouting associated remaining connections at lower spectrum
bands. In [6] the authors examine defragmentation in practice
by rearranging connections spectrally while also considering
the advantages obtained by different channel spacing selections.
In [7] two defragmentation methods are proposed, with the first
focusing on the most congested links, and the second
performing network-wide proactive defragmentation by
rerouting connections so as to pack them in a most-used
spectrum slot assignment manner. A reactive defragmentation
method is proposed in [8], where blocking triggers the rerouting
of existing connections to make space for the new connection.

The novelty of our proposed solutions compared to previous
works is fourfold. First, we provide general algorithms that take
generic parameters as input. In particular, the input comes in the
form of feasible transmission configurations of the transponders
used in the network, which incorporate the physical layer
impairments. Second, previous work focused on transparent
networks, without, to the best of our knowledge, considering
regenerators. Our algorithms take into account regenerators that
can be used to achieve higher spectrum efficiency, lower cost
and reduce blocking probability. Third, previous works perform
defragmentation using either push-pull or rerouting, while in
our work we also consider combining these techniques to
achieve even better performance. Finally, we explore a wider
defragmentation space than former approaches, by examining
all possible combinations to make the required space and use a
threshold on the recursion depth to control the complexity and
consequently the running time of our algorithms.

III. PROBLEM DESCRIPTION
We are given an optical network G = (V,E), where V denotes

the set of nodes and E denotes the set of single-fiber links.
Each link lϵE is characterized by its length Dl, The spectrum is
divided in spectrum slots of F GHz, where one spectrum slot
corresponds to the switching granularity of the flexible network
elements (flex-grid switches and bandwidth variable
transponders - BVTs). The network support Ft number of slots.

The spectrum utilization of a link l is represented by a three
state vector Ul, called the link slot utilization vector, of length
equal to Ft, and Uli represents the i-th slot. A spectrum slot can
be in one of the following states: (i) free (denoted by state uf),
(ii) used for data transmission (denoted by ud), or (iii) used as
guardband (denoted by ug). The rules are that data slots cannot
be used by new connections, free slots can be used for data,
while free and guardband slots can be used for guardband by
new connections. The slot utilization vector Up of a path p can
be computed using an (associative) 3-ary operator ⊕ for
combining (“adding”) the spectrum slots of the links that
comprise it. The combining operator is defined as follows:
uf ⊕ ud=ud, uf ⊕ ug=ug, uf ⊕ uf=uf , ug ⊕ ug=ug, ud ⊕ ud=ud, ud ⊕ ug=ud

Thus, Upi = l p∈
⊕ Uli, for all i=1,2,…, Ft.

The traffic is served by BVTs that control (a) the modulation
format and (b) the spectrum (in the form of contiguous
spectrum slots) they utilize. By adapting these features, a BVT
of cost c can be tuned to transmit r Gbps using bandwidth of b
spectrum slots and a guardband of g spectrum slots from the
adjacent spectrum connections to reach l km distance with
acceptable quality of transmission (QoT). More formally, a
specific transponder of cost (type) c is characterized by its
physical feasibility function fc that gives the reach l=fc(r,b,g) at
which it can transmit with acceptable QoT as a function of the
parameters r (rate), b (spectrum), and g (guardband) that we can
control. This function captures the physical layer impairments,
assuming worst-case contribution for the interference-related
impairments (four-wave-mixing, cross-phase modulation,
cross-talk), and can be obtained either through experiments or
using analytical models [8][11].

Using function fc we define (reach-rate-spectrum-guardband-
cost) transmission tuples, t=(lt,rt,bt,gt,,ct), which correspond to
feasible transmission configurations. The term “feasible” is
used to signify that the tuple definition incorporates the
limitations posed by physical layer impairments. The
transponders have certain limitations in their capabilities, which
are of the following forms: the maximum symbols per second
(baud rate), and/or the maximum modulation format, and/or the
maximum spectrum used, and/or the maximum transmission
rate. Given the transponders’ limitations, and since the
modulation format and the spectrum are selected from discrete
sets, we obtain the set of feasible transmission configurations
for the transponders.

We assume that demands arrive at random time instants and
are immediately served by the Dynamic Routing and Spectrum
Allocation (D-RSA) algorithm. An incoming demand is
characterized by its source-destination pair (s,d), its requested
capacity D, and a mode indicator M that states if the demand is
allowed or not to use regenerators (translucent or transparent,
respectively). This definition is quite generic and can capture
traffic serving in both transparent and translucent networks, but
also allows for extra functionality as will be discussed shortly.
If the demand cannot be satisfied in the current state of the
network, the network is re-optimized and thus the problem can
be viewed as an extension of the RSA and thus is NP-hard. In
this paper we propose a heuristic D-RSA algorithm to provide
solutions for large problem instances, with an exact algorithm
been also developed but not reported here due to space
limitations.

Connection establishment in a network where the use of
regenerators is not provisioned can be performed by requiring
all demands to be served transparently. In a translucent
network, if the mode indicator of a demand allows the use of
regenerators, it is the up to the D-RSA algorithm to decide
whether to use them or not. However, the extra functionality
comes when a demand in a translucent network explicitly
requires transparent service (e.g. for reduced cost) and this is
performed by the proposed D-RSA by providing an appropriate
non-regenerated solution.

To serve a connection requesting rate D, the D-RSA
establishes one or more (in case rate D is not supported at the
respective distance by a single transponder) transparent or
translucent connections from s to d. Note that translucent
connections consist of transparent sub-connections (sub-paths)
regenerated at intermediate points, and thus the transparent case
can be viewed as a special case of the translucent case. In the
remainder of this paper we will avoid specifying the mode
(transparent or translucent) of a connection unless this is not
apparent from the context.

The D-RSA algorithm examines a number of candidate paths
between the source and destination, and depending on their link
lengths, it finds the transmission tuples that can be used over
each of them, what we call a feasible path-tuple pair. For a
given demand some path-tuples will never be used (said to be
“dominated” by others), since they require more spectrum and
transponders. These are removed, limiting the search space
without losing good solutions.

For each non-dominated path-tuple pair, since the requested
rate D can be higher than the maximum transmission rate at the
corresponding distance, the algorithm calculates the number of
connections to be established, the nodes where regenerators will
be placed, if needed and allowed, and the amount of spectrum
to be used by each connection. Then it searches to allocate
contiguous spectrum slots to these connection(s). Note that each
path-tuple corresponds to a specific number of connections and
regenerators, and by examining all the path-tuple pairs we
examine all feasible combinations of these parameters. For
example, we examine if a single high-rate short-reach
connection requiring many regenerators at intermediate nodes
should be used, or if the other extreme that uses many low-rate
long-reach connections should be used, or if some other option
in-between should be used.

If the algorithm finds sufficient available spectrum slots over
a specific path-tuple pair, the connection(s) defined by the path-
tuple pair choice is (are) established, subject to the RSA
limitations. If the number of free spectrum slots is insufficient
for at least one connection, the (i) push-pull or (ii) rerouting, or
a combination of these techniques is used to reactively re-
optimize the network, free spectrum and serve that connection.

The push-pull technique offers the ability to shift an existing
connection’s spectrum band with no service disruption (hitless)
and can be used to defragment the network [3]. Fig. 1 presents
an example where the push-pull technique is used to establish a
connection that would otherwise be blocked. The time to push-
pull an existing connection is proportional to the number of
slots by which the connection is shifted, and experiments show
that this can be done quite fast. Shifting more than one
connection that are adjacent towards the same direction can be
done in parallel, so that the overall reconfiguration time is the
time of the longest shifting.

The push-pull algorithm we implemented selects a spectrum
void and creates the required space to establish the blocked
connection by shifting the void’s neighbouring connections.
The cost of using this particular void is defined as the spectrum
shifting (in slots) of the connection that is shifted the longest,
since this determines the time for performing the push-pull(s).
Other important metrics that can be optimized are the number
of shifted connections, or the total number of slots of all
connections that are shifted, which indicate the network state
changes and the complexity of the re-optimization.

When the establishment of a connection causes the shifting
of other connections, the shifting can be done towards the upper
and bottom direction by certain slots, until we create the
required spectrum space. Different selections of the slots that
are freed in each direction result in different solutions and costs.
To achieve the lowest possible cost, the algorithm considers all
possible combinations of slots freed in the two directions.

The rerouting algorithm we implemented is based on Make-
before-Break (MbB) technique and utilizes additional
transponders (and regenerators, when used) to re-establish an
existing connection before tearing it down. In this technique,
before rerouting an existing connection we re-establish it over
the same or a different path. Since we can have different
lengths, the use of a different modulation format with higher
transmission reach may be required to serve the demand. In
some cases we may have to utilize more than one transponders
to make the transmission over the new path feasible. The old
and the new connection(s) will both be active for a small
interval of time, while the traffic is switched from the old to the
new one. Finally, the old connection is torn-down releasing the
spectrum that was reserved for it. Similarly to the push-pull
technique, when more than one connections are rerouted we
assume that this is done in a pipelined manner, minimizing the
number of spare transponders/regenerators required. The MbB
technique guarantees small traffic disruption (this depends on
the difference in the lengths of the two paths used and would be
seamless if we reroute the connection over the same path).
Compared to the push-pull, when rerouting a connection we
may end up installing more than one connections and use more
regenerators than before. The downside of the push-pull

Fig. 1: (a) A flexgrid network where 3 connections exists at time t1. (b) The spectrum slot allocation on link N1-N2 at two different time instants t1 and t2.
Initially at time t1, connections 1, 2 and 3 exist and a new connection 4 arrives. Not finding sufficient space to serve it, we shift (push-pull) connections 2 and 3
by two slots each, and the new connection 4 is established at time t2. (c) Same scenario but using the rerouting technique.

N1

N3

N2

N4

3 f1

G uardbandGuard band

f2

Guardband

f1

Guard band

f2
Slot

utilization of
link N1-N2

Guardband

f4

f3

f3

t1

t2

shift Shift

Connection 4
does not fit Slot

utilization of
link N1-N2

f1

Guardband

Slot
utilization of
link N1-N2

Guardband

f3f4

Rerouted using
path N1-N3-N4

t1

t2
Guardband

f1 f2 f3
Connection 4
does not fit Slot

utilization of
link N1-N2

Guardband

(a) (b) (c)

technique is the inability to change the path of an already
established connection, which may be necessary in some cases,
and is achieved using the rerouting technique.

The rerouting algorithm we devised reroutes upper and lower
neighbouring connections from the selected void so as to free
the required spectrum space. It examines all possible
combinations of reroutings, similarly to the push-pull
algorithm, and selects the combination that minimizes the cost,
considered to be the number of rerouted connections.

The algorithm that combines the two aforementioned
techniques examines cases where some connections are
rerouted and others are push-pulled to create the appropriate
space, selecting the combination that achieves the lowest cost.
Although our algorithm is parametric to the cost of these two
techniques, we assume that reroutings have higher cost due to
the need for spare transponders and the disruption of service
that might be experienced in certain cases.

IV. D-RSA ALGORITHM DESCRIPTION
In this section we present the Dynamic Routing and

Spectrum Allocation (D-RSA) algorithm for operating flexible
networks. The algorithm takes as input the feasible transmission
options described by the (reach-rate-spectrum-guardband-cost)
tuples, the number of candidate paths k to be checked for each
demand and a threshold H on the depth of neighbouring
connections that can be pushed or rerouted. It gets invoked
every time a new demand described by (s,d,D,M) arrives, where
(s,d) are the source and destination, D is the demanded capacity
in Gbps, and M is the mode indicator that specifies whether the
demand requests to be served transparently or not. We will
describe the algorithm considering translucent connections and
the use of regenerators, since it is more generic and captures the
only-transparent setting, indicating the differences between the
two cases when deemed necessary.

In order to reduce the time required to serve a demand, for
every (s,d) pair we pre-calculate the set Psd of k paths, using a
variation of the k-shortest path algorithm. These paths are the
candidate paths that will be used by each demand. The main
advantage of this technique is the small running time of the
algorithm, which is critical for online and reactive algorithms.

For each pre-calculated path we identify the configurations
(tuples) that can be used by the transponders over that path,
based on the lengths of its links. In particular, we examine if a
feasible transponder configuration tuple t=(lt,rt,bt,gt,,ct), has
transmission reach lt higher than the length of the path p for the
transparent case, or higher than the maximum link length of
path p for the translucent case. A translucent (sub)connection is
terminated at the regeneration node and a new (sub)connection
is initiated, to create an end-to-end translucent connection. For
a translucent network, for each acceptable path-transmission
tuple pair (p,t), the path p is swept from left to right and a
regenerator is placed whenever required, that is, at the last node
before the transmission distance lt of the tuple is reached. Thus,
for path-transmission tuple pair (p,t) we find the set of nodes
where regenerators have to be placed to make the transmission
feasible. So for each (s,d) we have pre-calculated a set Qsd of
path-transmission tuple pairs (p,t) that are candidate solutions to
serve demands between s and d.

When a new demand (s,d,D,M) is processed, we examine
each path-transmission tuple pair (p,t)∈Qsd as a candidate
option to serve it. For a specific path-tuple pair this translates to

the establishment of one (or more, if the required capacity D is
higher than the transmission rate of the specific tuple)
connections. If a demand is broken into more than one
connections, they all follow the same path when established.

To serve the demand with the specific path-tuple pair, the
algorithm computes the path utilization vector based on the
links that comprise the path. For each connection required to
serve the demand with the specific path-tuple pair the algorithm
checks if there are voids of spectrum able to serve that
connection, taking also into account the guardband needed. If
there are more than one voids, the algorithm selects the smallest
one so as to leave bigger voids for future connections with
higher spectrum needs. If there is no void to accommodate at
least one connection of the path-tuple pair under consideration,
we move to examine the next path-tuple pair. We stop the first
time we are successful with a path-tuple pair, that is, we find
appropriate voids to serve all connections required for that path-
tuple pair selection. If we examine all candidate path-tuple pairs
and none was successful we proceed with our network re-
optimization techniques: push-pull and reroutings. Serving the
demands with the available voids is considered zero cost and is
preferred over the case where we have to re-optimize the
network.

The above phase of the algorithm is described in Fig. 2(a).
When we have ruled out the option of serving the demand
without re-optimizing the network, we again start searching all
candidate path-tuple pairs. For each path-tuple pair, for each of
its connections that there is not enough spectrum the algorithm
selects the biggest void and tries to create the extra slot space in
one of the following ways.

 Assume that we use the push-pull technique and start with a
void that we need to expand by n slots to establish the
connection that has guardband needs of gbv spectrum slots. We
can make this spectrum space by shifting connections that are
upper or bottom adjacent to the void under examination. Let Fs
and Fe be the first free slot and the last free slot of the void,
respectively. For an upper connection i, we let Fi be its starting
frequency and gbi be its corresponding guardband needs.
Then we have to shift this connection by

n -Fi +Fe -max(gbv,gbi)
For a bottom connection j, we again let Fj be its ending

frequency and gbj be its corresponding guardband needs. Then
we have to shift this connection by

n -Fj +Fs -max(gbv,gbj)
Shifting one connection may trigger the shifting of its

adjacent connections. This is treated recursively by the same
algorithm taking the shifted connection as the void. To make
the required space there are n+1 combinations: shift the upper
connections and make n slots space, or shift the upper to make
n-1 slots and the bottom to make 1 slots space, ..., or shift only
the bottom to make n slots space. We examine all different
upper-bottom pushing combinations and calculate their cost;
this is done quite fast as we only examine the two extreme cases
and the costs of the other combinations can be calculated from
them. The cost is defined as the number of spectrum slots of the
connection that is shifted the longest, since this is proportional
to the time required, but other interesting metrics could also be
used, including the number of shifted connections or the
number of shifted slots of all connections, etc. The algorithm
stops execution when there are no other connections that need
to be recursively pushed or when we reach the recursion

threshold H in which case we consider that the connection is
blocked for the specific upper-bottom pushing combination. If
more than one combinations are feasible, we select the one that
yields the smallest cost. If for the given path-tuple pair the void
that we examine cannot be expanded, we move to examine the
remaining path-tuple pairs that require less spectrum slots. If we
examine all path-tuple pair and none is successful, the demand
is blocked.

Since shifting an adjacent connection may trigger the shift of
its own adjacent connections and so on, this can go deep and we
can end up by examining (and making) a huge number of
changes in the network, the whole network configuration in the
worst case scenario.

To avoid the high running time of the algorithm, we use the
threshold H to control the recursion depth. The depth of the
push-pull algorithm is defined as follows. The initial void has
depth zero, and every connection that is shifted inherits the
depth level from the connection that shifts it and adds one.
Although this limitation increases the blocking probability, it
has the advantage of lower running times and can be used in
cases when this is a critical parameter. The push-pull algorithm
is described in Fig. 2(b).

The second way to create the required spectrum space needed
to establish the new connection is by rerouting one or more
connections. The key difference is that in this case we re-
establish neighbouring connections, and we take them to remote
spectrum blocks or over different paths, instead of shifting
them. We again start with a void that we need to expand by n
slots to establish the connection. We calculate the set of
neighbouring connections from each side of the void, denoted
by AC’ and BC’, as follows: the set AC’ contains connections
that utilize at least one spectrum slot in the interval [Fe, Fe+n],
and the set BC’ contains connections that utilize at least one
spectrum slot in the interval [Fs-n, Fs]. We then try the different
combinations of rerouting the connections in these sets. This is
done as follows. We first reroute all connections from one side,
e.g the upper side, so as to make spectrum space of n slots.
Then we reroute the connections from the upper side so as to
create space n-1 slots and reroute connections from bottom side
to create space equal to 1 slot, and so on. When a connection
cannot be rerouted (we cannot find spectrum to reroute it), the
algorithm has to free the remaining slots from the other
direction. If connections cannot be rerouted form both
directions and the freed spectrum is less than n then connection
establishment is blocked. We search all the different upper-

bottom rerouting combinations, and calculate for each one its
cost defined as the number of reroutings performed multiplied
by the number of connections each rerouting consists of (higher
than one in case of rerouting a translucent connection). Finally,
the algorithm selects the combination with the minimum cost.

Note that when rerouting over a different path it is not
granted that the transmission configuration used originally in
the rerouted connection will be feasible (e.g. when the new path
is longer). To address this we treat the rerouted connection in a
manner similar to that of the new connection, which is
established only if there is a void with the appropriate size. In
extreme cases where candidate paths have significant difference
in their lengths, more than one connection may be required to
be established in order to replace the initial connection. Also in
order to be consistent and have end-to-end control rerouting a
translucent connection involves the rerouting of the whole
connection instead of its transparent sub-connection that causes
the blocking.

The aforementioned techniques can be combined and used
together in a unified algorithm to achieve even better
performance. The algorithm that combines these two techniques
works as follows. After performing a rerouting, following the
same direction of the rerouting, the push-pull algorithm is
applied to the remaining connections. Then more connections
are rerouted, and so on. The cost of the solution is the combined
cost of the push-pull and rerouting operations. The joint
algorithm is shown in Fig. 2(c).

The intuition behind the unified algorithm is that when one
or more connections block the expansion of the void, because
they cannot be shifted, rerouting may be feasible and vice versa,
making feasible the establishment of connections where the two
algorithms separately would fail.

V. NUMERICAL RESULTS
We implemented the proposed D-RSA algorithm in Matlab

and used it to evaluate its performance and that of the proposed
re-optimization techniques. All simulations were carried out
on a desktop with Intel Core i3 processor-2.3GHz,
4GB RAM, and 64-bit operating system. We used the 30-node
Telefonica network topology in our experiments [12]. Spectrum
slots were taken to occupy F=12.5 GHz, while the network
supports Ft=320 slots. We assumed the use of a single type of
flexible OFDM transponder that transmits up to 400 Gbps. The
(reach-rate-spectrum-guardband) tuples used as input to these
experiments were obtained from studies on physical layer

INPUTS: Network topology G=(V,E)
 Tuple lookup table
 W:Objective weight
 H:Recursion depth threshold
 Slot utilization vector of links
 New demand (s, d, D,M)

Calculate k paths

FOR each path-tuple pair
 Calculate number of
 connections,spectrum slots needed

 Calculate path slot utilization vector
 Find spetrum voids
 FOR each connection
 IF(size(void)>required_spectrum)
 Select best fit void
 Establish the connection
 ELSE
 Call defragmentation
 ENDIF
 ENDFOR
ENDFOR

Push pull defragmentation

FOR each blocked connection
 Select the biggest void
 ZßNumber of slots to push the adjacent connections
 FOR ALL combinations of pushing upper by Zu and lower by Zl Z=Zu+Zl Find up and down connections
 Push each connection
 WHILE (pushing feasible)
 WHILE (more connections to push)
 IF (Recursion-step≤H)
 Call push for the adjacent connection
 WHILE (More connections to push)
 IF (no other combinations exist)
 Select minimum cost combination
 ENDIF
 ENDWHILE
 ENDIF
 ENDWHILE
 ENDWHILE
 Select combination with minimum cost
 ENDFOR
ENDFOR

Joint defragmentation

For each combination of reroutings
 Reroute the connection(s)
 Calculate free space
 IF (enough space)
 Calculate cost
 ELSE
 Call Push-pull defrag
 ENDIF
 Keep minimum cost combination
ENDFOR

Fig 2: (a). Pseudocode of the algorithm that served the demand by examining all combinations of path-tuple pairs establishing the connections in the
existing spectrum voids. (b) Pseudocode of the push-pull algorithm. (c). Pseudocode of the joint (unified) algorithm.

impairments for optical OFDM networks [6]. Demands at each
node are generated according to a Poisson process with arrival
rate λ and an exponentially distributed duration with mean
1/μ=1 time unit and destination uniformly chosen among all
nodes. The demanded rate is drawn from a uniform distribution
on the close interval [0,400] Gbps, rounded with a 10 Gbps
step. This traffic generation wasselected to cover scenarios
where the network is quite dynamic and adaptable to edge
traffic changes.

(a)

(b)

(c)

Fig 3: Blocking probability for the (a) transparent and (b) translucent case, (c)
Blocking probability and average running time of the D-RSA/push-pull
algorithm for λ= 4 demands/time unit as a function of the recursion threshold H.

Fig. 3(a) and (b) show the blocking probabilities of the D-
RSA transparent and translucent algorithm, respectively, (i)
without re-optimization, (ii) using the push-pull technique, (iii)
using the rerouting technique and (iv) using both push-pull and
rerouting (joint). For both network settings the D-RSA without
re-optimization has the worst performance and is used as
reference for the other solutions. Push-pull and rerouting
techniques improve the performance, rerouting being better,
since it exploits the solution space of different paths. Using

both techniques in the joint algorithm improves the
performance slightly more than the rerouting algorithm.

By comparing the results for transparent and translucent
mode of operation we notice that in all cases the translucent
mode achieves lower blocking probability. Since transparent
connections are established according to the spectrum
continuity constraint, the longer the connections the more
difficult it is to find the required space (and the more spectrum
it is required). Ιn the case of translucent mode, the transparent
sub-connections that are established are shorter and relax the
spectrum continuity constraint at regeneration points. As a
matter of fact, it is easier for the D-RSA algorithm to find
continuous free slots to establish translucent connections, and
re-optimize the translucent network.

Fig 3(c) show the effect of the recursion threshold H on the
performance of the push-pull algorithm (note that up to now H
was set to infinite). We see that lowering H increases the
blocking probability but reduces the running time, trading-off
these two metrics. Thus, H can be chosen so as to meet the
response time requirements for serving demands.

VI. CONCLUSIONS
We proposed an algorithm for setting up connections and re-

optimizing a flexible optical network. When a connection is
blocked due to spectrum fragmentation the push-pull or/and
rerouting techniques is used to make appropriate spectrum
space with no service interruption. We devised appropriate
algorithms that search among different combinations of shifting
and rerouting alternatives. Our results show that we can
substantially reduce blocking using the proposed algorithms
and we can trade-off performance for running time by
appropriate parameter selection.

ACKNOWLEDGEMENTS
This work has been partially funded by IDEALIST project.

REFERENCES
[1] O. Gerstel, et al., “Elastic Optical Networking: A New Dawn for the

Optical Layer?”, IEEE Communications Magazine, 50 (2), Feb, 2012.
[2] S. Gringeri, et al., “Flexible architectures for optical transport nodes and

networks”, IEEE Communications Magazine, July 2010.
[3] Cugini, F.; et al.,P., "Push-Pull Defragmentation Without Traffic

Disruption in Flexible Grid Optical Networks," Lightwave Technology,
Journal of , vol.31, Jan.1, 2013.

[4] A.N. Patel,et al, "Defragmentation of transparent Flexible optical WDM
(FWDM) networks",Optical Fiber Communication Conference, 2011.

[5] Wang, Xi; , et al "A hitless defragmentation method for self-optimizing
flexible grid optical networks," (ECOC), 2012.

[6] Eira, A, et al., "Defragmentation of fixed/flexible grid optical
networks," Future Network and Mobile Summit, 2013.

[7] Jie Luo, et al., "Partial defragmentation in flexible grid optical
networks," Communications and Photonics Conference (ACP), 2012.

[8] Takagi, T, et al, "Disruption minimized spectrum defragmentation in
elastic optical path networks that adopt distance adaptive
modulation," Optical Communication (ECOC), 2011

[9] Velasco, L.; et al,"Elastic spectrum allocation for variable traffic in
flexible-grid optical networks," Optical Fiber Communication Conference
and Exposition (OFC/NFOEC), 2012

[10] A. Klekamp,, et al “Limits of Spectral Efficiency and Transmission
Reach of Optical-OFDM Superchannels for Adaptive Networks”, IEEE
Photonics Technology Letters, 23 (20), 2011.

[11] R Borkowski, et al., “Experimental Study on OSNR Requirements for
Spectrum-Flexible Optical Networks”, Journal on Optical
Communications and Networking, 4 (11), 2012.

[12] Idealist deliverable: D1.1 - Elastic Optical Network Architecture:
reference scenario, cost and planning.

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 2 3 4 5 6

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Average Arrival Rate (demands/time-unit)

Transparent

D-RSA (no re-optimization)
D-RSA (rerouting)
D-RSA (Push-pull)
D-RSA Push-pull and rerouting

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 2 3 4 5 6

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Average Arrival Rate (demands/time-unit)

Translucent

D-RSA (no re-optimization)
D-RSA (rerouting)
D-RSA (Push-pull)
D-RSA Push-pull and rerouting

0.00E+00

2.00E-02
4.00E-02

6.00E-02
8.00E-02

1.00E-01
1.20E-01

1.40E-01
1.60E-01

1.80E-01
2.00E-01

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 2 3 4 8

A
ve

ra
ge

 R
un

ni
ng

 T
im

e

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Recursion threshold (H)

Blocking Probability

Average Running Time

