
 
Abstract—We propose a dynamic connection establishment 
algorithm for flexible optical networks. When the spectrum is 
fragmented, blocking a connection establishment, the algorithm 
re-optimizes the network by shifting (“pushing”) in the spectrum 
domain and/or rerouting established connections. We devised 
appropriate algorithms that search among different combinations 
of shifting and rerouting alternatives and select the one with the 
minimum cost. Since shifting or rerouting a connection might 
trigger more shifting and rerouting actions, the proposed 
algorithms are recursive. Since the solution space can be very 
large, we use a threshold on the recursion depth to reduce the 
complexity, and also provide a tradeoff between performance and 
running time. 

Index Terms—Flexible/Elastic optical networks, dynamic 
Routing and Spectrum Allocation, spectrum defragmentation. 

I. INTRODUCTION 

lexible optical networks (the term elastic is also widely 
used) are regarded as the most promising architecture for 
next generation backbone and metro area networks, since 

their increased spectral efficiency and adaptability is considered 
suitable for future requirements. These networks are based on 
the flex-grid technology where the spectrum is divided into 
12.5 GHz spectrum slots, a smaller granularity than in 
traditional WDM networks. Moreover, the slots can be 
combined to create channels that are as wide as needed. With 
the Bandwidth Variable Transponders (BVT) that can adapt 
their transmission parameters, flexible networks become more 
dynamic, adaptive and efficient than traditional solutions [1].  

During the operation of an optical network, new 
connections are established and torn down dynamically with 
time. In contrast to traditional WDM networks, where 
bandwidth assignment is uniform, in flexible networks the 
spectrum eventually becomes fragmented, a problem that 
becomes more severe as time progresses. Thus, after a point the 
available spectrum is inefficiently utilized, the network serves 
fewer demands than one would expect at its actual load level, 
and connections are blocked even though there are enough 
resources on the links that could be used to serve them.  

To address this problem, two types of defragmentation 
methods have appeared: proactive and reactive methods. 
Reactive defragmentation is triggered when a new demand 
cannot be served, while proactive defragmentation is performed 
in a periodic or in an event-driven manner without being 
triggered by connection blocking (e.g. at connection release). 
The latter method aims at maintaining the network in a good 
shape without a priori knowing if the changes made will be 
needed or not. The former method is triggered only when 
needed, meaning that spectrum fragmentation has reached a 
critical point, and thus it has to be fast and efficient. 

Rearranging as few connections as possible and achieving low 
running time and little disruption in the network are the 
objectives that matter most in this case. 

In this paper we propose a Dynamic RSA (D-RSA) 
algorithm for establishing transparent (without regenerators) 
and translucent (with regenerators) connections in a flexible 
optical network and reactively defragment it when deemed 
appropriate. We assume an optical network that encompasses 
slotted flex-grid and tunable BVT transponders, and a generic 
traffic scenario where demands arrive dynamically, each 
requesting a specific rate between a specific source and 
destination. Serving this demand requires the establishment of 
one or several connections, depending on the requested rate, the 
distance between the end-points and the capabilities of the 
transponders. So the D-RSA algorithm has to decide on how to 
break the requested connection demand into connections (if 
useful), determine where to use regenerators (if needed and if 
provisioned in the network), and allocate path(s) and spectrum 
to the connection(s). If the required resources are free the 
demand is served and the connection(s) is (are) established; 
otherwise, we use two defragmentation techniques to reactively 
re-optimize the network and  serve the demand: (i) the push-
pull technique, where established connections continue using 
the same path but are shifted in the spectrum domain without 
tearing them down, and (ii) the rerouting technique, where 
established connections are torn down and are routed over the 
same or different paths in a make-before-break manner. The 
two techniques can also be used jointly to achieve even better 
performance.  

The long term goal of the D-RSA algorithm is to serve the 
demands so as to minimize network blocking. If a demand 
cannot be served at the current network configuration state, the 
algorithm applies the two aforementioned techniques to 
defragment the spectrum. A secondary objective while doing so 
is to affect as little as possible the current state of the network, 
that is, to minimize the disruptions/changes in existing 
connections. We define the re-optimization cost in terms of the 
spectrum slots that are shifted by the push-pull technique, or in 
terms of the number of rerouted connections for the rerouting 
technique. We devised appropriate algorithms that search 
among different combinations of shifting and rerouting 
alternatives and select the one with the minimum cost. Since 
shifting or rerouting a connection might in turn trigger more 
shifting and rerouting actions, the proposed algorithms are 
recursive, and the solution space can be enormous. To reduce 
the running time we used a threshold on the recursion depth. 
Our simulation results show that the blocking probability can be 
substantially reduced using the proposed techniques and that 
the selection of the recursion threshold is a good way to obtain 
a trade-off between the performance and the running time. 
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II. RELATED WORK 
Dynamic flexible optical networks have received increased 

recent attention, with much of the research effort focusing on 
algorithms to cope with connection establishment and spectrum 
fragmentation [2]. One way to reduce spectrum fragmentation, 
is to re-optimize the network by rerouting (tearing down and re-
establishing) existing connections. A second and often better 
approach is to use the finer granularity and channel adaptability 
offered by the advanced transponders envisioned in order to 
shift connections in the spectrum domain without interruption. 
This is achieved in [3] by the so called push-pull technique. 

Irrespectively of the method they use (rerouting or spectrum 
shifting), the corresponding defragmentation algorithms can be 
divided, as mentioned before,  into reactive [8][9] and proactive 
[4] [5][6][7] algorithms, according to whether they are triggered 
or not by a blocking/critical event.   

The authors in [8] defragment the spectrum by rerouting 
existing connections so as to pack them into the lower spectrum 
slots, while also minimizing connection interruptions. In [9] 
different techniques for spectrum sharing between neighbouring 
connections are introduced to serve time varying traffic. In [5] 
the authors propose an algorithm that is invoked when a 
connection or a group of connections are torn down, by 
rerouting associated remaining connections at lower spectrum 
bands. In [6] the authors examine defragmentation in practice 
by rearranging connections spectrally while also considering 
the advantages obtained by different channel spacing selections. 
In [7] two defragmentation methods are proposed, with the first 
focusing on the most congested links, and the second 
performing network-wide proactive defragmentation by 
rerouting connections so as to pack them in a most-used 
spectrum slot assignment manner. A reactive defragmentation 
method is proposed in [8], where blocking triggers the rerouting 
of existing connections to make space for the new connection.  

The novelty of our proposed solutions compared to previous 
works is fourfold. First, we provide general algorithms that take 
generic parameters as input. In particular, the input comes in the 
form of feasible transmission configurations of the transponders 
used in the network, which incorporate the physical layer 
impairments. Second, previous work focused on transparent 
networks, without, to the best of our knowledge, considering 
regenerators. Our algorithms take into account regenerators that 
can be used to achieve higher spectrum efficiency, lower cost 
and reduce blocking probability. Third, previous works perform 
defragmentation using either push-pull or rerouting, while in 
our work we also consider combining these techniques to 
achieve even better performance. Finally, we explore a wider 
defragmentation space than former approaches, by examining 
all possible combinations to make the required space and use a 
threshold on the recursion depth to control the complexity and 
consequently the running time of our algorithms.  

III. PROBLEM DESCRIPTION 
We are given an optical network G = (V,E), where V denotes 

the set of nodes and E denotes the set of  single-fiber links. 
Each link lϵE is characterized by its length Dl, The spectrum is 
divided in spectrum slots of F GHz, where one spectrum slot 
corresponds to the switching granularity of the flexible network 
elements (flex-grid switches and bandwidth variable 
transponders - BVTs). The network support Ft number of slots. 

The spectrum utilization of a link l is represented by a three 
state vector Ul, called the link slot utilization vector, of length 
equal to Ft, and Uli represents the i-th slot. A spectrum slot can 
be in one of the following states: (i) free (denoted by state uf), 
(ii) used for data transmission (denoted by ud), or (iii) used as 
guardband (denoted by ug). The rules are that data slots cannot 
be used by new connections, free slots can be used for data, 
while free and guardband slots can be used for guardband by 
new connections. The slot utilization vector Up of a path p can 
be computed using an (associative) 3-ary operator ⊕  for 
combining (“adding”) the spectrum slots of the links that 
comprise it. The combining operator is defined as follows:  
uf ⊕  ud=ud, uf ⊕ ug=ug, uf ⊕ uf=uf , ug ⊕ ug=ug, ud ⊕ ud=ud, ud ⊕ ug=ud 

Thus, Upi = l p∈
⊕ Uli, for all i=1,2,…, Ft. 

The traffic is served by BVTs that control (a) the modulation 
format and (b) the spectrum (in the form of contiguous 
spectrum slots) they utilize. By adapting these features, a BVT 
of cost c can be tuned to transmit r Gbps using bandwidth of b 
spectrum slots and a guardband of g spectrum slots from the 
adjacent spectrum connections to reach l km distance with 
acceptable quality of transmission (QoT). More formally, a 
specific transponder of cost (type) c is characterized by its 
physical feasibility function fc that gives the reach l=fc(r,b,g) at 
which it can transmit with acceptable QoT as a function of the 
parameters r (rate), b (spectrum), and g (guardband) that we can 
control. This function captures the physical layer impairments, 
assuming worst-case contribution for the interference-related 
impairments (four-wave-mixing, cross-phase modulation, 
cross-talk), and can be obtained either through experiments or 
using analytical models [8][11].  

Using function fc we define (reach-rate-spectrum-guardband-
cost) transmission tuples, t=(lt,rt,bt,gt,,ct), which correspond to 
feasible transmission configurations. The term “feasible” is 
used to signify that the tuple definition incorporates the 
limitations posed by physical layer impairments. The 
transponders have certain limitations in their capabilities, which 
are of the following forms: the maximum symbols per second 
(baud rate), and/or the maximum modulation format, and/or the 
maximum spectrum used, and/or the maximum transmission 
rate. Given the transponders’ limitations, and since the 
modulation format and the spectrum are selected from discrete 
sets, we obtain the set of feasible transmission configurations 
for the transponders.  

We assume that demands arrive at random time instants and 
are immediately served by the Dynamic Routing and Spectrum 
Allocation (D-RSA) algorithm. An incoming demand is 
characterized by its source-destination pair (s,d), its requested 
capacity D, and a mode indicator M that states if the demand is 
allowed or not to use regenerators (translucent or transparent, 
respectively). This definition is quite generic and can capture 
traffic serving in both transparent and translucent networks, but 
also allows for extra functionality as will be discussed shortly. 
If the demand cannot be satisfied in the current state of the 
network, the network is re-optimized and thus the problem can 
be viewed as an extension of the RSA and thus is NP-hard. In 
this paper we propose a heuristic D-RSA algorithm to provide 
solutions for large problem instances, with an exact algorithm 
been also developed but not reported here due to space 
limitations. 



Connection establishment in a network where the use of 
regenerators is not provisioned can be performed by requiring 
all demands to be served transparently. In a translucent 
network, if the mode indicator of a demand allows the use of 
regenerators, it is the up to the D-RSA algorithm to decide 
whether to use them or not. However, the extra functionality 
comes when a demand in a translucent network explicitly 
requires transparent service (e.g. for reduced cost) and this is 
performed by the proposed D-RSA by providing an appropriate 
non-regenerated solution.  

To serve a connection requesting rate D, the D-RSA 
establishes one or more (in case rate D is not supported at the 
respective distance by a single transponder) transparent or 
translucent connections from s to d. Note that translucent 
connections consist of transparent sub-connections (sub-paths) 
regenerated at intermediate points, and thus the transparent case 
can be viewed as a special case of the translucent case. In the 
remainder of this paper we will avoid specifying the mode 
(transparent or translucent) of a connection unless this is not 
apparent from the context. 

The D-RSA algorithm examines a number of candidate paths 
between the source and destination, and depending on their link 
lengths, it finds the transmission tuples that can be used over 
each of them, what we call a feasible path-tuple pair. For a 
given demand some path-tuples will never be used (said to be 
“dominated” by others), since they require more spectrum and 
transponders. These are removed, limiting the search space 
without losing good solutions.  

For each non-dominated path-tuple pair, since the requested 
rate D can be higher than the maximum transmission rate at the 
corresponding distance, the algorithm calculates the number of 
connections to be established, the nodes where regenerators will 
be placed, if needed and allowed, and the amount of spectrum 
to be used by each connection. Then it searches to allocate 
contiguous spectrum slots to these connection(s). Note that each 
path-tuple corresponds to a specific number of connections and 
regenerators, and by examining all the path-tuple pairs we 
examine all feasible combinations of these parameters. For 
example, we examine if a single high-rate short-reach 
connection requiring many regenerators at intermediate nodes 
should be used, or if the other extreme that uses many low-rate 
long-reach connections should be used, or if some other option 
in-between should be used. 

If the algorithm finds sufficient available spectrum slots over 
a specific path-tuple pair, the connection(s) defined by the path-
tuple pair choice is (are) established, subject to the RSA 
limitations. If the number of free spectrum slots is insufficient 
for at least one connection, the (i) push-pull or (ii) rerouting, or 
a combination of these techniques is used to reactively re-
optimize the network, free spectrum and serve that connection. 

The push-pull technique offers the ability to shift an existing 
connection’s spectrum band with no service disruption (hitless) 
and can be used to defragment the network [3]. Fig. 1 presents 
an example where the push-pull technique is used to establish a 
connection that would otherwise be blocked. The time to push-
pull an existing connection is proportional to the number of 
slots by which the connection is shifted, and experiments show 
that this can be done quite fast. Shifting more than one 
connection that are adjacent towards the same direction can be 
done in parallel, so that the overall reconfiguration time is the 
time of the longest shifting.  

The push-pull algorithm we implemented selects a spectrum 
void and creates the required space to establish the blocked 
connection by shifting the void’s neighbouring connections. 
The cost of using this particular void is defined as the spectrum 
shifting (in slots) of the connection that is shifted the longest, 
since this determines the time for performing the push-pull(s). 
Other important metrics that can be optimized are the number 
of shifted connections, or the total number of slots of all 
connections that are shifted, which indicate the network state 
changes and the complexity of the re-optimization.  

When the establishment of a connection causes the shifting 
of other connections, the shifting can be done towards the upper 
and bottom direction by certain slots, until we create the 
required spectrum space. Different selections of the slots that 
are freed in each direction result in different solutions and costs. 
To achieve the lowest possible cost, the algorithm considers all 
possible combinations of slots freed in the two directions.  

The rerouting algorithm we implemented is based on Make-
before-Break (MbB) technique and utilizes additional 
transponders (and regenerators, when used) to re-establish an 
existing connection before tearing it down. In this technique, 
before rerouting an existing connection we re-establish it over 
the same or a different path. Since we can have different 
lengths, the use of a different modulation format with higher 
transmission reach may be required to serve the demand. In 
some cases we may have to utilize more than one transponders 
to make the transmission over the new path feasible. The old 
and the new connection(s) will both be active for a small 
interval of time, while the traffic is switched from the old to the 
new one. Finally, the old connection is torn-down releasing the 
spectrum that was reserved for it. Similarly to the push-pull 
technique, when more than one connections are rerouted we 
assume that this is done in a pipelined manner, minimizing the 
number of spare transponders/regenerators required. The MbB 
technique guarantees small traffic disruption (this depends on 
the difference in the lengths of the two paths used and would be 
seamless if we reroute the connection over the same path). 
Compared to the push-pull, when rerouting a connection we 
may end up installing more than one connections and use more 
regenerators than before. The downside of the push-pull 

 
Fig. 1: (a) A flexgrid network where 3 connections exists at time t1. (b) The spectrum slot allocation on link N1-N2 at two different time instants t1 and t2. 
Initially at time t1, connections 1, 2 and 3 exist and a new connection 4 arrives. Not finding sufficient space to serve it, we shift (push-pull) connections 2 and 3 
by two slots each, and the new connection 4 is established at time t2. (c) Same scenario but using the rerouting technique. 
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technique is the inability to change the path of an already 
established connection, which may be necessary in some cases, 
and is achieved using the rerouting technique. 

The rerouting algorithm we devised reroutes upper and lower 
neighbouring connections from the selected void so as to free 
the required spectrum space. It examines all possible 
combinations of reroutings, similarly to the push-pull 
algorithm, and selects the combination that minimizes the cost, 
considered to be the number of rerouted connections.  

The algorithm that combines the two aforementioned 
techniques examines cases where some connections are 
rerouted and others are push-pulled to create the appropriate 
space, selecting the combination that achieves the lowest cost. 
Although our algorithm is parametric to the cost of these two 
techniques, we assume that reroutings have higher cost due to 
the need for spare transponders and the disruption of service 
that might be experienced in certain cases.  

IV. D-RSA ALGORITHM DESCRIPTION 
In this section we present the Dynamic Routing and 

Spectrum Allocation (D-RSA) algorithm for operating flexible 
networks. The algorithm takes as input the feasible transmission 
options described by the (reach-rate-spectrum-guardband-cost) 
tuples, the number of candidate paths k to be checked for each 
demand and a threshold H on the depth of neighbouring 
connections that can be pushed or rerouted. It gets invoked 
every time a new demand described by (s,d,D,M) arrives, where 
(s,d) are the source and destination, D is the demanded capacity 
in Gbps, and M is the mode indicator that specifies whether the 
demand requests to be served transparently or not. We will 
describe the algorithm considering translucent connections and 
the use of regenerators, since it is more generic and captures the 
only-transparent setting, indicating the differences between the 
two cases when deemed necessary.  

In order to reduce the time required to serve a demand, for 
every (s,d) pair we pre-calculate the set Psd of k paths, using a 
variation of the k-shortest path algorithm. These paths are the 
candidate paths that will be used by each demand. The main 
advantage of this technique is the small running time of the 
algorithm, which is critical for online and reactive algorithms.  

For each pre-calculated path we identify the configurations 
(tuples) that can be used by the transponders over that path, 
based on the lengths of its links. In particular, we examine if a 
feasible transponder configuration tuple t=(lt,rt,bt,gt,,ct), has 
transmission reach lt higher than the length of the path p for the 
transparent case, or higher than the maximum link length of 
path p for the translucent case. A translucent (sub)connection is 
terminated at the regeneration node and a new (sub)connection 
is initiated, to create an end-to-end translucent connection. For 
a translucent network, for each acceptable path-transmission 
tuple pair (p,t), the path p is swept from left to right and a 
regenerator is placed whenever required, that is, at the last node 
before the transmission distance lt of the tuple is reached. Thus, 
for path-transmission tuple pair (p,t) we find the set of nodes 
where regenerators have to be placed to make the transmission 
feasible. So for each (s,d) we have pre-calculated a set Qsd of 
path-transmission tuple pairs (p,t) that are candidate solutions to 
serve demands between s and d.  

When a new demand (s,d,D,M) is processed, we examine 
each path-transmission tuple pair (p,t)∈Qsd as a candidate 
option to serve it. For a specific path-tuple pair this translates to 

the establishment of one (or more, if the required capacity D is 
higher than the transmission rate of the specific tuple) 
connections. If a demand is broken into more than one 
connections, they all follow the same path when established. 

To serve the demand with the specific path-tuple pair, the 
algorithm computes the path utilization vector based on the 
links that comprise the path. For each connection required to 
serve the demand with the specific path-tuple pair the algorithm 
checks if there are voids of spectrum able to serve that 
connection, taking also into account the guardband needed. If 
there are more than one voids, the algorithm selects the smallest 
one so as to leave bigger voids for future connections with 
higher spectrum needs. If there is no void to accommodate at 
least one connection of the path-tuple pair under consideration, 
we move to examine the next path-tuple pair. We stop the first 
time we are successful with a path-tuple pair, that is, we find 
appropriate voids to serve all connections required for that path-
tuple pair selection. If we examine all candidate path-tuple pairs 
and none was successful we proceed with our network re-
optimization techniques: push-pull and reroutings. Serving the 
demands with the available voids is considered zero cost and is 
preferred over the case where we have to re-optimize the 
network.  

The above phase of the algorithm is described in Fig. 2(a). 
When we have ruled out the option of serving the demand 
without re-optimizing the network, we again start searching all  
candidate path-tuple pairs. For each path-tuple pair, for each of 
its connections that there is not enough spectrum the algorithm 
selects the biggest void and tries to create the extra slot space in 
one of the following ways. 

 Assume that we use the push-pull technique and start with a 
void that we need to expand by n slots to establish the 
connection that has guardband needs of gbv spectrum slots. We 
can make this spectrum space by shifting connections that are 
upper or bottom adjacent to the void under examination. Let Fs 
and Fe be the first free slot and the last free slot of the void, 
respectively. For an upper connection i, we let Fi be its starting 
frequency and gbi  be its corresponding guardband needs. 
Then we have to shift this connection by 

n -Fi +Fe -max(gbv,gbi) 
For a bottom connection j, we again let Fj be its ending 

frequency and gbj  be its corresponding guardband needs. Then 
we have to shift this connection by 

n -Fj +Fs -max(gbv,gbj) 
Shifting one connection may trigger the shifting of its 

adjacent connections. This is treated recursively by the same 
algorithm taking the shifted connection as the void. To make 
the required space there are n+1 combinations: shift the upper 
connections and make n slots space, or shift the upper to make 
n-1 slots and the bottom to make 1 slots space, ..., or shift only 
the bottom to make n slots space. We examine all different 
upper-bottom pushing combinations and calculate their cost; 
this is done quite fast as we only examine the two extreme cases 
and the costs of the other combinations can be calculated from 
them. The cost is defined as the number of spectrum slots of the 
connection that is shifted the longest, since this is proportional 
to the time required, but other interesting metrics could also be 
used, including the number of shifted connections or the 
number of shifted slots of all connections, etc. The algorithm 
stops execution when there are no other connections that need 
to be recursively pushed or when we reach the recursion 



threshold H in which case we consider that the connection is 
blocked for the specific upper-bottom pushing combination. If 
more than one combinations are feasible, we select the one that 
yields the smallest cost. If for the given path-tuple pair the void 
that we examine cannot be expanded, we move to examine the 
remaining path-tuple pairs that require less spectrum slots. If we 
examine all path-tuple pair and none is successful, the demand 
is blocked. 

Since shifting an adjacent connection may trigger the shift of 
its own adjacent connections and so on, this can go deep and we 
can end up by examining (and making) a huge number of 
changes in the network, the whole network configuration in the 
worst case scenario.  

To avoid the high running time of the algorithm, we use the 
threshold H to control the recursion depth. The depth of the 
push-pull algorithm is defined as follows. The initial void has 
depth zero, and every connection that is shifted inherits the 
depth level from the connection that shifts it and adds one. 
Although this limitation increases the blocking probability, it 
has the advantage of lower running times and can be used in 
cases when this is a critical parameter. The push-pull algorithm 
is described in Fig. 2(b). 

The second way to create the required spectrum space needed 
to establish the new connection is by rerouting one or more 
connections. The key difference is that in this case we re-
establish neighbouring connections, and we take them to remote 
spectrum blocks or over different paths, instead of shifting 
them. We again start with a void that we need to expand by n 
slots to establish the connection. We calculate the set of 
neighbouring connections from each side of the void, denoted 
by AC’ and BC’, as follows: the set AC’ contains connections 
that utilize at least one spectrum slot in the interval [Fe, Fe+n], 
and the set BC’ contains connections that utilize at least one 
spectrum slot in the interval [Fs-n, Fs]. We then try the different 
combinations of rerouting the connections in these sets. This is 
done as follows. We first reroute all connections from one side, 
e.g the upper side, so as to make spectrum space of n slots. 
Then we reroute the connections from the upper side so as to 
create space n-1 slots and reroute connections from bottom side 
to create space equal to 1 slot, and so on. When a connection 
cannot be rerouted (we cannot find spectrum to reroute it), the 
algorithm has to free the remaining slots from the other 
direction. If connections cannot be rerouted form both 
directions and the freed spectrum is less than n then connection 
establishment is blocked. We search all the different upper-

bottom rerouting combinations, and calculate for each one its 
cost defined as the number of reroutings performed multiplied 
by the number of connections each rerouting consists of (higher 
than one in case of rerouting a translucent connection). Finally, 
the algorithm selects the combination with the minimum cost.  

Note that when rerouting over a different path it is not 
granted that the transmission configuration used originally in 
the rerouted connection will be feasible (e.g. when the new path 
is longer). To address this we treat the rerouted connection in a 
manner similar to that of the new connection, which is 
established only if there is a void with the appropriate size. In 
extreme cases where candidate paths have significant difference 
in their lengths, more than one connection may be required to 
be established in order to replace the initial connection. Also in 
order to be consistent and have end-to-end control rerouting a 
translucent connection involves the rerouting of the whole 
connection instead of its transparent sub-connection that causes 
the blocking.  

The aforementioned techniques can be combined and used 
together in a unified algorithm to achieve even better 
performance. The algorithm that combines these two techniques 
works as follows. After performing a rerouting, following the 
same direction of the rerouting, the push-pull algorithm is 
applied to the remaining connections. Then more connections 
are rerouted, and so on. The cost of the solution is the combined 
cost of the push-pull and rerouting operations. The joint 
algorithm is shown in Fig. 2(c). 

The intuition behind the unified algorithm is that when one 
or more connections block the expansion of the void, because 
they cannot be shifted, rerouting may be feasible and vice versa, 
making feasible the establishment of connections where the two 
algorithms separately would fail.  

V. NUMERICAL RESULTS 
We implemented the proposed D-RSA algorithm in Matlab 

and used it to evaluate its performance and that of the proposed 
re-optimization techniques. All simulations were carried out 
on a desktop with Intel Core i3 processor-2.3GHz, 
4GB RAM, and 64-bit operating system. We used the 30-node 
Telefonica network topology in our experiments [12]. Spectrum 
slots were taken to occupy F=12.5 GHz, while the network 
supports Ft=320 slots. We assumed the use of a single type of 
flexible OFDM transponder that transmits up to 400 Gbps. The 
(reach-rate-spectrum-guardband) tuples used as input to these 
experiments were obtained from studies on physical layer 

INPUTS: Network topology G=(V,E) 
    Tuple lookup table 
    W:Objective weight  
    H:Recursion depth threshold  
    Slot utilization vector of links 
    New demand (s, d, D,M) 
 

Calculate k paths 
 

FOR each path-tuple pair  
   Calculate number of  
        connections,spectrum slots needed 

     Calculate path slot utilization vector 
   Find spetrum voids  
   FOR each connection  
      IF(size(void)>required_spectrum) 
       Select best fit void 
       Establish the connection 
  ELSE 
              Call defragmentation 
      ENDIF 
 ENDFOR 
ENDFOR 
 

Push pull defragmentation 
 
FOR each blocked connection 
  Select the biggest void  
  ZßNumber of slots to push the adjacent connections 
  FOR ALL combinations of pushing upper by Zu          and lower by Zl Z=Zu+Zl       Find up and down connections 
     Push each connection 
     WHILE (pushing feasible) 
       WHILE (more connections to push) 
            IF (Recursion-step≤H) 
              Call push for the adjacent connection 
              WHILE (More connections to push) 
                 IF (no other combinations exist)  
                    Select minimum cost combination  
                 ENDIF 
              ENDWHILE 
           ENDIF 
         ENDWHILE 
     ENDWHILE 
     Select combination with minimum cost 
  ENDFOR 
ENDFOR 
 

Joint defragmentation 
 
For each combination of reroutings 
    Reroute the connection(s)  
    Calculate free space 
    IF (enough space) 
       Calculate cost 
    ELSE 
     Call Push-pull defrag 
  ENDIF 
  Keep minimum cost combination 
ENDFOR 
 

Fig 2: (a). Pseudocode of the algorithm that served the demand by examining all combinations of path-tuple pairs establishing the connections in the 
existing spectrum voids. (b) Pseudocode of the push-pull algorithm. (c). Pseudocode of the joint (unified) algorithm.  



impairments for optical OFDM networks [6]. Demands at each 
node are generated according to a Poisson process with arrival 
rate λ and an exponentially distributed duration with mean 
1/μ=1 time unit and destination uniformly chosen among all 
nodes. The demanded rate is drawn from a uniform distribution 
on the close interval [0,400] Gbps, rounded with a 10 Gbps 
step. This traffic generation wasselected to cover scenarios 
where the network is quite dynamic and adaptable to edge 
traffic changes. 

 
(a) 

(b) 

(c) 

 
Fig 3: Blocking probability for the (a) transparent and (b) translucent case, (c) 
Blocking probability and average running time of the D-RSA/push-pull 
algorithm for λ= 4 demands/time unit as a function of the recursion threshold H. 
 

Fig. 3(a) and (b) show the blocking probabilities of the D-
RSA transparent and translucent algorithm, respectively, (i) 
without re-optimization, (ii) using the push-pull technique, (iii) 
using the rerouting technique and (iv) using both push-pull and 
rerouting (joint). For both network settings the D-RSA without 
re-optimization has the worst performance and is used as 
reference for the other solutions. Push-pull and rerouting 
techniques improve the performance, rerouting being better, 
since it exploits the solution space of different paths. Using 

both techniques in the joint algorithm improves the 
performance slightly more than the rerouting algorithm.  

By comparing the results for transparent and translucent 
mode of operation we notice that in all cases the translucent 
mode achieves lower blocking probability. Since transparent 
connections are established according to the spectrum 
continuity constraint, the longer the connections the more 
difficult it is to find the required space (and the more spectrum 
it is required). Ιn the case of translucent mode, the transparent 
sub-connections that are established are shorter and relax the 
spectrum continuity constraint at regeneration points. As a 
matter of fact, it is easier for the D-RSA algorithm to find 
continuous free slots to establish translucent connections, and 
re-optimize the translucent network. 

Fig 3(c) show the effect of the recursion threshold H on the 
performance of the push-pull algorithm (note that up to now H 
was set to infinite). We see that lowering H increases the 
blocking probability but reduces the running time, trading-off 
these two metrics. Thus, H can be chosen so as to meet the 
response time requirements for serving demands. 
 

VI. CONCLUSIONS 
We proposed an algorithm for setting up connections and re-

optimizing a flexible optical network. When a connection is 
blocked due to spectrum fragmentation the push-pull or/and 
rerouting techniques is used to make appropriate spectrum 
space with no service interruption. We devised appropriate 
algorithms that search among different combinations of shifting 
and rerouting alternatives. Our results show that we can 
substantially reduce blocking using the proposed algorithms 
and we can trade-off performance for running time by 
appropriate parameter selection. 
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