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Abstract 

 
The existence of good probabilistic models for the job 
arrival process and job characteristics is important for 
the improved understanding of grid systems and the 
prediction of their performance. In this study, we 
present a thorough analysis of the job inter-arrival 
times, the waiting times at the queues, the execution 
times, and the data sizes exchanged at the 
kallisto.hellasgrid.gr cluster, which is part of the 
EGEE Grid infrastructure. By computing the Hurst 
parameter of the inter-arrival times we find that the 
job arrival process exhibits self-similarity/long-range 
dependence. We also propose simple and intuitive 
models for the job arrival process and the job 
execution times. The models proposed were validated 
and were found to be in very good agreement with our 
empirical measurements. 
 
1. Introduction 
 
Grid computing is an emerging computing paradigm 
that exploits networked computers to create a virtual 
computer architecture for the distributed execution of 
computational tasks. Grids use job scheduling and 
resource management to establish a global architecture 
for sharing computing and storage resources across 
geographically separated sites. The job arrival times, 
execution times, and data sizes in Grids are unknown 
and are better modeled probabilistically. The existence 
of good probabilistic models for the job arrival process 
and the job characteristics is important for the 
improved understanding of grid systems. Such models 
would facilitate the design and dimensioning of grid 
systems, the prediction of their performance, the 
evaluation of new scheduling strategies, and the design 
of a QoS framework for Grid users.  

A great deal of work has appeared in the literature 
on job characterization and modeling [1] for single 
parallel supercomputers [2], [3], but the corresponding 
work in the area of Grid computing is quite limited [4], 
[5]. Medernach [4] analyzed the workload of a 

LCG/EGEE cluster, proposing a 2-dimensional Markov 
chain for modeling user behavior in a Grid 
environment. The user shifts between login and logout 
states and submits jobs when in the login state. The 
results indicate that this model can satisfactorily 
approximate the submission behavior of a single user.  

Taking a different approach, Li et al [5] used the 
LCG Real Time Monitor [6] to collect data from 
Resource Brokers (RBs) participating in the EGEE  
project [7], and propose models for the job arrival 
process at three different levels: Grids, Virtual 
Organizations and regions. By comparing a set of m-
state Markov modulated Poisson processes (MMPP) 
with Poisson and hyper exponential processes, they 
conclude that MMPP models with a sufficient number 
of states are capable of simulating the job traffic at the 
three examined levels. However, the proposed models 
are not intuitive enough, and they do not provide an 
easily adaptable or extensible way for profiling arrival 
processes in a general Grid environment.  

D. Nurmi et al [8] proposed the enhancement of the 
workflow scheduler through methods which make 
accurate predictions of both the execution time of the 
task on specific hardware, and the time tasks will spend 
waiting in batch queue. Experiments in 5 HPC showed 
that incorporating these enhancements improves 
workflow execution time in settings where batch 
queues impose significant delays on workflow tasks. 

Our work differs from the aforementioned works in 
the scope-level of the observation and modeling. 
Particularly, we analyze the inter-arrival times, the 
workload and the data exchanges (grid-ftp) at our local 
LCG/EGEE cluster, named kallisto.hellasgrid.gr, and 
propose models for the job arrival process and 
execution times at a grid node. Our models are simple 
and depend on a small number of modeling parameters, 
so as to remain comprehensive and intuitive. 

Our results indicate that it is difficult to observe 
patterns with respect to the weekly and daily cycle of 
the arrival process. The job arrival process has similar 
characteristics at different time periods. By computing 
the Hurst parameter of the inter-arrival times we found 
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that the job arrival process exhibits self-similarity/long-
range dependence. We investigated four models for the 
job arrival process: a non-homogeneous Poisson 
process model, a hyper exponential model, a Markov 
modulated Poisson process model and a Pareto-
Exponential model. We found that, despite its 
simplicity, the Pareto-Exponential model appears to 
adequately describe the job arrival process and is more 
accurate than the other models examined. We also 
observed that a hyper-exponential process with 3 states 
is sufficient to model the stepwise patterns observed in 
the distribution of the jobs’ Worker Node (WN) 
execution time. By looking at the job waiting times we 
found that a high percentage of jobs are served almost 
immediately, while there are also jobs that remain for a 
long period in the corresponding queues. In addition to 
the Computing Element (CE), we also looked at the 
Storage Element (SE), and observed that the 
cumulative distribution function of the bytes transferred 
via the grid-ftp exhibits stepwise characteristics. 

 The rest of the paper is organized as follows. The 
kallisto.hellasgrid.gr Grid node is presented in Section 
2. Section 3 presents the basic metrics for the CE and 
SE that we used for the statistical analysis presented in 
Section 4. In Section 5 we propose and validate models 
for the job arrival process and the job execution times. 
Conclusions are presented in Section 6. 
 
2. Local grid infrastructure 
 

The kallisto.hellasgrid.gr node is part of the EGEE 
(Enabling Grids for E-sciencE) infrastructure and has 
been a production site since February 1, 2006. The 
node’s hardware consists of 2 HP racks with 64 servers 
with Intel Xeon CPUs at 3.4GHz. There are 4 HP 
servers, each with two 80GB SCSI hard disks running 
RAID1, 2GB RAM and 2 processors that comprise the 
core elements of the EGEE site (CE, SE, Monitoring 
Box and Quattor server). The remaining 60 machines 
are the Working Nodes (WN), each of which has 80GB 
SATA hard disk, 1GB RAM and one processor. The 
racks also include a SAN that controls the 14 SCSI 
disks (300GB each) of the main storage and an optical 
switch to connect the servers to the storage. The total 
capacity of the Storage Element is 4.2TB. All servers 
are running Scientific Linux v.3 (SL3) and the 
deployed middleware is the LCG v.2.7 software 
developed by EGEE. In the near future we are planning 
to migrate to gLite middleware [9]. 

Grids are organized in Virtual Organizations (VOs), 
which are dynamic collections of individuals and 
institutions sharing resources in a flexible, secure and 
coordinated manner. Particularly, the kallisto node 
serves the following VOs: Dteam (Development 
Team), See (South Eastern Europe), Lhcb (Large  

Hadron Collider Beauty), Esr (Earth Science 
Research), Atlas (A Toroidal LHC Apparatus), Cms 
(Compact Muon Solenoid), Biomed (Biomedical), 
Magic (MAGIC telescope), Compchem 
(Computational Chemistry) and Hgdemo (Hellas Grid 
demo). These VOs determine the queues in the MAUI 
configuration of the CE. MAUI [10] is a local 
scheduling engine that is used together with the PBS 
batch system [11]. The configuration of our node, 
reserves one slot for Dteam so that site functional tests 
can run without waiting. Previous LCG versions used 
queues that were based on the estimation of the job 
execution times, and thus our site configuration and the 
presented results differ from those in [4] in this respect. 

Generally, a user cannot submit a job directly to a 
cluster; instead, the user has to login to a local User 
Interface (UI) and submit a job-description written in a 
specific format (JDL – job description language) [12]. 
This is forwarded to the corresponding Resource 
Broker (RB) where the matching process is performed. 
RB runs the services of the Workload Management 
System (WMS) that intercommunicates with the 
Information System (IS) that provides information 
about the Grid resources available and their status. The 
RB takes into account the job description, the related 
VO and the available global resource utilization 
information and decides where to forward the job. 
Users give a rough estimation of its maximum 
execution time, when submitting a job, but this value is 
usually overestimated and is often considerably larger 
than the actual job duration. This estimate was used at 
previous versions of the LCG middleware, for 
assigning jobs to specific priority queues of a node. 

The workload of the LCG/EGEE is solely composed 
of work-pile tasks termed bags. A bag is a collection of 
serial independent jobs that perform no communication 
and are not required to execute simultaneously or to be 
assigned to the same cluster/site. Jobs communicate, by 
writing output files to grid Storage Elements or to the 
user's machine enabling other jobs to read and work on 
the generated data (forming "pipelines" of jobs). Each 
job requests a single processor and thus the degree of 
parallelism is one (trivial parallel tasks). A higher level 
scheduler fragments each bag into individual jobs and 
places them on (possibly) different sites. Therefore, 
observing the jobs executed or queued at a site we get a 
set of independent processes and thus we cannot see if 
there are additional jobs belonging to the same bag 
running on the same or other remote machines. 

 

3. Measurements 
 

Using the log files of the CE (located under the 
directory /var/spool/pbs/server_priv/accounting/) we 
acquired information that was locally maintained in the 



kallisto node. The time period of the observation was 
three months (from February 1, 2006 until April 30, 
2006). The total number of jobs submitted during this 
period was 25737. 

We parsed the log files and obtained the desired 
information in a form suitable for processing using 
statistical analysis tools. This was achieved by 
enhancing the Perl scripts [13]. The file we obtained 
after parsing the log files consist of a table with the 
following entries: 
• A consecutive number (id) for each job. 
• The job’s exact submission date and time. 
• The job’s relative submission time. 
• The time interval each job waited in its queue. 
• The Worker Node execution time (I/O+CPU time). 
• The job CPU time. 
• The amount of memory each job utilized. 
• The estimate of the job CPU time, assigned by the 

user who submitted the job. (This has some default 
values – in almost all cases was 259200sec = 3 days). 

• The estimate of the amount of memory required by a 
job, assigned by the user who submitted the job. 
(This number has some default values – in almost all 
cases was 512 MB). 

• The Job’s status (whether the job finished 
successfully, was canceled, or failed to complete). 

• The id of the user who submitted the job.  
• The id of each queue. 

Apart from the workload analysis we also examined 
the data transfers between our cluster and the 
remaining EGEE infrastructure. More specifically, we 
used the log files of the SE (located under the directory 
/var/log) to acquire relevant information. The period of 
the observation was the same with the CE’s and the 
number of grid-ftp connections was 10587. 

 
4. Statistical Analysis 
 

In order to obtain good models for the job 
submission process and the job characteristics, we 
performed a thorough statistical analysis of the 
measurements presented in the previous section. Apart 
from examining the weekly and daily cycles of the 
workload we studied the job inter-arrival times, the job 
(WN) execution times, the waiting times of the jobs 
and the data transfers involved. 

 
4.1 Submission date and time  

Among the first things we looked at is whether the 
cluster is in use for all days of the week and for 24 
hours per day, or its utilization decreases during 
specific days (e.g., weekends, holidays) or specific 
daily periods (e.g., at nights). Fig. 1 shows the number 

of submitted jobs during different days in a week, while 
Fig. 2 shows the number of jobs during different 
submission periods within a day. The graphs show that 
it is difficult to identify any patterns with respect to the 
date and time of the submission process. Jobs are 
submitted to the cluster during all days of the week 
and, contrary to our expectations, the cluster exhibits a 
gradual increase of its usage at the late hours of the 
day. These observations can be explained by the fact 
that users are active across different time zones, and 
they often schedule their jobs for later times, resulting 
in a rather even distribution of jobs across all 
weekly/daily cycles. In interpreting these results we 
also have to take into account the geographical position 
of Greece relative to that of the other EGEE users. 
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Figure 1: Number of jobs per day 
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Figure 2: Daily distribution of jobs 

 
4.2 Job execution times  
 

The node’s resources are not utilized to the same 
degree by all VOs. The five most active VOs are listed 
in Table 1, while the other VOs had a relatively small 
number of jobs (~ 3% maximum). The Atlas VO 
contributed approximately 50% of the jobs submitted 
to our cluster during the duration of our observations. 
 

Table 1: Number and percentage of jobs per VO 
VO Atlas Biomed Dteam Lhcb Magic 

Num. of Jobs 12548 3126 1315 4395 1929 

Percentage 49% 12% 5% 17% 7% 
 

Tables 2 and 3 show the mean and standard 
deviation of the CPU execution time and the Worker 
Node execution time which is the total running time 
(CPU + I/O), for all jobs and for each VO separately. 
Comparing these tables we observe that the standard 
deviations for the whole set of jobs and for each VO 



separately were almost equal. The difference between 
the averages of Tables 2 and 3 correspond to the 
duration of the I/O operations and, since it is relatively 
small, we can deduce that the jobs sent to our cluster 
were CPU and not I/O intensive. 

 
Table 2: Mean and std of the CPU execution time (sec) 
VO Total Atlas Biomed Dteam Lhcb Magic 

Mean 15321 16139 24656 13 8511 2736 
Standard 
deviation 29801 30146 25964 25 21236 546 

 
Table 3: Mean and std of the WN execution time (sec) 
VO Total Atlas Biomed Dteam Lhcb Magic 

Mean 15400 16150 24682 17 8532 2749 
Standard 
deviation 29850 30163 25978 27 21258 567 

 
4.3. Job inter-arrival times 
 

In this section we present results on the job arrival 
process at our local node. Fig. 3 illustrates the 
cumulative distribution function (cdf) of the inter-
arrival times for the jobs belonging to all the VOs and 
for the jobs belonging to the VO Atlas, which is the 
one that contributed the majority of jobs to our node. It 
is worth noting that site functional tests from the Dteam 
VO are performed every 3 hours (10800 sec) [7], 
posing an upper limit on the inter-arrival times. 
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Figure 3: Empirical cdf’s of the inter-arrival times for the 

jobs belonging to all the VOs and for the VO Atlas 
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Figure 4: Empirical cdf’s of the inter-arrivals per periods of 

day 
To study the way job arrivals are distributed with 
respect to the time of day, we divided the 24 hours of a 

day into three 8-hour periods, and present the 
corresponding graphs in Fig. 4. We observe that the 
cdfs have the same shape for the different time periods, 
while jobs that arrive between 4p.m. and 12p.m have a 
higher frequency when compared to the other two 
investigated periods (these results are in agreement 
with the results presented in Fig. 2).  
 
4.4 Self similarity 
 

Self similarity deals with burstiness, and is a 
measure of the degree to which a process includes 
periods of increased activity and periods of little or no 
activity. Self similarity implies correlation across 
different time scales, in the sense that what happens at 
the present time is correlated to what happened in the 
recent and also in the more distant past. 
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Figure 5: Hurst parameter estimation using the R/S method 

 
One way for checking if a process is self similar is 

the Rescaled Range Method (or R/S) originally used by 
Hurst. It produces a log-log plot of the R/S statistic 
versus the number of points of the aggregated series. 
This plot should be a straight line with the slope being 
an estimation of the Hurst exponent. We computed the 
Hurst parameter (H) of the inter-arrival times using a 
variety of methods (Aggregate Variance, R/S, 
Periodogram, Absolute Moments, Variance of 
Residuals, Abry-Veitch Estimator, Whittle Estimator) 
[14]). For the above methods we also obtained the 
correlation coefficient, which gives us a reliability 
factor for the H estimate (values higher than 0.9 should 
be sufficient). The higher correlation coefficient 
(99.31%) was computed using the R/S method, 
indicating that this was in our case the most reliable 
method for estimating the Hurst parameter. Using that 
method, the Hurst parameter of the job arrival process 
at our local cluster was found to be H=0,684 (Fig. 5). 
The Poisson process, which is not self-similar as 
indicated by its memoryless property, has H=0.5. When 
0.5≤H≤1, as is true in our case, the process has 
positively correlated consecutive steps. Thus, we 
conclude that the job arrival process in our local cluster 
exhibits self-similarity / long-range dependence.  



4.5. Job waiting times 
 

We present results regarding the waiting times of 
the jobs, defined as the time between the acceptance of 
the job by the Local Resource Management System 
(LRMS) and the time it starts execution on a WN. 
When a job arrives at the LRMS, it enters a queue until 
a CPU becomes available to serve it. Our system in 
particular uses the MAUI-PBS LRMS whose 
configuration employs a separate queue for each VO 
and reserves one time slot for the Dteam. 
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Figure 6: Empirical cdf of the job waiting times  

 
The results of Fig. 6 indicate that a job stays in a 

queue for less than 2 seconds with large probability 
(~0.7). There are also, however, a few jobs that stay in 
their queue for a long time period due to congestion, 
general or specific problems of our system. The mean 
and the standard deviation of the waiting time for all 
the VOs together and separately for each VO are 
shown in Table 4. We can observe that Dteam 
experiences the lower average delay, while Biomed the 
highest. This is because of the local queues priority 
policies and the fact that Dteam’s jobs require the 
smallest CPU times (Table 2), while Biomed’s jobs are 
CPU-intensive and thus exhibit the highest delays. 

 
Table 4: Mean and std of the waiting time (sec) 

VO Total Atlas Biomed Dteam Lhcb Magic 
Mean 5503 3412 9731 236 2450 867 

Standard 
deviation 19851 13809 19774 19851 11223 4625 

 
4.6. Job Worker Node execution time 
 

The job WN execution time is the actual execution 
time of a job including the I/O time. When users submit 
their jobs they also provide an estimate of the job run 
time, but this is usually a very loose overestimate of the 
job run time. In Fig. 7, we give the cdf of the actual job 
WN times obtained from our experiments. It can be 
seen that the job WN execution times exhibit stepwise 
characteristics: 

• With small probability (~0.15) a job completes its 
execution within a few seconds (less than 60 sec). 
Usually such jobs are site functional tests, ldap 
queries, etc. 

• With medium probability (~0.25) a job completes its 
execution within several minutes after entering the 
WN (less than 30 minutes) – small jobs. 

• With large probability (~0.6) a job completes its 
execution several hours after entering the WN. These 
jobs usually correspond to large experiments. 

0.00

0.20

0.40

0.60

0.80

1.00

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

sec (log)

cd
f

 
Figure 7: Empirical cdf of the job WN execution times 
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Figure 8: Empirical cdf’s of the grid-ftp transfer sizes 

 
4.7. Storage measurements 
 

We have also analyzed the grid-ftp traffic at our 
local node. Fig. 8 shows the cdfs of the retrieved, 
stored and total number of bytes exchanged between 
our Storage Element (SE) and the remaining EGEE 
infrastructure. During the observation period, the total 
number of grid-ftp connections to our SE was 10587 
(3753 store and 6834 retrieve requests). We observe 
that the cdf graphs have a step-wise constant form. This 
is because the majority of the data exchanges are 
related to the Dteam site functional tests (SFTs). More 
specifically there are two sets of SFTs: (i) of size 240B 
that are sent periodically every 1 or 3 hours (~5000 
connections), and (ii) of size 41KB that are sent at 
irregular time intervals (~3450 connections). The Atlas 
VO exchanged a large number of 103 MB chunks of 
data (~1800 connections), while the other VOs had 
rather low activity with respect to data transfers. 

 



5. Modeling 
 

It is possible to use directly log traces of the job 
arrivals as an input to a static simulation, but it is 
usually more convenient to define and use analytic 
models for the job arrival process. Analytic models are 
more flexible, since they allow the generation of traces 
using different values of the parameters involved, 
helping better understand the way these parameters 
affect system performance. 

In this section we are interested in modeling the job 
arrival process and the execution time of the jobs in our 
cluster. We decided to model the job arrival process 
and the execution times for the traffic generated by all 
the VOs together, and not separately for every VO, in 
order to look for general properties in the workload 
that the local cluster has to tackle. 
 
5.1 Modeling the job arrival process 
 

We considered and evaluated four different models 
for the job arrival process: 
 

(a) Non-Homogeneous Poisson Process (NHPP) 
model 

Taking into account the variations of the job arrival 
rate with respect to the days of a week (Fig. 1) and the 
hours of day (Fig. 2) we initially investigated if the job 
arrival process can be modeled as a non-homogeneous 
Poisson process (NHPP). A NHPP is a Poisson process 
whose arrival rate λ at time t is a function of time λ(t). 
More specifically, the number of arrivals N(t) in the 
interval [0,t) follows the distribution:   
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Using the results of Fig. 2, we defined a stepwise 
function for λ(t), obtained by averaging over all days in 
our observation period the number of job arrivals 
observed during each 1 hour interval of a day. 
 

(b) Hyper Exponential model 
An m-Phase-Type distribution (PT) represents 

random variables that are the transition times until 
absorption of a continuous-time Markov chain with m 
transient states and one absorbing state. Generally, any 
inter-arrival process can be approximated by a phase-
type distribution if a sufficient number of states is used. 

From this general class we chose to consider only 
the hyper exponential subclass, which is the one most 
often used in the literature. The probability density 
function of an m-phase hyper exponential random 
variable X is given by: 
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where Yi is an exponentially distributed random 
variable with rate parameter λi, and pi is the probability 
that X will take on the form of Yi (thus,∑

=

=
m

i
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1
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More specifically we considered two cases: (i) a 2-
phase (H2) and (ii) a 3-phase hyper exponential 
distribution (H3). To find suitable parameters (3 
parameters in case (i) and 5 parameters in case (ii)) we 
used the EMpht program [15], which employs an 
Expectation Maximization (EM) algorithm [16], to  
obtain the following parameters: Case (i) p1=0.37, λ1= 
1.37 ⋅10-3 sec-1, λ2= 4.65 ⋅10-2 sec-1, and λ3= 1.46 ⋅10-5 
sec-1, and Case (ii) p1=0.444, p2= 0.457, λ1= 5.38 ⋅10-2 
sec-1, λ2= 9.07 ⋅10-2 sec-1, λ3= 5.12 ⋅10-3 sec-1 
 

(c) Markov Modulated Poisson Process (MMPP) 
model 

An m-state MMPP is a doubly stochastic Poisson 
process [17]. Assuming an m-state continuous-time 
Markov chain (CTMC), arrivals occur according to a 
Poisson process of rate λi when the chain is in state i. 
An MMPP can be fully described by  
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where Q is the generator of the CTMC, and the entries 
of Λ correspond to the Poisson arrival rates at each 
state. 

We investigated two MMPP models: (i) a 3-state 
MMPP (3MMPP) and (ii) a 4-state MMPP (4MMPP). 
To find suitable parameters (4 parameters in case (i) 
and 9 in case (ii)) we used the program found in [18], 
that employs an EM, to obtain the following MMPP 
parameters that best fit our measurements (sec-1): Case 
(i): σ12=6 ⋅10-3, λ1=98 ⋅10-3, σ21=0.45 ⋅  10-3, λ2=4.1 
⋅10-3, and Case (ii): σ12=3.2 ⋅10-3, σ13=4.3 ⋅10-3, 
λ1=139 ⋅10-3, σ21=0.1 ⋅10-3, σ23=0.2 ⋅10-3, λ2=0.9 ⋅10-3, 
σ32=0.45 ⋅10-3, σ32=0.55 ⋅  10-3 and λ3=11.9 ⋅10-3. 
 

(d) Pareto-Exponential model 
We also investigated a third model for the job arrival 
process, to be referred to as the Pareto-Exponential 
model. Under this model, the VOs submit jobs that 
have exponential inter-arrival times (with rate λ jobs 
per sec) during busy periods, each of which has an 
exponential duration (with mean 1/μ sec). The times 
between the beginnings of the VO busy periods are 
distributed following a truncated Pareto distribution 
with Pareto shape parameter a, minimum value 
parameter Xmin and maximum value parameter Xmax. 
The proposed model is depicted in Fig. 9.  
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Figure 9: Proposed Pareto-Exponential model for the job 
arrival process 

 
We have chosen to use a truncated Pareto 

distribution with Xmax=10800 sec since we know that 
the job inter-arrival times are upper-bounded by 3 
hours (the times of the Dteam periodic submissions of 
site functional tests). For the other parameters we 
conducted a number of trials and concluded in the 
following values for our case: mean λ=18 arrivals per 
sec for busy periods, mean duration 1/μ=22.5 sec of the 
busy periods, a=0.48 and Xmin=32 sec. 
 
5.1.1 Validation of the job arrival process model. 
 In order to evaluate and compare the proposed models 
we have simulated them in C++ and generated trace 
files. Fig. 10 shows the cdf of the inter-arrival times as 
presented in Section 4.3 and the cdfs we obtained from 
the traces of the four proposed models. Fig. 11 shows 
the Probability-Probability (P-P) graphs of the better 
performing H3, 3MMPP and Pareto-Exponential 
models versus the actual measurements. Given two 
CDFs, a P-P plot is constructed by pairing percentiles 
that correspond to the same value. A "good" fit 
corresponds to a P-P plot that is nearly linear. 

From the above graphs we can conclude that the 
proposed Pareto-Exponential model generates traces 
that are very close according to the P-P plot to those  
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Figure 10: Cdf’s of the inter-arrival times of the original 

observations and the proposed models 
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Figure 11: P-P functions of the proposed models 

 

observed in our cluster. H3 and 3MMPP models 
simulate also satisfactorily the job arrival process. 
However, the Pareto-Exponential model is simpler, 
more concise and more intuitive than the other 
proposed models, since it is based on a smaller number 
of parameters, and seems to correspond to actual VO 
behavior. 

As expected, by increasing the number of phases in 
the hyper-exponential process the accuracy of that 
model also improves. This is, however, only due to fact 
that by adding complexity (more states) to the hyper-
exponential model, we can approximate any process. 
Similarly, by increasing the states in the MMPP 
process we obtain better accuracy. However, this is a 
“mechanical” not an intuitive way to model the inter-
arrival process.    

We have also computed the Hurst parameter for the 
four models. Only the Pareto-exponential and the 
MMPP models experience long-range dependence 
(H=0.58 for the Pareto-Exponential, H=0.62 for 
2MMPP and H=0.64 for 3MMPP with confidence 
levels higher than 99%), while the models (a) and (b) 
have a Hurst parameter of 0.5. Given that the MMPP 
model requires a large number of parameters, the 
Pareto-exponential model seems to be more 
appropriate for modeling the job arrival process at a 
grid node, since it also fits very well the real traffic in 
our observations and exhibits long-range dependence 
as indicated by the calculated Hurst parameter. 
 



5.2 Modeling the job WN execution times 
 

The Worker Node execution times, presented in 
section 4.6 (Fig. 7), exhibit peaks at certain values. 
Execution times differ in their nature from the inter-
arrival times since they do not depend on the human 
factor, and thus it is difficult to find a physical 
explanation for their behavior. Therefore, our criteria 
for modeling WN execution times are more relaxed. 
We investigated how a hyper exponential process can 
fit the observed behavior. More specifically, we 
considered two cases: (i) a 3-phase (H3) and (ii) a 4-
phase (H4) hyper exponential distribution. We chose to 
use these values for the number of phases driven by the 
observation that Fig. 7 is of a stepwise form with 3 
noticeable steps. We used again the EMpht utility to 
obtain the corresponding parameters: Case (i) 
p1=0.3290, p2=0.2805, λ1= 1.0731 ⋅10-2 sec-1, λ2= 
2.65 ⋅10-4 sec-1, and λ3= 2.1 ⋅10-5 sec-1, and Case (ii) 
p1=0.3270, p2=0.2805, p3=0.14, λ1= 1.0531 ⋅10-2 sec-1, 
λ2= 2.65 ⋅10-4 sec-1, λ3= 2.4 ⋅10-5 sec-1, and λ3= 1.8 ⋅  
10-5 sec-1 
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Figure 12: Empirical cdf and cdf’s of the proposed models 

for the WN execution times 
 
5.2.1 Validation of job execution time model.  
Similar to section 5.1.2, we simulated the proposed 
models in C++, produced traces and compared them 
with those obtained in actual measurements. Fig. 12 
shows the empirical cdf of the job WN execution time 
as presented in section 4.6 and the cdfs we obtained 
from the traces of the two hyper exponential processes. 
Since the modeling accuracies obtained by the 3- and 
4-phase processes are almost similar, we can conclude 
that a 3 phase hyper exponential process is sufficient 
for modeling the CPU execution times. 
 
6. Conclusions 
 

A comprehensive and thorough traffic analysis of a 
local Grid node was presented. Our results show that 
there are no noticeable daily or weekly patterns in the 
job arrival sequence. The job arrival process exhibits 
long-range dependence as indicated by the Hurst 

parameter calculated. We proposed several models for 
the job arrival process one of which is simple and 
matches well the actual measurements. The model 
incorporates exponential job inter-arrival times during 
busy periods of exponential duration (corresponding to 
a single VO’s job submissions). The times between VO 
busy periods are distributed according to a truncated 
Pareto distribution. Finally, a 3-state hyper-exponential 
process was proposed and found to be sufficient for 
modeling the stepwise patterns of the job execution 
times. 
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