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This paper presents results from the IST Phosphorus project that studies and 
implements an optical Grid test-bed. A significant part of this project addresses 
scheduling and routing algorithms and dimensioning problems of optical grids. 
Given the high costs involved in setting up actual hardware implementations, 
simulations are a viable alternative. In this paper we present an initial study 
which proposes models that reflect real-world grid application traffic 
characteristics, appropriate for simulation purposes. We detail several such 
models and the corresponding process to extract the model parameters from real 
grid log traces, and verify that synthetically generated jobs provide a realistic 
approximation of the real-world grid job submission process. 
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1. Introduction 

Today, the need of network systems for storage and computing services for scientific 
and business communities are often answered by relatively isolated islands, known as 
clusters. Migration to truly distributed and integrated applications requires 
optimization and (re)design of the underlying network technology. This is exactly 
what Grid networks promise to offer: a platform for cost and resource efficient 
delivery of network services to execute tasks with high data rates, processing power 
and data storage requirements, between geographically distributed users. Realization 
of that promise requires integration of Grid logic into the network layers. Given the 
high data rates involved, optical networks offer an undeniable potential for the Grid. 
An answer to the demand for fast and dynamic network connections could  lie in the 
(relatively) new switching concepts such as Optical Packet Switching (OPS) and 
Optical Burst Switching (OBS) [1]. 

Delivering the Grid promise implies answering a series of fundamental questions 
[2]: (re)design the architecture of a flexible optical layer, development of the 
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necessary design techniques for e.g. dimensioning, algorithms for routing and control 
offering both QoS and resilience [3] guarantees. It is this—to a large extent 
unexplored [4]—area of fundamental research that is the subject of the supporting 
studies within the Phosphorus project. 

Many of the answers to these research questions are addressed through simulations. 
A necessary prerequisite to obtain useful results is an adequate model of the traffic 
(i.e. jobs) that will be submitted to the Grid. Although, a great deal of work has 
appeared in literature on job characterization and modeling for single parallel 
supercomputers [5], similar work in the area of (optical) Grids is quite limited. 
Medernach [6] analyzed the workload of an LCG/EGEE cluster, proposing a 2-
dimensional Markov chain for modeling single user behavior in a Grid. Li et al. [7] 
used the LCG Real Time Monitor to collect data from the global EGEE Grid, and 
proposed models at three different levels: Grids, Virtual Organizations and regions. 
They conclude that Markov Modulated Poisson Processes (MMPP) with sufficient 
number of states can reflect the real world job arrival processes. In the work presented 
here, we introduce a new model, referred to as the Pareto-Exponential model and 
compare it with the previously proposed model. We show that, despite its more 
compact parameter set, the Pareto-Exponential model is a valid alternative. Finally, 
we also propose a model for the job execution times that is based on the hyper-
exponential distribution. 

We start in Section 2 by briefly outlining the Phosphorus project and how the job 
demand modeling work fits in the whole concept. In Section 3 we introduce the 
candidate traffic models considered, and discuss how we fitted them to real world 
traffic traces at different aggregation levels in Section 4. Finally, Section 5 
summarizes our conclusions. 

2. The Phosphorus project 

As indicated in the introduction, a new generation of applications is emerging, 
coupling data and high-end computing resources distributed on a global scale. These 
impose requirements such as determinism (e.g. guaranteed QoS), shared data spaces, 
large data transfers, that are often achievable only through dedicated optical 
bandwidth. High capacity optical networking can satisfy bandwidth and latency 
requirements, but software tools and frameworks for end-to-end, on-demand 
provisioning of network services need to be developed in coordination with other 
resources (CPU and storage) and need to span multiple administrative and network 
technology domains. 

In response to the above requirements, the European IST project Phosphorus will 
address some of the key technical challenges to enable on-demand end-to-end 
network services across multiple domains. The Phosphorus network concept and 
testbed will make applications aware of the Grid environment, i.e. the state and 
capabilities of both computational and network resources. Based on this information, 
it is possible to make dynamic, adaptive and optimized use of heterogeneous network 
infrastructures connecting various high-end resources. The testbed will involve 
European NRNs and national testbeds, as well as international resources (GÉANT2, 
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Internet2, Canarie, Cross Border Dark Fibre infrastructures and GLIF virtual facility). 
A set of highly demanding applications will be adapted to prove the concept. 

In the Work Package 5, “Supporting Studies”, architectural and algorithmic 
questions will be addressed. These include research in the area of job routing and 
scheduling algorithms (decide where to execute a given job and how to reach that 
destination, referred to as the anycast routing problem [8]), examine techniques that 
jointly reserve computation and communication resources, and compare packet versus 
circuit switching technologies. 

3. Job Demand Models 

To objectively evaluate the performance of e.g. job scheduling and routing 
algorithms, it is desirable that the job submission model accurately reflects the 
characteristics of real world grid jobs. When simulation is used, an analytical model is 
preferred over actual job traces, since this approach allows the different job 
parameters (e.g. average load) to easily be adjusted. In this section we present such 
analytical models for the job arrival/processing times. 

The classical Poisson process model, in which the inter-arrival times are 
exponentially distributed, forms the basis for most of these more advanced models.  

3.1. Non-Homogeneous Poisson Process (NHPP) 

As can be easily intuitively accepted, the job arrival rate can exhibit time dependent 
behavior, especially on e.g. national scales. On a daily scale, day/night differences can 
be observed, and also the difference between week days and weekends may be 
visible. Hence, the arrival rate of a Poisson process can be considered to be a function 
of time λ(t), leading to a non-homogeneous Poisson process. More specifically, the 
number of arrivals N(t) in the interval [0, t] follows the distribution shown in (1). 
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In fitting this model to real life job traces (described in Section 4), we will consider 
the job arrival rate λ(t) to be a stepwise function. In this case, the job generation 
model can be considered as a state process, where the system evolves from one state 
to the next while maintaining a fixed arrival rate λi that depends only on the state i. 

3.2. Phase-type process 

An m-phase type distribution represents a random variable (in our case e.g. job inter-
arrival times) whose values are the transition times until absorption of a continuous-
time Markov chain with m transient states and one absorbing state. In general, any 
inter-arrival process can be approximated by a phase-type distribution provided 
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enough states are introduced. A special case of the general phase-type distribution is 
the hyperexponential distribution (HE), which has two or more non-identical phases 
that occur in parallel (i.e. each of the phases only has a non-zero probability to transit 
to the absorbing state). The probability density function (pdf) of a hyperexponentially 
distributed variable X is given in (2). This corresponds to the weighted sum of m 
exponentially distributed random variables Yi (with average 1/λi). 

∑
=

=
m

i
YiX yfpxf

i
1

)()(   where    ∑
=

=
m

i
ip

1

1 (2) 

3.3. Markov Modulated Poisson Process (MMPP) 

The Markov modulated Poisson process (MMPP) is a doubly stochastic Poisson 
process [9], characterized as a (finite state) continuous time Markov chain with m 
states. Each state i is a Poisson process (arrival rate λi) in itself, and state transitions 
are defined by a state transition matrix Q. Thus, the system is fully defined by a 
matrix Q, as defined in (3), and a vector Λ = [λ1 λ2 … λm]. 
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3.4. Pareto-exponential model (PE) 

In the Pareto-exponential model busy periods, in which jobs arrive, succeed each 
other. Each busy period has an exponentially distributed duration (with mean of 1/μ 
seconds), and within a busy period jobs arrive according to a Poisson process (at a 
rate of λ jobs/second). The times between the start times of a busy period are 
distributed following a truncated Pareto distribution with shape parameter α, 
minimum value Xmin  and maximum value Xmax. An intuitive interpretation of the busy 
periods can be that these correspond with job submissions from a particular virtual 
organization (VO) participating in the Grid. 

4. Real life measurements 

To validate the suitability of the various models for the job arrival process and their 
execution times, we have collected traces from operational Grid environments. We 
then fitted the aforementioned models to the traces, and used the parameter values 
found to drive a simulator generating the IATs according to the respective models 
with the parameter values found by the fitting algorithm. 
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4.1 Measured infrastructure 

Since the Phosphorus test-bed is still under construction, we gathered traces on the 
LCG/EGEE infrastructure [10]. The Enabling Grids for E-sciencE (EGEE) project 
offers an always-on Grid computing infrastructure, geographically distributed across 
the globe. The worldwide LHC Computing Grid project (LCG) was created to offer 
computing infrastructure processing and analyzing the data of the Large Hadron 
Collider (LHC) experiments at CERN. The LCG and EGEE projects share a large part 
of their well established infrastructure; hence we refer to it as the LCG/EGEE 
infrastructure. Currently, it comprises 207 cluster sites from 48 countries. In the 
observation period, we recorded the presence of 39,697 CPUs (of which on average 
31,228 were active) and 5 Petabytes of storage. 

The job lifetime comprises various phases, as illustrated in Fig. 1. Users submitting 
jobs are part of a VO (Virtual Organisation), which is a dynamic collection of 
individuals and institutions sharing the same permissions etc. In order to submit jobs 
to the Grid, a user has to log in to a user interface (UI) and provide the job 
specification in a JDL (job description language) format. This job submission is then 
forwarded to the corresponding Resource Broker (RB), which will schedule the job 
for execution taking into account information provided by the JDL as well as 
information service (e.g., the VO, global traffic load information). The job, wrapped 
in an input sandbox, is eventually sent to a Computing Element (CE) at a particular 
site, where a local resource management system will assign it to a Worker Node 
(WN). 

 
 

 
Fig. 1. Job flow in the Grid environment. 

 
 
As indicated, a job evolves through various states. Of particular interest to optical 

grid job modelers are (i) the job inter-arrival times (IATs), and (ii) the time spent in 
the “Running” state, which amounts to actual execution time of a job, including the 
I/O time. In the following we will establish suitable models by fitting them to the 
measured data. The subsequent subsection details the fitting methodology used. 
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4.2. Trace fitting methodology 

In order to fit the distribution parameters to measured data samples, we use a 
maximum-likelihood estimation (MLE) technique, and specifically the Expectation-
Maximisation (EM) algorithm. Further details can be found in [11]. 

4.3. Jobs at the Grid level 

Using the LCG Real Time Monitor [11], we collect data for jobs submitted to all 
Resource Brokers (RBs) participating in the EGEE project. The RTM records the 
times at which user jobs are submitted, the way they are distributed to the sites, the 
times at which the jobs complete the different states of their processing, and finally 
depending on the successful or not execution it also presents the times of delivery of 
the execution outcome to the corresponding user. Of main interest here were the job 
IATs and running time. For this, we collected job arrival data during 1-31 Oct. 2006 
(totaling 2,228,838 jobs). 
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Fig. 2. Empirical cdf and Poisson process fit for 
IAT at the Grid level. 

Fig. 3. Empirical vs Poisson P-P plot for IAT at the 
Grid level. 

The empirical cumulative distribution function (cdf) is shown in Fig. 2. Given the 
observed standard deviation being close to the mean IAT, and the absence of a heavy 
tail, it is clear that a Poisson process can be a suitable model. Using MLE fitting, we 
found a Poisson process with mean IAT (1/λ) of 1.6077. Note that since our 
measurement data has a resolution of 1 second, we actually converted the Poisson 
process IATs by rounding them to the closest integer. 

In Fig. 3, the probability-probability (P-P) plot (composed by pairing percentiles 
corresponding to the same value) is shown for the rounded Poisson model versus the 
empirically observed data. This plot being close to the line between (0,0) and (1,1) we 
may conclude the Poisson process model is adequate. 
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Fig. 4. Empirical cdf and HE fit for job execution 
time at the Grid level. 

Fig. 5. Empirical vs HE P-P plot for job execution 
time at the Grid level. 

− The WN execution times exhibit peaks at certain time values, reflected in a sharp 
rise in the cdf as depicted in Fig. 4. Thus, we resorted to fits with the hyper-
exponential model, one with 3 phases (H3) and one with 4 phases (H4), based on 
the observation that the cdf curve exhibits 3-4 “steps”. We used the EMpht utility 
[12] implementing the EM algorithm described in [14]. 

To assess the quality of these fits, we again generated time values by simulation and 
obtained the cdfs (Fig. 4) and P-P plots (Fig. 5). Since the accuracy of H3 and H4 fits 
is similar, we can conclude that the 3-phase exponential process is sufficient to model 
the WN execution times at the Grid level. 

4.4. Jobs at the Grid Site level 

In addition to the Grid level traces, we also collected information for jobs submitted 
to individual Grid sites (computing elements in the scheme of in Fig. 1). 

4.4.1. Kallisto site 
The Kallisto node located in Patras is part of Hellasgrid and has been a production site 
since 1 Feb. 2006. It comprises 64 Intel Xeon CPUs at 3.4GHz and 2Gb RAM, of 
which 60 are actual Worker Nodes (the 4 other service nodes comprise the EGEE 
core servers), using g-Lite middleware and running scientific Linux v3. 

For the measured job IATs, we considered the four different models discussed in 
Section 3: 
− Non-Homogeneous Poisson Process (NHPP): We defined a stepwise function for 
λ(t), being constant over 1 hour intervals, with hourly values of λ obtained by 
averaging over all days in the observation period. 

− Hyper-Exponential Model: We considered (i) a 2-phase (H2), and (ii) a 3-phase 
(3H) hyper-exponential model, based on the observation of 2-3 steps in the 
empirical cdf. Fitting was done using the EMpht software. 

− Markov Modulated Poisson Process (MMPP): We considered (i) a 3-state 
(3MMPP), and (ii) a 4-state (4MMPP) MMPP.  

− Pareto-Exponential Model: In this case, we chose a truncated Pareto distribution 
with Xmax=10800 sec, since this was the (deterministic) periodicity of site 



8      K. Christodoulopoulos, E. Varvarigos, C. Develder, M. De Leenheer, B. Dhoedt 

functional test. For the other parameters, we fitted: λ=18 arrivals/sec for busy 
periods, mean duration 1/μ=22.5 sec of the busy periods, a=0.48 and Xmin=32 sec. 
 

To evaluate the applicability of the models, we generated synthetic job traces using 
a simulator implementing the models, resulting in the cdf graphs of Fig. 6 and the 
corresponding P-P plots shown in Fig. 7. 
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Fig. 6. Empirical cdf and various models fitting for 
IAT at Kallisto. 

Fig. 7. Empirical vs various models P-P plot for 
IAT at Kallisto. 

From the above graphs, we can conclude that conclude that the proposed Pareto-
Exponential model generates traces that are very close according to the P-P plot to 
those observed in our cluster. H3 and 3MMPP models also simulate satisfactorily the 
job arrival process. However, the Pareto-Exponential model is simpler, more concise 
and more intuitive than the other proposed models, since it is based on a smaller 
number of parameters, and seems to correspond to actual VO behavior. With respect 
to the HE and MMPP models we observe, as expected, that the fit improves by 
increasing the number of phases (states for MMPP). 

We have also computed the Hurst parameter for the four models (as a measure of 
long range dependency, aka self-similarity). Only the Pareto-exponential and the 
MMPP models experience long-range dependence (H=0.58 for PE, H=0.62 for 
2MMPP and H=0.64 for 3MMPP with confidence levels higher than 99%). The value 
in the measured data amounted to H=0.68. 

With respect to the job execution times (page limitations prevent us from showing 
the details), we observed similar behavior as on the Grid level, and fits using the 3H 
and 4H models proved to produce adequate results. On a quantitative level, we 
observed some differences which are due to the smaller number of VOs served by the 
Kallisto node compared to the complete EGEE (11 vs 75 VOs, with the most active 
VO in Kallisto –ATLAS VO- being the 3rd on a global scale). 

4.4.2. BEGrid site 
The BEGrid site located in Ghent is part of the Belnet grid initiative, originating in 
2003. It comprises 41 dual Opteron (1.6 GHz) worker nodes, and another 15 dual 
dualcore Opteron (2 GHz) nodes, all having 4Gb RAM, and 5 service nodes, using g-
Lite middleware and running scientific Linux v3. 

In contrast to the Kallisto and global EGEE results, we found a far less smooth, 
more step-wise empirical cdf of the job IAT for the BEGrid measurements. We found 
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a particularly steep increase, corresponding to a peak in the probability density 
function (pdf) around 8-15 seconds. The reason for this is that a large group of BEgrid 
users commits their jobs using scripting, with script submission overhead resulting in 
a job IAT of the order of 10s. Obviously, neither the exponential distribution nor the 
more complex functions succeed in reproducing this abrupt cdf. Hence the poor P-P 
plots. 
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Fig. 8. Empirical cdf and various models fit for 
IAT at BEGrid site. 

Fig. 9. Empirical vs various models P-P plot for 
IAT at BEGrid site. 

 
With respect to the job execution times, the observed cdf (omitted because of space 

limitations) was of a similar slightly step-wise shape as the EGEE and Kallisto 
measurement data. Again, we found 3- and 4-phase hyper-exponential models to 
generate the most satisfactory results. 

5. Conclusions 

Due to the high equipment cost involved in the research of optical grids if actual 
hardware were to be used, simulation techniques are often put forward as a viable 
alternative. To warrant accurate and useful results, it is important that a realistic grid 
job load is used as input for the simulation. To this end, we presented analytical job 
models, and the methodology to extract model parameters from actual grid log traces. 
This approach guarantees a very flexible, analytical job submission model, yet 
providing a very realistic approximation of the real life grid job submission pattern. 

Using real life measurement data, gathered at different aggregation levels in a Grid 
environment (local site vs global Grid), we judged the usefulness of various models 
fitted to that data. This was achieved by implementing the models in simulation 
software. From this study, we concluded that: 
− Job inter-arrival times on the observed Grid level can be successfully modeled by a 

Poisson process, but on the Grid site level (eg. Kallisto traces) the long range 
dependency needs to be taken into account and HP, MMPP or Pareto-Exponential 
models need to be used. 

− For the job execution times, we achieved the most satisfactory results with a (3 
phase) hyper-exponential process. 
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