
Photon Netw Commun (2015) 29:307–321
DOI 10.1007/s11107-015-0500-8

Dynamic connection establishment and network re-optimization
in flexible optical networks

P. Soumplis1,2 · K. Christodoulopoulos1,2 · E. Varvarigos1,2

Received: 4 July 2014 / Accepted: 23 March 2015 / Published online: 8 April 2015
© Springer Science+Business Media New York 2015

Abstract We consider the problem of dynamic connec-
tion establishment and spectrum defragmentation in flexible
optical networks. When the spectrum is fragmented, block-
ing a connection establishment, the algorithm reactively
re-optimizes the network by shifting (“pushing”) in the spec-
trum domain and/or rerouting existing connections. We start
by presenting an algorithm based on integer linear program-
ming formulation that searches among all combinations of
shiftings and reroutings and selects the one thatminimizes the
changes in existing connections. We also present a heuristic
algorithm that recursively shifts/reroutes connections around
a void. The solution space of the heuristic can also be very
large, so we use a threshold on the recursion depth to reduce
the complexity and also provide a trade-off between perfor-
mance and running time. Our simulation results show that the
blocking probability can be substantially reduced using the
proposed techniques as opposed to a network that does not
reactively defragments the spectrum. The proposed heuristic
achieves near-optimal performance, for cases that we were
able to find optimal solutions,while the selection of the recur-
sion threshold was shown to provide a good trade-off of
performance for running time.

B P. Soumplis
soumplis@ceid.upatras.gr

K. Christodoulopoulos
kchristodou@ceid.upatras.gr

E. Varvarigos
manos@ceid.upatras.gr

1 Department of Computer Engineering and Informatics,
University of Patras, Patra, Greece

2 Computer Technology Institute and Press – Diophantus,
Patra, Greece

Keywords Flexible/elastic optical networks · Dynamic
Routing and Spectrum Allocation · Spectrum defragmenta-
tion · Recursive process

1 Introduction

Flexible optical networks (the term elastic is also widely
used) are regarded as themost promising architecture for next
generation backbone and metro-area networks, since their
increased spectral efficiency and adaptability is considered
suitable for future requirements. These networks are based
on the flex-grid technology where the spectrum is divided
into 12.5GHz spectrum slots, a smaller granularity than in
traditional WDM networks. Moreover, the slots can be com-
bined to create channels that are as wide as needed. With the
bandwidth variable transponders (BVT) that can adapt their
transmission parameters, flexible networks become more
dynamic, adaptive and efficient than traditional solutions [1].

During the operation of an optical network, new connec-
tions are established and torn down dynamically with time.
In contrast to traditional WDM networks, where spectrum
assignment is uniform in the form of wavelengths, in flexi-
ble networks the spectrum eventually becomes fragmented,
a problem that becomes more severe as time progresses. By
spectrum fragmentation, we mean the discontinuity of the
available spectrum in the sense that a new connection may
not be able to find a desired (same) set of spectrum slots on
all the links of its path even though adequate unused spec-
trum is available (but not at the same central frequency) on
the links. Thus, after a point the available spectrum is ineffi-
ciently utilized, the network serves fewer demands than one
would expect at its actual load level, and connections are
blocked even though there is enough spectrum on the links
that could be used to serve them.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11107-015-0500-8&domain=pdf

308 Photon Netw Commun (2015) 29:307–321

To address this problem, two types of defragmentation
methods have appeared: proactive and reactive methods.
Reactive defragmentation is triggered when a new demand
cannot be served, while proactive defragmentation is per-
formed in a periodic or in an event-driven manner without
being triggered by connection blocking (e.g. at connection
release). The latter method aims at maintaining the network
in a good shapewithout a priori knowingwhether the changes
made will be needed or not. The former method is triggered
only when needed, meaning that spectrum fragmentation has
reached a critical point, and thus it has to be fast and efficient.
Rearranging as few connections as possible and achieving
low running time and little disruption in the network are the
objectives that matter most in this case.

In this paper, we propose dynamic RSA (D-RSA) algo-
rithms for establishing transparent (without regenerators)
and translucent (with regenerators) connections in a flexi-
ble optical network that reactively defragment the network
whendeemedappropriate.Weassumeanoptical network that
encompasses slotted flex-grid and tunable transponders, and
a generic traffic scenario where demands arrive dynamically,
each requesting a specific rate between a specific source and
destination. Serving this demand requires the establishment
of one or several connections, depending on the requested
rate, the distance between the end-points and the capabil-
ities of the transponders. So the D-RSA algorithm has to
decide on how to break the requested connection demand into
connections (if useful), determine where to use regenerators
(if needed and if provisioned in the network), and allocate
path(s) and spectrum to the connection(s). If the required
resources are free, the demand is served and the connection(s)
is (are) established; otherwise, we use two defragmentation
techniques to reactively re-optimize the network and serve
the demand: (1) the push–pull technique, where established
connections continue using the same path but are shifted in
the spectrum domain without tearing them down, and (2)
the rerouting technique, where established connections are
torn down and are routed over the same or different paths
in a make-before-break manner. The two techniques are also
used jointly to achieve even better performance.

The long-term goal of the D-RSA algorithm is to serve the
demands so as to minimize network blocking. If a demand
cannot be served at the current network configuration state,
the algorithm applies the two aforementioned techniques to
defragment the spectrum and re-optimize the network. A sec-
ondary objective during the re-optimization is to affect as
little as possible the current state of the network, that is, to
minimize the disruptions/changes in existing connections.
We define the re-optimization cost in terms of the number of
connections that are shifted by the push–pull technique or in
terms of the number of rerouted connections for the rerouting
technique.We devised an ILP algorithm that serves a demand
searching every possible combination of reroutings and shift-

ings of the established connections and finally selecting the
one with the minimum cost. Since the problem is NP-hard
and the solution space is huge, we also developed an appro-
priate heuristic algorithm. The heuristic selects a spectrum
void that if expanded could serve the new connection and
then searches among different shifting and rerouting combi-
nations of the void’s adjacent connections, to finally select
the combination with the minimum cost. Since shifting or
rerouting a connection might in turn trigger more shifting
and rerouting actions, the proposed heuristic is recursive,
and the solution space can be also very large. To control
the running time, we use a threshold on the recursion depth.
Our simulation results show that the blocking probability
can be substantially reduced using the proposed techniques.
The proposed heuristic achieves near-optimal performance,
comparable to that obtained by the ILP algorithm, at least for
the small size network experiments for which we were able
to track optimal ILP solutions. Finally, the selection of the
recursion threshold was shown to provide a good trade-off
of performance for running time.

The rest of the paper is organized as follows. In Sect. 2,
we report on the related work. In Sect. 3, we formally define
the dynamic connection establishment and defragmentation
problem under study. In Sect. 4, we present our solutions and
in particular the ILP formulations and also our heuristic algo-
rithms. In Sect. 5, we present the performance comparison
results. Our conclusions follow in Sect. 6.

2 Related work

Dynamic flexible optical networks have received increased
recent attention, with much of the research effort focusing
on algorithms to cope with connection establishment and
spectrum fragmentation [2]. One way to reduce spectrum
fragmentation is to re-optimize the network by rerouting
(tearing down and re-establishing) existing connections. A
second andoften better approach is to use thefiner granularity
and channel adaptability offered by the advanced transpon-
ders envisioned in order to shift connections in the spectrum
domain without interruption. This is demonstrated in [3] by
the so called push–pull technique.

Irrespectively of the method they use (rerouting or spec-
trum shifting), the corresponding defragmentation algo-
rithms can be divided, as mentioned before, into reactive
[8–11] and proactive [4–7] algorithms, according to whether
they are triggered or not by a blocking/critical event.

The authors in [8] defragment the spectrum by rerouting
existing connections so as to pack them into the lower spec-
trum slots, while also minimizing connection interruptions.
In [9], different techniques for spectrum sharing between
neighbouring connections are introduced to serve time vary-
ing traffic. The authors in [10] follow the blocked-triggered

123

Photon Netw Commun (2015) 29:307–321 309

approach and provoke the defragmentation algorithm each
time there are not enough resources for a new connection.
The difference to our approach is that the algorithm proposed
in [10] minimizes the connections that are affected without
distinguishing between spectrum shifting (push–pull) and
rerouting and without taking into consideration the special
characteristics (time and cost) to make use of these opera-
tions. What is however missing in our case is a full network
system experiment, as performed in [11], where the authors
extended their work in [10] and integrated the algorithm in an
application-based network operations (ABNO) network con-
troller to deal with the spectrum shifting defragmentation. In
[5], the authors propose an algorithm that is invoked when
a connection or a group of connections are torn down, by
rerouting-associated remaining connections at lower spec-
trum bands. In [6], the authors examine defragmentation in
practice by rearranging connections spectrally while also
considering the advantages obtained by different channel
spacing selections. In [7], two defragmentation methods are
proposed, with the first focusing on themost congested links,
and the second performing network-wide proactive defrag-
mentation by rerouting connections so as to pack them in
a most-used spectrum slot assignment manner. A reactive
defragmentation method is proposed in [8], where blocking
triggers the rerouting of existing connections to make space
for the new connection.

The novelty of our proposed solutions compared to pre-
vious works is fivefold. First, we provide general algorithms
that take generic parameters as input. In particular, the input
comes in the form of feasible transmission configurations of
the transponders used in the network, which incorporate and
account for the physical layer impairments. Second, previous
work focused on transparent networks, without, to the best
of our knowledge, considering regenerators. Our algorithms
take into account regenerators that can be used to achieve
higher spectrum efficiency and reduce blocking probability.
Third, previous works perform defragmentation using either
push–pull or rerouting, while in our work we also consider
the combination of these techniques to achieve even better
performance.We explore awider defragmentation space than
former approaches, by examining all possible combinations
in the proposed ILP algorithm, finding the optimal reactive
defragmentation solution if one exists. Finally, we also pro-
pose a heuristic that uses a threshold on the recursion depth to
control the complexity and trade off performance for running
time.

3 Problem description

We are given an optical network G = (V, E), where V
denotes the set of nodes and E denotes the set of single-
fibre links. Each link l ∈ E is characterized by its length Dl

in km. The spectrum is divided into spectrum slots of F GHz,
where one spectrum slot corresponds to the switching gran-
ularity of the flexible network elements (flex-grid switches
and bandwidth variable transponders—BVTs). The network
supports a total of Ft slots on a link.

The traffic is served by tunable BVT transponders that
control (a) the modulation format and (b) the spectrum
(in the form of contiguous spectrum slots) they utilize. By
adapting these features, a BVT of cost c can be tuned to
transmit at a rate of r Gbps using bandwidth of b spec-
trum slots and a guardband of g spectrum slots from the
adjacent spectrum connections to reach a distance of l km
with acceptable quality of transmission (QoT). More for-
mally, a specific transponder of cost (type) c is characterized
by its physical feasibility function fc that gives the reach
l = fc(r, b, g) at which it can transmit with acceptable QoT
as a function of the parameters r (rate), b (spectrum) and
g (guardband) that we can control. This function captures
the physical layer impairments, assuming the worst case
contribution for the interference-related impairments (four-
wave-mixing, cross-phase modulation, crosstalk), and can
be obtained either through experiments or using analytical
models [8,13].

Using function fc, we define (reach-rate–spectrum–
guardband–cost) transmission tuples t = (lt , rt , bt , gt,,ct)

that correspond to feasible transmission configurations of
the specific transponder. The term “feasible” is used to sig-
nify that the tuple definition incorporates the limitations
posed by physical layer impairments. The transponders have
certain limitations in their capabilities, which are of the
following forms: the maximum symbols per second (baud
rate), the maximum modulation format, the maximum spec-
trum used, and/or the maximum transmission rate. Given the
transponders’ limitations, and since the modulation format
and the spectrum are selected from discrete sets, we obtain
the set of feasible transmission configurations for the avail-
able transponders.

We assume that demands for new connections arrive at
random time instants and are immediately served by the
dynamic routing and spectrum allocation (D-RSA) algo-
rithm. A demand θ is characterized by its source-destination
pair (sθ , dθ), its requested capacity Λθ and a mode indica-
tor Mθ that states if the demand is allowed or not to use
regenerators (translucent or transparent, respectively). This
definition is quite generic and can capture traffic serving in
both transparent and translucent networks, but also allows for
extra functionality as will be discussed shortly. If the demand
cannot be satisfied in the current state of the network, the net-
work is re-optimized. Thus, the problem can be viewed as an
extension of the offline RSA and thus is NP-hard. In this
paper, we propose an exact ILP formulation and a heuris-
tic D-RSA algorithm to provide solutions for large problem
instances.

123

310 Photon Netw Commun (2015) 29:307–321

(a) (b) (c)

Fig. 1 a A flex-grid network where three connections exist at time t1.
b The spectrum slot allocation on link N1–N2 at two different time
instants t1 and t2. Initially at time t1, connections 1, 2 and 3 exist and
a new connection 4 arrives. Not finding sufficient space to serve it, we

shift (push–pull) connections 2 and 3 by two slots each, and the new
connection 4 is established at time t2. c Same scenario but using the
rerouting technique

Connection establishment in a network where the use of
regenerators is not provisioned can be performed by requir-
ing all demands to be served transparently. In a translucent
network, if the mode indicator of a demand allows the use
of regenerators, it is up to the D-RSA algorithm to decide
whether to use them or not. However, the extra functionality
comes when a demand in a translucent network explicitly
requires transparent service (e.g. for reduced cost), and this
is performed by the proposed D-RSA by providing an appro-
priate non-regenerated solution.

To serve a demand θ between sθ and dθ requesting rateΛθ ,
theD-RSAestablishes one ormore parallel (in case rateΛθ is
not supported at the respective distance by a single transpon-
der) transparent or translucent connections from sθ to dθ .
Note that translucent connections consist of transparent sub-
connections (sub-paths) regenerated at intermediate points,
and thus the transparent case can be viewed as a special case
of the translucent case. In the remainder of this paper, we
will avoid specifying the mode (transparent or translucent)
of a connection unless this is not apparent from the context.

The D-RSA algorithm examines a number of candidate
paths between the source and destination, and depending on
lengths of the links that comprise them, it finds the trans-
mission tuples that can be used over each of them, what we
call the set of feasible path-tuple pairs. For a given demand,
some path-tuples will never be used (said to be “dominated”
by others), since they require more spectrum and transpon-
ders than some other path-tuple. These are removed, limiting
the search space without losing good solutions.

For each non-dominated path-tuple pair, since the
requested rate Λθ can be higher than the maximum trans-
mission rate at the corresponding distance, the algorithm
calculates the number of (sub-)connections to be established,
the nodes where regenerators will be placed, if needed and
allowed, and the amount of spectrum to be used by each con-
nection. Then it searches to allocate contiguous spectrum
slots to these connections. Note that each path-tuple corre-
sponds to a specific number of connections and regenerators,
and by examining all the path-tuple pairs we examine all
feasible combinations of these parameters. For example, we
examine whether a single high-rate short-reach connection
requiring many regenerators at intermediate nodes should

be used or whether the other extreme that uses many low-
rate long-reach connections should be used, or whether some
other option in-between is preferable.

If the algorithm finds sufficient available spectrum slots
for a specific path-tuple pair, the connection(s) defined by
the path-tuple pair choice is (are) established, subject to the
RSA limitations. If the number of free spectrum slots is insuf-
ficient for at least one connection, the (1) push–pull or (2)
rerouting, or a combination of these techniques is used to
reactively re-optimize the network, free spectrum and serve
that connection. The push–pull technique offers the ability to
shift an existing connection’s spectrum band with no service
disruption (hitless shifting) and can be used to defragment the
network [3]. Figure 1 presents an example where the push–
pull technique is used to establish a connection that would
otherwise be blocked. The time to push–pull an existing con-
nection is proportional to the number of slots by which the
connection is shifted, and experiments show that this can be
done quite fast. We assume that shifting more than one con-
nection that is adjacent towards the same direction can be
done in parallel, but in general, the algorithm’s goal is to
avoid disruption, affecting as few connections as possible.

The rerouting technique we assume is based on the
make-before-break (MbB) technique and utilizes additional
transponders (and regenerators, when used) to re-establish
an existing connection before tearing it down. Thus, before
rerouting an existing connection, we re-establish it over the
same or a different path. In some cases,wemay have to utilize
more than one transponders to make feasible the transmis-
sion over the new path. The old and the new connections
will both be active for a small interval of time, while the
traffic is switched from the old to the new one(s). Finally,
the old connection is torn down releasing the spectrum that
had been reserved for it. Similar to the push–pull technique,
when more than one connections are rerouted we assume
that this is done in a pipelined manner, minimizing the num-
ber of spare transponders/regenerators required. The MbB
technique guarantees small traffic disruption (this depends
on the difference in the lengths of the two paths used and
would be seamless if we reroute the connection over the same
path). Compared to the push–pull, when rerouting a connec-
tion we may end up establishing more than one connections

123

Photon Netw Commun (2015) 29:307–321 311

and use more regenerators than before. The downside of the
push–pull technique is the inability to change the path of an
already established connection, which may be necessary in
some cases, and is achieved using the rerouting technique.
In other words, the push–pull technique allows changes only
in the spectrum and not in the space domain when trying to
reduce defragmentation.

The ILP algorithm we devised searches all possible shift-
ing and rerouting combinations of the active connections,
thus searching both spectrum and space reconfiguration
options. By minimizing the corresponding cost in terms of a
weighted combination of the number of rerouting and shift-
ing actions performed, it keeps the network state as close as
possible to the previous state, while finds sufficient space to
serve the new demand. The search space for the ILP algo-
rithm can be enormous, depending on the number of active
connections. This problem is dealt effectively by the heuristic
algorithm that explores a much smaller search space.

Theheuristic algorithmwedevised selects the biggest void
and makes space around that void, by applying the shift-
ing and/or rerouting techniques, in a recursive manner. The
shifting can be done towards the upper and bottom direc-
tion by certain slots, until we create the required spectrum
space. Different selections of the slots that are freed in each
direction result in different solutions and costs. To achieve
the lowest possible cost, the heuristic algorithm considers all
possible combinations of slots freed in the two directions, but
only for that particular void. A similar approach is followed
when rerouting connections. The heuristic can also combine
the two aforementioned techniques and examine cases where
some connections are rerouted and others are push–pulled to
create the appropriate space, selecting the combination that
achieves the lowest cost.

Finally, note that although our algorithms are parametric
to the cost of these two techniques, it stands to reason to
assume that reroutings have higher cost due to the need for
spare transponders and the disruption of service (depending
on path lengths) that might be experienced in certain cases.

4 D-RSA algorithms description

In this section, we describe the proposed algorithms for the
dynamic routing and spectrum allocation (D-RSA) problem.
The D-RSA algorithm is executed each time a new demand
arrives. If serving this demand is not possible under the cur-
rent network state, the algorithm reactively defragments the
network with the objective of making the fewest changes to
the active connections. We present in Sect. 4.1 an ILP for-
mulation and then in Sect. 4.2 a heuristic D-RSA algorithm
to perform this task.

Both the ILP and heuristic D-RSA algorithms are invoked
when a newdemand θ described by (sθ , dθ , Λθ , Mθ) arrives,

where (sθ , dθ) are the source and destination, Λθ is the
demanded capacity in Gbps, and Mθ is the mode indicator
that specifies whether the demand has to be served transpar-
ently or not. In order to reduce the time required to serve a
demand, for every (s, d) pair in the network we pre-calculate
a set Psd of k alternative paths that could be used, using a vari-
ation of the k-shortest path algorithm.For eachpre-calculated
path, we identify the configurations (tuples) that can be used
by the transponders over that path, based on the lengths of
its constituent links. In particular, we examine whether a fea-
sible transponder configuration tuple t = (lt , rt , bt , gt,,ct)

has transmission reach lt higher than the length of the path
p for the transparent case or higher than the maximum
link length of path p for the translucent case. Note that
a translucent (sub-)connection is terminated at a regener-
ator at an intermediate node and a new (sub-)connection
is initiated, to create an end-to-end translucent connection.
For the translucent case, for each acceptable path-tuple pair
(p, t), the path p is swept from left to right and a regener-
ator is assumed whenever required, that is, at the last node
before the transmission distance lt of the tuple is reached.
Thus, for path-tuple pair (p, t), we find the set of nodes
where regenerators have to be placed to make the trans-
mission feasible, splitting the end-to-end translucent path p
into sub-paths the set of which is denoted by Rp,t . In what
follows, we will describe the algorithms considering translu-
cent connections and the use of regenerators, since it is more
general and contains the only-transparent setting as a sub-
case.

In the pre-processing phase for each nodes pair (s, d),
we have calculated a set Qsd of feasible path-tuple pairs,
including the regeneration points. Then, when a demand θ

arrives, depending on its requested rateΛθ we take each fea-
sible path-tuple pair (p, t) from Qsθ dθ and break the demand
into Wθ,p,t parallel connections. Wθ,p,t is equal to one when
Λθ ≤ rt or higher than one when Λθ > rt . That is, we
need Wθ,p,t transponders configured at transmission tuple t
to serve the demand θ over path p, while the regeneration
points Rp,t are the same irrespectively of the demanded rate
(and thus were pre-calculated). We denote the set of feasi-
ble path-tuple pairs for demand θ as Qθ that include also
the regeneration points and number of parallel connection
breakings. Each path-transmission pair in Qθ is a candidate
solution to serve the demand. It is the role of theD-RSA algo-
rithm to select the one and allocate spectrum to the related
connection(s). Note that a path-tuple pair (p, t) ∈ Qθ can
include one or more transparent connections, denoted by
(p, m, t, i), where m ∈ Rp,t and i ∈ {1, 2, . . ., Wθ,p,t },
depending on the regeneration points and the number of par-
allel sub-connections. If the D-RSA algorithm cannot find
the spectrum to allocate to all these transparent connections,
it reactively defragments the network using the push–pull or
the rerouting techniques.

123

312 Photon Netw Commun (2015) 29:307–321

4.1 ILP algorithm

We now present the D-RSA ILP formulation, which is
an extension of the ILP formulation presented in [16].
Note that we can go from any previous network state to
any new network state with specific shifting and rerout-
ing operations. Thus, the proposed formulation is actually
a planning algorithm, and in particular the one presented
in [16], with additional constraints to measure the number
of shiftings and reroutings of the active connections per-
formed and a different objective function to minimize this
(defragmentation-related) cost. In particular, the proposed
ILP algorithm takes the new demand together with the pre-
vious demands and the connections serving them. We will
denote the new demand by ̂θ and an existing demand by
θ , while Θ will be the set of existing demand and Θ =
Θ ∪{̂θ} the set of all demands. The algorithm allocates paths
and spectrum to the new demand but also to the previous
demands, so it is allowed to change the existing active con-
nections.

To be more specific, the algorithm takes as input the fea-
sible path-tuple pairs for all demands θ ∈ Θ that include the
path-tuple pairs and for each the regeneration points (which
break the end-to-end path into transparent sub-paths the set
of which is denoted by Rp,t) and the number of breaking
of the demands into parallel sub-connections (denoted by
Wθ,p,t). The active connections in the network are described
by their utilized path-tuple pairs xθ,p,t and starting frequen-

cies f θ,p,m,t,i , as well as the relative order between those that

share common links δ
θ,p,m,t,i,θ ′ p′,m′,t ′,i ′ . These are passed

as input to the D-RSA ILP formulation that defines new
equivalent variables for the existing demands and introduce
constraints to identify how these newvariables differ from the
previous ones in order to identify the shiftings and reroutings
performed. As expected, the ILP formulation also includes
related variables for the new demand. Although in the fol-
lowing we will try to give short descriptions for all the
symbols used, the reader is also referred to [16] for a more
detailed explanation. Compared to [14], the formulation that
we present here indexes demands with θ , instead of (s, d).

The objective is to serve all demands (new and old-active)
with the lowest cost in terms of the reroutings and shiftings of
the active connections. If the algorithm cannot find a feasible
solution, meaning that the available spectrum is not sufficient
to serve all the demands, the new demand is blocked, and the
network remains in its previous state. The ILP formulation
is as follows:
Inputs:

̂θ,Θ,Θ New demand, set of existing demands,
set of all (new and existing) demands

Qθ,QΘ Set of feasible path-tuple pairs for
demand θ ∈ Θ or θ ∈ Θ

Wθ,p,t Number of (translucent) parallel con-
nections, required to serve demand θ

using path p ∈ Qsθ dθ and tuple t ∈ T ,
that is, using path-tuple pair (p, t)

Ftotal Number of available spectrum slots
w Objective weighting coefficient, tak-

ing values between 0 and 1. Setting
w = 0 (or w = 1) minimizes solely
the shiftings (or reroutings, respec-
tively)

xθ,p,t The path-tuple pair (p, t) that was

used to serve existing demand θ

f θ,p,m,t,i Starting spectrum slot of the transpar-
ent connection (p, m, t, i) of existing
demand θ [sub-path m ∈ Rp,t of
translucent parallel connection i ∈
{1, 2, . . ., Wθ,p,t } of path-tuple pair
(p, t)]

δ
θ,p,m,t,i,θ ′,p′,m′,t ′,i ′ The relative ordering between estab-

lished connectionswith common links.
Equals 0 if the starting frequency
fθ,p,m,t,i for transparent connection

(p, m, t, i) of active demand θ is
smaller than the starting frequency
f
θ ′,p′,m′,t ′,i ′ for connection (p′, m′,

t ′, i ′), of demand θ ′, i.e. fθ,p,m,t,i <

f
θ ′,p′,m′,t ′,i ′ . It exists only if sub-paths

m ∈ Rp,t and m′ ∈ Rp′,t ′ share a link

Variables:

xθ,p,t Boolean variable, equal to 1 if path-
tuple pair (p, t) is used to serve
demand θ (existingor thenewdemand)

fθ,p,m,t,i Integer variable, equal to the starting
spectrum slot of the transparent con-
nection (p, m, t, i) of demand θ

δθ,p,m,t,i,θ ′,p′,m′,t ′,i ′ Booleanvariable, equal to 0 if the start-
ing frequency fθ,p,m,t,i for transparent
connection (p, m, t, i) of demand θ

is smaller than the starting frequency
fθ ′ p′,m′,t ′,i ′ for connection (p′, m′, t ′,
i ′), of demand θ ’

vθ Number of reroutings (on different
path or tuple) performed for existing
demand θ

hθ,p,m,t,i Boolean variable, equal to 1 if active

demand θ uses the same path-tuple
pair and its transparent connection
(p, m, t, i) has changed its starting
frequency, and equal to 0 otherwise

123

Photon Netw Commun (2015) 29:307–321 313

zθ,p,m,t,i Boolean variable, equal to 1 if active

demand θ uses the same path-tuple
pair and its transparent connection
(p, m, t, i) was rerouted (jump over
other), and 0 otherwise

yθ,p,m,t,i Boolean variable, equal to 1 if active

demand θ uses the same path-tuple
pair and its transparent connection
(p, m, t, i) was shifted, and 0 other-
wise

Trer Total number of reroutings
Tsh Total number of shiftings

ILP formulation

minimize w · Trer + (1 − w) · Tsh

The following constraints are added to the constraints (1–8)
of [16]:

• Cost function definition:

Trer =
∑

θ∈�

⎛

⎜

⎝v
θ

+
∑

(p,t):x
θ,p,t =1

∑

m∈Rp,t

∑

i={1,2,...,W
θ,p,t }

z
θ,p,m,t,i

⎞

⎟

⎠

(9)

Tsh =
∑

θ∈�

∑

(p,t):x
θ,p,t =1

∑

m∈Rp,t

∑

i={1,2,...,W
θ,p,t }

y
θ,p,m,t,i (10)

• Identify the connections that use the same path but dif-
ferent tuple
For all θ ∈ Θ , for (p, t) ∈ Qθ such that xθ,p,t = 1

vθ ≥
∑

t ′ �=t

Wθ,p,t ′ · |Rp,t ′ | · xθ,p,t ′ (11)

• Identify the connections that have changed path

For all θ ∈ Θ , for (p, t) ∈ Qθ such that xθ,p,t = 1

vθ ≥
∑

p′ �=p

∑

t ′
Wθ,p′,t ′ · |Rp′,t ′ | · xθ,p′,t ′ (12)

• Identify the connections that use the same path-tuple and
have changed their starting frequencies
For all θ ∈ Θ , for (p, t) ∈ Qθ such that xθ,p,t = 1, for
all m ∈ Rp,t , and for all i ∈ {1, 2, . . ., Wθ,p,t }

(1 − xθ,p,t) + hθ,p,m,t,i ≥ fθ,p,m,t,i − f̄θ,p,m,t,i

FT OT AL
(13)

(1 − xθ,p,t) + hθ,p,m,t,i ≥ f̄θ,p,m,t,i − fθ,p,m,t,i

FT OT AL
(14)

• Identify the connections that use the same path-tuple pair
and were rerouted (jump over other active connections)
For all θ ∈ Θ , for (p, t) ∈ Qθ such that xθ,p,t = 1, for
all m ∈ Rp,t , and for all i ∈ {1, 2, . . ., Wθ,p,t }, for all
θ ′ ∈ Θ , for (p′, t ′) ∈ Q

θ ′ such that x
θ ′,p′,t ′ = 1, for all

m′ ∈ Rp′,t ′ where m and m′ share at least one common
link, and all i ′ ∈ {1, 2. . ., W

θ ′,p′,t ′ },

(1 − xθ,p,t) + (1 − x
θ ′,p′,t ′) + zθ,p,m,t,i

+ z
θ ′,p′,m′,t ′,i ′ ≥

δ
θ,p,m,t,i,θ ′,p′,m′,t ′,i ′ − δ̄

θ,p,m,t,i,θ ′,p′,m′,t ′,i ′ (15)

(1 − xθ,p,t) + (1 − x
θ ′,p′,t ′) + zθ,p,m,t,i

+ z
θ ′,p′,m′,t ′,i ′ ≥

δ̄
θ,p,m,t,i,θ ′,p′,m′,t ′,i ′ − δ

θ,p,m,t,i,θ ′,p′,m′,t ′,i ′ (16)

• Connections that were shifted

For all θ ∈ Θ , for (p, t) such that xθ,p,t = 1, for all m ∈
Rp,t , and for all i ∈ {1, 2, . . ., Wθ,p,t }

yθ,p,m,t,i ≥ hθ,p,m,t,i − zθ,p,m,t,i (17)

We are looking to identify the active connections that were
shifted (what we call case 1) or rerouted in a different path
(case 2.1) or in the same path (case 2.2), using the same
(case 2.2.1) or different (case 2.2.2) tuple. An active connec-
tion that has either changed its path or its tuple is considered
as rerouted and belongs to case 2.1 or 2.2.1, counted by con-
straints (11) and (12), respectively. An active connection that
uses the same path-tuple pair can be shifted or rerouted, thus
belonging to case 1 or case 2.2.1. Constraints (13) and (14)
identify these connections (h variables) by checking their
starting frequencies. Then constraints (15) and (16) iden-
tify the connections that were rerouted (z variables) using
the same path-tuple (case 2.2.1). They do that by examin-
ing the ordering of the connections (δ variables) to identify
the connections jumps and then solving a related set-cover
problem to find the minimum number of reroutings to sat-
isfy these jumps, as will be explained in the next subsection.
Constraint (17) finds the number of shifting (case 1) by sub-
tracting rerouted connectionswith the same path-tuple pair (z
variables) from connections that have changed their starting
frequencies (h variable).

The objective is to minimize a weighted sum of the
connections that are rerouted and shifted. The weighting
coefficient w controls the relative significance given to these
two cost parameters in the optimization function. Values of
w close to 0make the shifting cost the dominant optimization
parameter in which case the algorithm is free to reroute as
many connections as needed and keep the connections that
are established in the same path utilizing the same spectrum

123

314 Photon Netw Commun (2015) 29:307–321

slots. In contrast, values of w close to 1 make the minimiza-
tion of total reroutings the dominant optimization parameter.
In that case, the algorithm serves the connections trying to
keep the established connections in the same path and not
changing their relative ordering. The new demand is consid-
ered as blocked when the algorithm cannot find a feasible
solution.

The above ILP algorithm aims to serve each new demand
by making the less possible changes to the network. The
number of variables and constraints used by the above ILP
formulation depends on the overlapping of the paths consid-
ered (and thus depends on the topology and the value of k
used) as also on the number of active connections that are
served each time. In particular, constraints (11) and (12) are
employed for each active demand Θ . Constraints (13), (14)
and (17) are employed for every active connection and not
for the connection(s) of the new demand. Constraints (15)
and (16) need to be employed for every pair of transpar-
ent connections that share at least one common link. In the
worst case scenario where we have a set of Θ demands and
a total number of � = ∑

θ∈�

∑

(p,t):xθ,p,t =1
Wθ,p,t · |Rp,t | possi-

ble transparent connections the formulation would require
|Θ| + 3 × � extra variables. It also would require |Θ|
inequality constraints for (11) and (12), � extra inequality
constraints for (13, 14, 17) and �2 inequality constraints for
(15, 16).

4.1.1 Reroutings and set-cover problem

To make space for a new connection, already established
connections are rerouted or shifted in the spectrum domain.
Shifted connections are those that utilize the same path but
have different starting frequencies while the relative ordering
between the established connections remains the same. In
particular, in our formulation, the relative ordering between
pairs of connections is described with the related δ variables
(for pairs that share at least one common link). Unchanged
relative ordering means that there are no “jumps” between
the connections, or otherwise there are no changes in the
values of the δ variables from one state to the next. On the
other hand, rerouted connections that remain in the same path
are identified by the changes in the relative ordering, that is
changes in the δ variables.

Since we can go from one network state to another by
rerouting different combinations of connections,we are inter-
ested in identifying the minimum number of such reroutings.
So we want to find the minimum number of rerouted connec-
tions that yield (cover) the changes in the δ variables. Each
time a connection is selected to be rerouted, and depending
on its final spectrum placement a set containing the pairs of
connections with different relative orderings is created. So,
as in the set-cover problem, we want to identify the smallest

f1 f2 f3f4 f5f6

f1 f2 f3 f4 f5

New connection

Current
state

next
state

f1 f2 f3
Current

state f4

f1 f2 f3f4 f6 f5

f5

New connection

next
state

Fig. 2 aThe spectrum slot allocation on a link at two different states. In
the current state, connections 1, 2, 3, 4 and 5 exist and a new connection
arrives. Not finding sufficient space to serve it, we reroute connections 2
and 3, and the new connection is established as shown in the next state.
b The same scenario, with the same changes in the ordering variables,
but rerouting only connection 4 to create space for the new connection

subset of S (the smallest number of reroutings) whose union
equals the universe (the union of changes in δ values).

Consider the scenario shown in Fig. 2 where we focus on
a specific link with several active connections. In order to
serve the new connection, there are many different options
to rearrange the active connections and make the required
space. Some connections may be shifted and some others
may be rerouted (remaining in the same path with differ-
ent relative order). In the example shown in Fig. 2, we take
under consideration only the possible reroutings to show how
this is related to the set-cover problem. Assuming changes
in the ordering of connection pairs (2,4) and (3,4), we want
to find the minimum number of reroutings needed to have
these changes. In other words, we want to reroute connec-
tions that would create changes in δ values that cover the set
U = {δ2,4, δ3,4}. This set is our universe containing all the
changes in the relative orderings between the connections. To
cover this set, we can reroute the connections with starting
frequencies f2 and f3, as shown in Fig. 2a. However, we can
cover all of the elements by rerouting only connection f4, as
shown in Fig. 3b. We would select the second option, since
it has the smaller number of reroutings.

Clearly finding the minimum number of rerouted connec-
tions, given the changes in the ordering values, is equivalent
to the set-cover problem. This observation is taken into
account in the proposed ILP formulation, and in particular
constraints (13) and (14) formulate a related set-cover prob-
lem to identify the minimum number of reroutings to serve
the demand and go to the next network state.

123

Photon Netw Commun (2015) 29:307–321 315

(a) (b) (c)

Fig. 3 a Pseudocode of the algorithm that served the demand by examining all combinations of path-transmission tuple pairs establishing the
connections in the existing spectrum voids. b Pseudocode of the push–pull algorithm. c Pseudocode of the joint (unified) algorithm

4.2 Heuristic algorithm

We now present the heuristic D-RSA algorithm.
The algorithm takes as input the feasible transmission

options described by the (reach-rate-spectrum-guardband-
cost) tuples, the number of candidate paths k to be checked
for each demand, a threshold H on the depth of neighbouring
connections that can be pushed or rerouted, and the cur-
rent state of the network. The current state of the network is
described by link spectrum utilization vectors. The spectrum
utilization of a link l is represented by a three-state vector
Ul , called the link slot utilization vector, of length equal to
Ft . We represent by Uli the i−th slot. A spectrum slot can
be in one of the following states: (1) free (denoted by state
u f), (2) used for data transmission (denoted by ud) or (3)
used as guardband (denoted by ug). The rules are that data
slots cannot be used by new connections, free slots can be
used for data, while free and guardband slots can be used for
guardband by new connections. The slot utilization vector
Up of a path p can be computed using an (associative) 3-ary
operator ⊕ for combining (“adding”) the spectrum slots of
the links that comprise it. The combining operator is defined
as follows:

u f ⊕ ud = ud , u f ⊕ ug = ug, u f ⊕ u f

= u f , ug ⊕ ug = ug,

ud ⊕ ud = ud , ud ⊕ ug = ud

Thus, Upi = ⊕
l∈p

Uli , for all i = 1, 2, . . ., Ft .

The D-RSA heuristic algorithm serves the demands as
they arrive. As we saw in the start of this section a demand
depending on the selected path-tuple pair may require
the establishment of one or more transparent connections,

depending on the regeneration points and the number of par-
allel breakings. The D-RSA heuristic algorithm establishes
these connections, finding spectrum for them and if it cannot
do such it defragments the network. To achieve this, we have
developed a push–pull and a rerouting algorithm, which can
execute alone or combined.

In short, the push–pull algorithm we implemented selects
a spectrumvoid and creates the required space to establish the
blocked connection by shifting the void’s neighbouring con-
nections. The cost of using this particular void is defined as
the number of shifted connections. Other important metrics
that canbeoptimized are the spectrumshifting (in slots) of the
longest shifted connection, since this determines the time for
performing the push–pull(s) or the total number of slots of all
connections that are shifted, etc. The rerouting algorithm we
devised reroutes upper and lower neighbouring connections
from the selected void so as to free the required spectrum
space. It examines all possible combinations of reroutings,
similarly to the push–pull algorithm, and selects the combi-
nation thatminimizes the cost, considered to be the number of
rerouted connections. Note that the main difference between
the proposed heuristic and the ILP-based algorithmpresented
in the previous section is that the heuristic selects a specific
void and searches to make space around that void, while the
ILP algorithm searches among the reroutings and shiftings
of all active connections.

To be more specific, to serve the demand with a specific
path-tuple pair, the algorithm computes the path utilization
vector based on the links that comprise the path. For each
connection required to serve the demand with the specific
path-tuple pair, the algorithm checks whether there are voids
of spectrum able to serve that connection, taking also into
account the guardband needed. If there are more than one
voids, the algorithm selects the smallest one so as to leave

123

316 Photon Netw Commun (2015) 29:307–321

bigger voids for future connections with higher spectrum
needs. If there is no void to accommodate at least one con-
nection of the path-tuple pair under consideration, we move
to examine the next path-tuple pair. We stop the first time we
are successful with a path-tuple pair, that is, we find appropri-
ate voids to serve all connections required for that path-tuple
pair selection. If we examine all candidate path-tuple pairs
and none was successful, we proceed with our network re-
optimization techniques: push–pull and reroutings. Serving
the demands with the available voids is considered zero cost
and is preferred over the case where we have to re-optimize
the network. The above phase of the algorithm is described
in Fig. 3a.

When we have ruled out the option of serving the demand
without re-optimizing the network, we again start searching
all candidate path-tuple pairs. For each path-tuple pair, for
each of its connections that there is not enough spectrum the
algorithm selects the biggest void and tries to create the extra
slot space in one of the following ways.

Assume that we use the push–pull technique and start with
a void that we need to expand by n slots to establish the
connection that has guardband needs of gbv spectrum slots.
We canmake this spectrum space by shifting connections that
are upper or bottom adjacent to the void under examination.
Let Fs and Fe be the first free slot and the last free slot of the
void, respectively. For an upper connection i , we let Fi be its
starting frequency and gbi be its corresponding guardband
needs.

Then we have to shift this connection by

n − Fi + Fe − max(gbv, gbi)

For a bottom connection j , we again let Fj be its ending
frequency and gb j be its corresponding guardband needs.
Then we have to shift this connection by

n − Fj + Fs − max(gbv, gb j)

Shifting one connection may trigger the shifting of its adja-
cent connections. This is treated recursively by the same
algorithm taking the shifted connection as the void. To make
the required space, there are n + 1 combinations: shift the
upper connections and make n slots space or shift the upper
to make n − 1 slots and the bottom to make 1 slots space, ...,
or shift only the bottom tomake n slots space.We examine all
different upper-bottom pushing combinations and calculate
their cost; this is done quite fast as we only examine the two
extreme cases, and the costs of the other combinations can
be calculated from them. The cost is defined as the number
of spectrum slots of the connection that is shifted the longest,
since this is proportional to the time required, but other inter-
esting metrics could also be used, including the number of
shifted connections or the number of shifted slots of all con-

nections. The algorithm stops execution when there are no
other connections that need to be recursively pushed or when
we reach the recursion threshold H (see next paragraph) in
which case we consider that the connection is blocked for the
specific upper-bottompushing combination. Ifmore than one
combinations are feasible, we select the one that yields the
smallest cost. If for the given path-tuple pair the void that
we examine cannot be expanded, we move to examine the
remaining path-tuple pairs that require less spectrum slots.
If we examine all path-tuple pair and none is successful, the
demand is blocked.

Since shifting an adjacent connectionmay trigger the shift
of its own adjacent connections and so on, this can go deep
andwe can end up by examining (andmaking) a huge number
of changes in the network, the whole network configuration
in the worst case scenario. To avoid the high running time of
the algorithm,we use the threshold H to control the recursion
depth. The depth of the push–pull algorithm is defined as fol-
lows. The initial void has depth zero, and every connection
that is shifted inherits the depth level from the connection
that shifts it and adds one. Although this limitation increases
the blocking probability, it has the advantage of lower run-
ning times and can be used in cases when this is a critical
parameter. The push–pull algorithm is described in Fig. 3b.

The second way to create the required spectrum space
needed to establish the new connection is by rerouting one
or more connections. The key difference is that in this case,
we re-establish neighbouring connections, and we take them
to remote spectrum blocks or over different paths, instead
of shifting them. We again start with a void that we need to
expandbyn slots to establish the connection.Wecalculate the
set of neighbouring connections from each side of the void,
denoted byAC’ andBC’, as follows: the setAC’ contains con-
nections that utilize at least one spectrum slot in the interval
[Fe, Fe + n], and the set BC’ contains connections that uti-
lize at least one spectrum slot in the interval [Fs −n, Fs]. We
then try the different combinations of rerouting the connec-
tions in these sets. This is done as follows. We first reroute
all connections from one side, e.g. the upper side, so as to
make spectrum space of n slots. Then we reroute the connec-
tions from the upper side so as to create space n −1 slots and
reroute connections from bottom side to create space equal to
1 slot, and so on. When a connection cannot be rerouted (we
cannot find spectrum to reroute it), the algorithm has to free
the remaining slots from the other direction. If connections
cannot be rerouted form both directions and the freed spec-
trum is less than n, then connection establishment is blocked.
We search all the different upper-bottom rerouting combina-
tions and calculate for each one its cost defined as the number
of reroutings performedmultiplied by the number of connec-
tions each rerouting consists of (higher than one in case of
rerouting a translucent connection). Finally, the algorithm
selects the combination with the minimum cost.

123

Photon Netw Commun (2015) 29:307–321 317

Note that when rerouting over a different path, it is not
granted that the transmission configuration used originally in
the rerouted connection will be feasible (e.g. when the new
path is longer). To address this, we treat the rerouted connec-
tion in a manner similar to that of the new connection, which
is established only if there is a void with the appropriate
size. In extreme cases where candidate paths have signif-
icant difference in their lengths, more than one connection
maybe required to be established in order to replace the initial
connection. Also in order to be consistent and have end-to-
end control rerouting, a translucent connection involves the
rerouting of the whole connection instead of its transparent
sub-connection that causes the blocking.

The aforementioned push–pull and rerouting techniques
can be combined and used together in a unified algorithm
to achieve even better performance. The algorithm that
combines these two techniques works as follows. After per-
forming a rerouting, following the same direction of the
rerouting, the push–pull algorithm is applied to the remain-
ing connections. Then more connections are rerouted, and
so on. To be more specific, we again start with a void that
we need to expand by n slots to establish the connection. We
calculate the set of neighbouring connections from each side
of the void, denoted by AC’ and BC’. We first try to free the
required space fromone direction, in our case the upper direc-
tion. To do so we start by rerouting the first connection that
blocks the expansions and continue shifting the other con-
nections. After calculating the required cost, we start again
from the initial state by rerouting the first two connections
that block the expansion and shifting the other connections
until we create the required space. When we have exhausted
all combinations, we continue the same process for creat-
ing n-1 slots in the upper side and 1 slot in the bottom side.
Note that this case contains also the cases where only shift-
ing or rerouting of the connections is allowed and are also
examined as individual algorithms.Whenwe have exhausted
all combinations, we continue the same process for creating
n −1 slots in the upper side and 1 slot in the bottom side. The
cost of the solution is the combined cost of the push–pull and
rerouting operations. The joint algorithm is shown in Fig. 3c.

The intuition behind the unified algorithm is that when
one or more connections block the expansion of the void,
because they cannot be shifted, reroutingmay be feasible and
vice versa, making feasible the establishment of connections
where the two algorithms separately would fail.

5 Numerical results

We implemented the proposed D-RSA algorithms in Mat-
lab and used it to evaluate the performance of the proposed
re-optimization techniques. We used the IBM ILOGCPLEX
[17] for ILP solving. Spectrum slots were taken to occupy

F = 12.5GHz, while the network supports Ft = 320 slots.
We assumed the use of a single type of flexible OFDM
transponder that transmits up to 400 Gbps. The (reach–
rate–spectrum–guardband) tuples used as input to these
experiments were obtained from studies on physical layer
impairments for optical OFDM networks [6]. Demands at
each node are generated according to a Poisson process with
arrival rate λ and an exponentially distributed duration with
mean 1/μ = 1 time unit and destination uniformly chosen
among all nodes. We run our algorithms for the establish-
ment of 50,000 connections. We targeted a confidence level
of 95% in our simulations. The confidence interval varies for
the different cases. As a matter of fact, taking into consider-
ation the worst blocking probability (as shown in Figs. 6a,
b, 7a), for the small network with initial link lengths the
confidence interval is 0.29%, for doubled link lengths the
confidence interval is 0.28%, while for the Telefonica net-
work the confidence interval is 0.34%.

In all cases, the cost for rerouting a connection is seven
times the cost of shifting a connection in the spectrumdomain
(w=0.875). We select the cost of the reroutings to be seven
times the cost of shiftings for two reasons. First, it depicts
the higher cost since the rerouting procedure requires the
use of an extra spare transponder for each connection and
may cause certain traffic disruptions (non equal length paths,
etc). Second, we conducted a number of simulation experi-
ments to select the weighting coefficients, and we saw that
in the network under examination and for the particular traf-
fic at hand, this coefficient gave the best performance. The
demanded rate is drawn from a uniform distribution on the
close interval [0,400] Gbps, rounded with a 10 Gbps step.
This traffic generation was selected to cover scenarios where
the network is quite dynamic and adaptable to edge traffic
changes.

5.1 Optimality performance of the heuristic algorithms

We start by examining the optimality performance of the
heuristic algorithm, comparing its performance to that of the
ILP algorithm in small scale experiments.

We performed these experiments, assuming the six-node
network topology shown in Fig. 4. We used two different
variations of the network, one with the link lengths shown

Fig. 4 Small network topology and link lengths in km

123

318 Photon Netw Commun (2015) 29:307–321

in Fig. 4 and one with doubled link lengths. With the initial
link lengths, the paths that are created have small lengths
and the connections that are established through these paths
are only transparent. On the other hand, doubling the lengths
of the links results in the establishment of several parallel
transparent connections or requires the usage of regenerators
in order to make the connections feasible.

For both network cases, the IA-RSA ILP algorithm was
able to track optimal solutions at low load. For average arrival
rate 2 and higher, the number of established connections
increases and the ILP solver was stopped after running for
30 min for each new demand. So, for these cases, we are not
sure whether the ILP algorithm found the optimal solutions.

We graph the performance of the D-RSA heuristic with
only rerouting technique, only push–pull and both tech-
niques. We also graph the performance of the D-RSA ILP
and that of the D-RSA heuristic without re-optimization
which are used as upper and bottom bounds, respectively.
The performance metrics used are the blocking probability
and blocked capacity ratios (weighted blocking probability).
The latter metric computes the total requested demand that
could not be served because there were not enough free spec-
trum slots to serve the corresponding connections and is the
weight-corrected fraction of blocked connections, with the
weights being the capacity of the connections

5.1.1 Network experiments with initial link lengths

In this subsection, we examine the performance of the D-
RSA algorithms for the six-node network with the initial
link lengths. These lengths are short enough, resulting in
the establishment of transparent connections, regardless the
transponders configurations, so we will refer to it as trans-
parent network.

For the aforementioned scenario, the rerouting algorithm
has blocking probability and blocked capacity ratios close to
that of the push–pull algorithm. The six-node network used
for our simulation offers limited number of unrelated paths
(paths with no common links), reducing the options for the
rerouting algorithm which has to reroute a high number of
connections in order to make available the required number
of spectrum slots.

As expected, the performance of the proposed combined
push–pull and rerouting heuristic algorithm is better than the
performance of the algorithms which use solely one of these
techniques in both metrics (Fig. 5).

With respect to the blocked capacity ratio, the performance
between the push–pull and rerouting algorithm is close. The
push–pull algorithm seems slightly better for low load, while
the rerouting algorithmbecomes slightly better at heavy load.
At high load, the number of connections that are established

Fig. 5 Blocking probability for the a transparent (initial link lengths)
and b translucent case (doubled link lengths) and average blocked
capacity ratio for the c transparent and d translucent case

123

Photon Netw Commun (2015) 29:307–321 319

in the network is much higher and consequently the number
of unused spectrum slots is fewer resulting inmore congested
links. In such cases, bigger demands cannot be served and are
blocked while smaller connections are served, and rerouting
is more efficient in avoiding congested links.

Finally, the performance of the heuristic algorithm which
combines the push–pull and rerouting techniques for the both
evaluation cases is very good and close to that of the ILP algo-
rithm.Wecan also observe that the proposeddefragmentation
solutions are effective since they substantially improve the
blocking performancewhen compared an algorithm that does
not re-optimize the network.

5.1.2 Network experiments with doubled link lengths

In this case, we assume the same network topology with
doubled link lengths. The connections that are established
in such a network are mainly translucent requiring in some
intermediate nodes the usage of regenerators. As a matter
of fact, the transparent connections that are established tra-
verse fewer links relaxing the spectrum continuity constraint
of the RSA. So, the network has a higher number of connec-
tions of smaller lengths, making easier slot assignment. This
explains why when comparing the performance between the
two networks, we notice that both the blocking probability
and blocked capacity ratios are higher in many cases for the
transparent case for the same average traffic.

The performance of the rerouting and push–pull algorithm
is very close, with the performance of the rerouting algorithm
being slighter better. Since the spectrumcontinuity constraint
is relaxed at the regeneration points, the push–pull technique
becomes more efficient, and thus it has slightly better per-
formance than in the transparent case. The joint algorithm
has again good performance, close to the ILP, while the no
re-optimization algorithm is again much worse than the pro-
posed solutions.

5.1.3 Re-optimization cost

In Fig. 6, we graph the average re-optimization cost required
to serve the demands, averaged by the total number of
demands that are established (not blocked). The results corre-
spond to the small network topology with the initial lengths.
The cost for rerouting a connection is taken seven times
the cost of shifting a connection in the spectrum domain
(w = 0.875). The D-RSA rerouting algorithm has higher
cost than the push–pull algorithm, but it needs to shift more
connections than the rerouted connections. The cost of the
ILP algorithm is much higher than the combined heuristic
algorithm. This is the trade-off for the better blocking prob-
ability that it offers versus the heuristic algorithm.

Fig. 6 Average ratio cost comparison

B. D-RSA algorithm performance in a realistic network

1
2

3
4

12

5 6
10

11

8 7

9 18

25

16

13

1415

17

19

20

21
22

26

27

28
23

29

2430

TR11

TR12

TR13

TR14

TR3 TR4

TR5

TR6 TR1
TR2

TR7

TR8

TR9

TR10

Add/drop Node

OXC

Fig. 7 Reference network based on Spanish national backbone

5.2 D-RSA algorithm performance in a realistic network

In this subsection, we present the performance of the pro-
posed D-RSA heuristic in translucent mode of operation for
the Telefonica transport network (Fig. 7).

Figure 8a shows the blocking probability of the D-RSA
translucent algorithm, andFig. 8b shows the blocked capacity
ratio for the following algorithms, respectively, (1) without
re-optimization, (2) using the push–pull technique, (3) using
the rerouting technique and (4) using both push–pull and
rerouting (joint). The D-RSA without re-optimization has
the worst performance and, as in the previous case, is used
as a point of reference of the proposed heuristic algorithms.
Both push–pull and rerouting techniques, when used inde-
pendently, improve the performance in means of blocking
probability and blocked capacity ratio, with the performance
of the latter being superior in all cases. Specifically, as time
passes and links get congested, the new connections that
arrive cannot be served. The push–pull technique cannot
achieve significant improvements at medium and high load,
since the links in the network are congested, not leaving
enough free spectrum that can be used for defragmentation.

123

320 Photon Netw Commun (2015) 29:307–321

Fig. 8 a Blocking probability and b blocked capacity ratios for the
translucent case of the Telefonica network

However, at lower load, the push–pull technique is quite effi-
cient. Note that network operators would never operate at
a load where blocking is high and so the push–pull tech-
nique is considered efficient at the network operation point.
The rerouting technique has the advantage of exploiting the
solution space of different paths, which was shown to be par-
ticularly useful at both high and low load. As expected, the
algorithm that uses these techniques jointly improves even
more the performance, with a slight improvement over the
rerouting technique. Thus, the joint algorithm takes advan-
tage of the rerouting technique and the different paths that it
exploits, but also at certain instances it uses shifting (push–
pull) to create the required space.

Regarding the performance in terms of blocked capac-
ity ratio, the joint algorithm again performs better, with the
rerouting algorithm, as previously, being close. Regarding
the push–pull technique, we observe that its blocked capac-
ity ratio performance is close to that of no re-optimization,
closer than the related blocking probabilities. The reason is
that because the push–pull technique tries to create the appro-
priate space by shifting connections in the spectrum domain,
it manages to serve the smaller connections and not the big-
ger ones that contribute relatively more to blocked capacity
ratio metric.

1.00E-01

1.00E+00

1.00E+01

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 2 3 4 8

Average running tim
e (sec)

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Threshold (H)

Running Time

Blocking Probability

Fig. 9 Blocking probability and average running time of the D-
RSA/push–pull and rerouting algorithm for λ = 3 demands/time unit
as a function of the recursion threshold H

Figure 9 shows the effect of the recursion threshold H
on the performance of the D-RSA/push–pull and rerouting
algorithm (note that up to now H was set to infinite) for
average arrival rate λ = 3 demands/time unit and translu-
cent network. We see that lowering H increases the blocking
probability but reduces the average and maximum running
time, introducing a trade-off between these two metrics. The
blocking and running time performance for H > 8 is similar
to that where H was set to infinite. On the other end, when H
is set to 0, the performance of theD-RSA/push–pull& rerout-
ing emulates that of the D-RSA/no re-optimization. Thus, H
can be chosen so as to meet the response time requirements
for serving the demands.

6 Conclusions

We proposed an algorithm for setting up connections and re-
optimizing a flexible optical network. When a connection is
blocked due to spectrum fragmentation, the push–pull or/and
rerouting techniques are used to make appropriate spectrum
space with no service interruption. We devised appropri-
ate algorithms that search among different combinations of
shifting and rerouting alternatives. Our results show that the
rerouting technique seems to be the appropriate approach
irrespective of the network load. Its performance can be fur-
ther improved when assisted by the push–pull technique in a
joint algorithm. The push–pull technique is not very efficient
at high load, since links are congested and not enough free
spectrum is available, but is quite better at lower load. As a
matter of fact, both techniques are worth implementing since
real networkswould not operate at high loadwith high block-
ing probability. As our results indicate, we can substantially
reduce blocking using the proposed algorithms and we can
also trade off performance for running time by appropriate
parameter selection depending each time on the offered load
and the special characteristics of the network.

123

Photon Netw Commun (2015) 29:307–321 321

Acknowledgments This work has been partially funded by IDEAL-
IST Project.

References

[1] Gerstel, O., et al.: Elastic optical networking: A new dawn for the
optical layer? IEEE Commun. Mag. 50(2), S12–S20 (2012)

[2] Gringeri, S., et al.: Flexible architectures for optical transport
nodes and networks. IEEE Commun. Mag. 48(7), 40–50 (2010)

[3] Cugini, F., et al., P.: Push-pull defragmentation without traffic
disruption in flexible grid optical networks. Lightwave Technol.
J. 31, 125–133, (2013)

[4] Patel, A.N., et al.: Defragmentation of transparent flexible optical
WDM (FWDM) networks. Optical Fiber Communication Confer-
ence (2011)

[5] Wang, Xi, et al.: A hitless defragmentation method for self-
optimizing flexible grid optical networks. European Conference
andExhibition onOptical Communications (ECOC),Amsterdam,
pp. 1–3 (2012)

[6] Eira, A., et al.: Defragmentation of fixed/flexible grid optical net-
works. Futur. Netw. Mob. Summit, Lisboa, pp. 1–10 (2013)

[7] Luo, Jie, et al.: Partial defragmentation in flexible grid optical net-
works.Communications andPhotonicsConference (ACP), (2012)

[8] Takagi, T, et al.: Disruption minimized spectrum defragmenta-
tion in elastic optical path networks that adopt distance adaptive
modulation. European Conference and Exhibition on Optical
Communications (ECOC), Geneva, pp. 1–3 (2011)

[9] Klinkowski, M., et al.: Elastic spectrum allocation for time-
varying traffic in flexGrid optical networks. IEEE J. Sel. Areas
Commun. (JSAC) 31, 26–38 (2013)

[10] Castro, A., Velasco, L., Ruiz, M., Klinkowski, M., Fernández-
Palacios, J.P., Careglio, D.: Dynamic routing and spectrum (re)
allocation in future flexgrid optical networks. Elsevier Comput.
Netw. 56, 2869–2883 (2012)

[11] Gifre, Ll, Paolucci, F., Aguado, A., Casellas, R., Castro, A.,
Cugini, F., Castoldi, P., Velasco, L., López, V.: Experimental
assessment of in-operation spectrum defragmentation. Springer
Photonic Netw. Commun. 27, 128–140 (2014)

[12] Klekamp, A., et al.: Limits of spectral efficiency and transmis-
sion reach of optical-OFDM superchannels for adaptive networks.
IEEE Photonics Technol. Lett. 23(20), 1526–1528 (2011)

[13] Borkowski, R., et al.: Experimental study on OSNR requirements
for spectrum-flexible optical networks. J Opt. Commun. Netw.
4(11), B85–B93 (2012)

[14] Idealist deliverable: D1.1 - Elasticoptical network architecture:
reference scenario, cost and planning

[15] Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization:
Algorithms and Complexity. Dover publications, NY (1998)

[16] Christodoulopoulos, K., Soumplis, P., Varvarigos, E.: Plan-
ning flexible optical networks under physical layer constraints.
IEEE/OSA J. Opt. Commun. Netw. 5(11), 1296,1312 (2013)

[17] IBM Cplex http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/

Polizois Soumplis graduated in 2010 from
the University of Patras and was awarded the
Diploma of Computer Engineer and Infor-
matics. In 2012, he received hisM.Sc. degree
in computer science and engineering. He
is currently pursuing a Ph.D. degree. His
research interests are in the areas of network
optimization and optical networks.

Konstantinos Christodoulopoulos received
the Diploma in Electrical and Computer
Engineering from the National Technical
University of Athens, Greece, in 2002, the
M.Sc. in Advance Computing from Imper-
ial College of London, UK, in 2004, and the
Ph.D. fromComputer Engineering and Infor-
matics Department, University of Patras,
Greece, in 2009. He is a post-doc researcher
at Trinity College Dublin, Ireland, working

on a joint project with IBM. His main research interests are in the areas
of algorithms and protocols for optical networks and grid computing.

EmmanouelVarvarigos received aDiploma
in Electrical andComputer Engineering from
the National Technical University of Athens
in 1988, and the M.S. and Ph.D. degrees
in Electrical Engineering and Computer Sci-
ence from the Massachusetts Institute of
Technology in 1990 and 1992, respectively.
Hehas held faculty positions at theUniversity
of California, Santa Barbara (1992–1998, as
an Assistant and later an Associate Profes-

sor), and Delft University of Technology, the Netherlands (1998–2000,
as an Associate Professor). In 2000, he became a Professor at the
department of Computer Engineering and Informatics at the Univer-
sity of Patras, Greece, where he heads the Communication Networks
Lab. He is also the Director of the Network Technologies Sector (NTS)
at the Research Academic Computer Technology Institute (RA-CTI),
which through its involvement in pioneering research and development
projects has a major role in the development of network technologies
and telematic services in Greece. Professor Varvarigos has served in
the organizing and program committees of several international confer-
ences, primarily in the networking area and in national committees. He
has also worked as a researcher at Bell Communications Research and
has consulted with several companies in the USA and in Europe. His
research activities are in the areas of protocols for high-speed networks,
ad hoc networks, network services, parallel and distributed computation
and grid computing.

123

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

	Dynamic connection establishment and network re-optimization in flexible optical networks
	Abstract
	1 Introduction
	2 Related work
	3 Problem description
	4 D-RSA algorithms description
	4.1 ILP algorithm
	4.1.1 Reroutings and set-cover problem

	4.2 Heuristic algorithm

	5 Numerical results
	5.1 Optimality performance of the heuristic algorithms
	5.1.1 Network experiments with initial link lengths
	5.1.2 Network experiments with doubled link lengths
	5.1.3 Re-optimization cost

	5.2 D-RSA algorithm performance in a realistic network

	6 Conclusions
	Acknowledgments
	References

