
Computer Communications 32 (2009) 1172–1184
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom
A comparison of centralized and distributed meta-scheduling architectures
for computation and communication tasks in Grid networks

K. Christodoulopoulos a,*, V. Sourlas b, I. Mpakolas a, E. Varvarigos a

a Computer Engineering and Informatics Department, University of Patras, Greece, and Research Academic Computer Technology Institute, Patras, Greece
b Department of Computer and Communications Engineering, University of Thessaly, Volos, Greece
a r t i c l e i n f o

Article history:
Received 12 November 2008
Received in revised form 4 March 2009
Accepted 11 March 2009
Available online 21 March 2009

Keywords:
Grid networks
Centralized vs. distributed architecture
Task scheduling
Routing and data scheduling
Online algorithms
0140-3664/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.comcom.2009.03.004

* Corresponding author. Tel.: +30 2610 996988.
E-mail addresses: kchristodou@ceid.upatras.gr (K. C

inf.uth.gr (V. Sourlas), mpakolas@ceid.upatras.gr
upatras.gr (E. Varvarigos).
a b s t r a c t

The management of Grid resources requires scheduling of both computation and communication tasks at
various levels. In this study, we consider the two constituent sub-problems of Grid scheduling, namely:
(i) the scheduling of computation tasks to processing resources and (ii) the routing and scheduling of the
data movement in a Grid network. Regarding computation tasks, we examine two typical online task
scheduling algorithms that employ advance reservations and perform full network simulation experi-
ments to measure their performance when implemented in a centralized or distributed manner. Simi-
larly, for communication tasks, we compare two routing and data scheduling algorithms that are
implemented in a centralized or a distributed manner. We examine the effect network propagation delay
has on the performance of these algorithms. Our simulation results indicate that a distributed architec-
ture with an exhaustive resource utilization update strategy yields better average end-to-end delay per-
formance than a centralized architecture.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The continuing deployment of high speed networks is making
the vision of Grid networks a reality. Grids consist of geographi-
cally distributed and heterogeneous computational and storage re-
sources that may belong to different administrative domains, but
are shared among users by establishing a global resource manage-
ment architecture [1]. The Grid scheduling problem deals with the
coordination and allocation of resources so as to efficiently execute
the users’ tasks. Tasks are created by applications, belonging to
individual users or Virtual Organizations (VOs), and request the
Grid’s services for their execution. Tasks may or may not depend
on each other, and they generally require the use of different kinds
of resources, e.g., computation, communication (network), storage
resources, or specific instruments. Scheduling aims at meeting user
demands (e.g., in terms of cost, response–time) and the objectives
represented by the resource providers (e.g., in terms of profit, re-
source utilization efficiency), while maintaining a good overall per-
formance/throughput for the Grid network. The complexity of Grid
applications, the diverse user requirements and the system heter-
ogeneity would result in inefficient scheduling in the case of a
manual procedure.
ll rights reserved.

hristodoulopoulos), vsourlas@
(I. Mpakolas), manos@ceid.
Grid scheduling is usually viewed as a hierarchical problem
with two levels. At the first level, usually called meta-scheduling,
a meta-scheduler selects the resources to be used by a task. These
resources can be computational, communication, storage, or other.
At the second level, usually called local-scheduling, each resource
(more precisely, the Local Resource Management System, LRMS,
of that resource) schedules the tasks assigned to it. The meta-
scheduler and the local-scheduler differ in that the latter only
manages a single resource, e.g., a single computation machine, a
single network link, etc., while the former considers more than
one resources in making its decisions. In particular, the meta-
scheduler receives tasks that require the use of computation, com-
munication or other resources from Grid users and generates task-
to-resource assignments, by optimizing some objective function. In
this study we are more interested in the first level of Grid schedul-
ing, the meta-scheduling level.

Grid applications can be categorized as cpu-intensive or data-
intensive. However, almost all tasks have a computation and a
communication part, even if one part is often more important than
the other. Various meta-scheduling algorithms have been pro-
posed for both the computation and communication scheduling
problems. Cpu-intensive applications require the meta-scheduler
to consider the characteristics and the availability of the computa-
tion resources in order to make task-to-resource assignments,
while data-intensive applications require the meta-scheduler
(bandwidth broker) to examine the utilization of the communica-
tion resources in order to make routing and data transmission

mailto:kchristodou@ceid.upatras.gr
mailto:vsourlas@inf.uth.gr
mailto:vsourlas@inf.uth.gr
mailto:mpakolas@ceid.upatras.gr
mailto:manos@ceid.upatras.gr
mailto:manos@ceid.upatras.gr
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

K. Christodoulopoulos et al. / Computer Communications 32 (2009) 1172–1184 1173
scheduling decisions. For the rest of this study we will refer to the
problem related to cpu-intensive applications and computation re-
sources as task scheduling, and the problem related to data-inten-
sive applications and communication resources as routing and
data scheduling.

An important issue in designing a meta-scheduler for a distrib-
uted environment, such as the Grid, is whether it will be imple-
mented in a centralized or a distributed manner. In both the
task, scheduling and the routing and data scheduling problems,
we can either use a (single) central meta-scheduler to make such
decisions or use multiple meta-schedulers to perform this in a dis-
tributed way. In a centralized scheme, a central meta-scheduler
collects all requests and uses resource utilization information to
schedule computation and communication tasks efficiently. We
will assume that the central meta-scheduler has complete knowl-
edge of the availability of all resources, since it is the one that
makes all resource assignment decisions. On the other hand, in
the distributed case, there exist a number of distributed meta-
schedulers, each of which keeps track of the resources availability,
and uses this information to make the appropriate task scheduling
or routing and data scheduling decisions. The information used by
distributed schedulers to perform their function may be outdated
due to the non-zero network propagation delays.

Meta-scheduling algorithms, whether centralized or distrib-
uted, can be categorized as: (i) online algorithms, which assign
tasks to resources immediately upon their arrival and (ii) offline
algorithms, which wait for a period of time so that several tasks
accumulate at the meta-scheduler, before making the task-to-re-
source assignment decisions. Offline algorithms usually consist of
two phases: the task-ordering phase and the resource assignment
phase. Online algorithms can be viewed as a special case of offline
algorithms where the task-ordering phase uses the FCFS (First
Comes First Serves) queuing discipline. Distributed scheduling
schemes usually follow a single-phase procedure, while central-
ized scheduling schemes are employed with one or two phases.

In this work, we compare the performance of various (i) task
scheduling and (ii) routing and data scheduling online algorithms,
implemented either in a centralized or in a distributed manner in a
Grid network. For scheduling computation tasks, we examine two
typical online algorithms, namely, the Earliest Start Time and the
Earliest Completion Time algorithm, which have been extended
to support advance reservations. Both algorithms are examined
assuming either a centralized or a distributed implementation.
The performance metrics used to compare the two implementa-
tions include the average total task execution delay, the conflict
probability, and the average number of update messages ex-
changed. Similarly, for the communication problem, we compare
centralized and distributed versions of two online routing and data
scheduling algorithms, namely, a multicost heuristic algorithm
(which we call the Availability Weighting heuristic multicost algo-
rithm) and a typical Dijkstra with conflict avoidance algorithm. The
distributed versions of both algorithms were presented in [20]. The
metrics used to evaluate the performance of their centralized and
distributed implementations are the average end-to-end delay,
the number of retrials for a successful transmission, and the aver-
age number of update messages exchanged.

Our results indicate that a distributed architecture with an
exhaustive utilization update strategy results in better average
end-to-end delay performance for cpu- or data-intensive tasks
than a centralized architecture employing the centralized version
of the same algorithm. The exhaustive update strategy requires a
large number of utilization update messages. However, this does
not make the distributed architecture impractical, since modern
Grid networks exchange a large number of messages for monitor-
ing and other purposes, which can also be used to communicate
the resource availability information to the distributed schedulers.
The remainder of this paper is organized as follows. In Section 2,
we report on previous work. In Section 3, we describe the Grid net-
work model assumed and define the task scheduling and the rout-
ing and data scheduling problems. In Section 4, we introduce the
cluster availability profile, which is a data structure that can be
used to monitor the utilization profile of a computation resource.
We also present a mechanism to exchange computing resources
utilization information and describe the two task scheduling algo-
rithms examined. Similarly, in Section 5, we present the link avail-
ability profile, a mechanism to exchange link utilization
information and the two examined routing and data scheduling
algorithms. Performance evaluation results are presented in Sec-
tion 6, with separate sections addressing the task scheduling (Sec-
tion 6.1) and the routing and data scheduling (Section 6.2) sub-
problems. Finally, Section 7 concludes the study.
2. Related work

The meta-scheduling algorithms to be investigated address the
task scheduling and the routing and data scheduling problems. In
Section 2.1, we report on previous work with respect to task sched-
uling algorithms, while in Section 2.2 we report on routing and
data scheduling algorithms. The goal of this study is to compare
these types of algorithms when they are employed in a centralized
or a distributed manner. Previous work on centralized vs. distrib-
uted architectures is discussed in Section 2.3.

2.1. Prior work on the task scheduling problem

In [2], Li examines 128 combinations of algorithms for different
levels of scheduling in Grids, assuming a centralized meta-sched-
uler. More specifically, the author assumes a two-phase meta-
scheduling algorithm and examines four initial task ordering strat-
egies, four resource assignment algorithms, and two local queue
scheduling algorithms, when these are applied to four meta-com-
puters. The authors in [3] consider a centralized meta-scheduling
architecture and examine algorithms for the resource assignment
phase. For a given set of tasks, they evaluate 11 heuristics algo-
rithms to solve the optimal assignment problem, which is NP-hard,
assuming that an accurate estimate of the execution time for each
task on each machine is known prior to execution. In [4], the
authors assume a central meta-scheduler that uses online task
assignment, and examine the performance of various heuristic
algorithms at the meta-scheduling and the local/cluster scheduling
levels.

Buyya et al. [5] proposed a distributed economic-based ap-
proach, where scheduling decisions are made online and they are
driven by the end-users requirements. In [6], the authors apply
economic considerations in Grid resource scheduling and propose
GridIS, a Peer-to-Peer (P2P) decentralized scheduling framework.
In GridIS when a user has a task, he/she sends a related announce-
ment via a portal. The task announcement is forwarded throughout
the P2P network and resource providers that receive it bid for the
task (auction). In [7], the proposed distributed meta-scheduler uses
an ‘‘aggressive reservation” technique and forwards each task to
the k least loaded resource sites, each of which schedules the task
using its local queue scheduler. When a task is able to start execu-
tion at a resource, the task-originating site is informed, which in
turn contacts the k � 1 other resources to cancel the tasks from
their respective queues. A distributed algorithm that tackles the
assignment of divisible load applications is presented in [8]. The
proposed distributed algorithm uses resource utilization informa-
tion (feedback), and the authors quantify the level of global infor-
mation that is required for efficient scheduling. Scheduling tasks in
an environment that supports advance reservations has been con-

1174 K. Christodoulopoulos et al. / Computer Communications 32 (2009) 1172–1184
sidered in [10,11]. Finally, a taxonomy of Grid scheduling algo-
rithms can be found in [9].

2.2. Prior work on the routing and data scheduling problem

As Grid applications evolve, the need for user controlled net-
work infrastructures becomes apparent in order to support emerg-
ing dynamic and interactive services. By the term ‘‘user” we refer
to an individual user, a Virtual Organization (VO) or even a gen-
eral-type application. To provide quality of service (QoS) over the
communication plane to the users, reservations and, in particular,
reservations performed in advance are needed. Given a data trans-
fer request, choosing the path to be used and the time instances the
corresponding communication resources (link bandwidth, buffers,
etc.) will be reserved is what we call the routing and data schedul-
ing problem. Note that these resources might be requested and re-
served in the future (in-advance reservations). We will focus on a
special case of the routing and data scheduling problem that as-
sumes an Optical Burst Switched (OBS) underlying network. Thus,
a communication task requires the transfer of data from the sched-
uler or a data repository site, which we will call source, to another
site in the form of a continuous connection with a constant rate, or
a data burst. The role of the Bandwidth Broker is to choose the
route and the time to schedule this transfer.

A draft submitted to the Open Grid Forum [13] proposes Grid
Optical Bursts Switched (GOBS) as a candidate network infrastruc-
ture for supporting dynamic and interactive Grid services. In burst
switched networks [12], the data that need to be exchanged be-
tween two sites (task originating sites, repositories, computational
resources, etc.) is transmitted as a data burst that is switched
through the network using a single label. This reduces the switch-
ing and processing requirements in the core network. The signaling
protocols proposed for burst switched networks [14] can be cate-
gorized into two main classes: two-way (tell-and-wait) and one-
way (tell-and-go) protocols. An example of a tell-and-wait protocol
is the Efficient Reservation Virtual Circuit (ERVC) protocol pro-
posed in [15], while recent research efforts include the WR-OBS
[16]. One-way reservation schemes have received increasing atten-
tion in the recent years. Typical examples in this category are the
Ready-to-Go Virtual Circuit protocol [17], Horizon [18], Just-En-
ough-Time (JET) [14], and Just-In-Time (JIT) [19].

The challenge in burst switched networks that employ no or
minimal buffering in the core, is how to route and schedule the
bursts so as to achieve efficient usage of resources and high
throughput, while keeping dropping/blocking rates at low levels.
The majority of burst routing and scheduling algorithms that have
appeared in the literature are online algorithms employed in a dis-
tributed environment. The starting time of the burst transmission,
referred to as the time offset, is usually calculated by taking into ac-
count the used protocol (one- or two-way) and the number of
hops. The time offset can also be chosen so as to provide QoS dif-
ferentiation, as in [23], where a high loss priority class is given a
larger offset time in order to make earlier wavelength reservation
than lower priority classes. The choice of the offsets is further
examined in [24], where an adaptive offset calculation that de-
pends on both the link utilization and the burst losses in the core
is proposed. In [25], a dynamic Wavelength Routed OBS architec-
ture is introduced, where centralized control is employed to pro-
vide resource reservation efficiency, low delay, and QoS
differentiation.

A recent approach in scheduling communication tasks is the
multicost routing and scheduling algorithm presented in [20]. This
algorithm selects the paths to be followed by the bursts and the
times the bursts should be transmitted so as to arrive at their des-
tination with minimum delay, addressing in this way the burst
routing and scheduling problem jointly. The algorithm uses
advance reservations in order to schedule the time that the data
will be transmitted and reserve capacity on the subsequent links
down the path [21]. The proposed algorithm is designed to func-
tion in a distributed way but can be modified in a straightforward
way to work in a centralized environment.

2.3. Prior work on distributed versus centralized implementations

Generally, a centralized architecture is vulnerable to its single
point of failure and lacks scalability. The central scheduler is sim-
pler to implement, easier to manage and quicker to repair in case
of a failure, but becomes a performance bottleneck in large-scale
networks. For these reasons, a centralized architecture is generally
considered more suitable for small-sized networks, while a distrib-
uted architecture is preferable for large-scale networks. A distrib-
uted architecture leaves the scheduling decision to each node
and distributes the associated computation overhead. So, it elimi-
nates the bottleneck posed by the central scheduler and improves
the reliability and scalability of the network. The main challenge in
a distributed architecture is the coordination of the distributed
schedulers and the control plane overhead that is required. This
overhead has to be measured against the performance that can
be achieved.

In [26], the authors compare centralized and distributed routing
connection management schemes under different traffic patterns
in WDM networks with wavelength conversion. They show that
the network blocking probability improvement obtained by the
centralized schemes over that of the distributed schemes is pro-
portional to the reservation durations and inversely proportional
to the average connection inter-arrival times. Beyond a certain va-
lue of the traffic load, the distributed and centralized mechanisms
yield similar blocking probabilities. In [27], the authors examine a
novel distributed lightpath reservation mechanism based on mul-
tiple tokens in a WDM ring topology, and compare it to centralized
reservation mechanisms.

Regarding the task scheduling problem, the studies comparing
centralized and distributed implementations are quite limited. In
[28], the authors discuss centralized, distributed, and hierarchical
task-scheduling in Grids and perform simulations to compare var-
ious alternative schemes. Their results show that, due to the com-
plicated nature of the problem, the performance of the algorithms
depends highly on the parameters, the machine configurations and
the workload.

The centralized versus distributed problem has a number of
other extensions apart from the ones we consider here. For exam-
ple, the US Department of transportation has examined the
strengths and weaknesses of a distributed and a centralized tele-
communications infrastructure for implementing an Intelligent
Transportation System (ITS) [29].
3. Problem statement

We consider a Grid network consisting of users, computing re-
sources (clusters) and burst routers, connected through a network.
Depending on the problem that we want to address (task schedul-
ing, or routing and data scheduling) we assume that a user gener-
ates cpu- or data-intensive tasks in the form of specific requests
and forwards them to the appropriate meta-scheduler. In order
to separate the two Grid scheduling sub-problems, we will refer
to the meta-schedulers that handle the task scheduling requests
as Computation Schedulers (CS) and the corresponding data com-
munication schedulers as Bandwidth Brokers (BB). The terms
‘‘meta-scheduler” and ‘‘scheduler” are used interchangeably for
both problems. Each node in the network has a router that per-
forms the data forwarding according to the Optical Burst Switching

Fig. 1. (a) A centralized versus (b) a distributed Grid environment. Each node has a
router that performs data forwarding according to the Optical Burst Switched
paradigm and can have a user, a computation resource (cluster) consisting of a
number of processors, a meta-scheduler, a combination, or none of these entities.
Depending on whether we have a centralized or a distributed architecture we may
accordingly have one or many meta-schedulers in the grid network.

K. Christodoulopoulos et al. / Computer Communications 32 (2009) 1172–1184 1175
paradigm. Users, computation resources, and scheduler(s) are
placed at nodes, so that a node may have all, some or none of these
entities. In the distributed approach, there is one distributed
scheduler for every node that has a user, while in the centralized
approach there is only one scheduler in the whole Grid network.
Fig. 1a and b presents an example of a centralized and distributed
architecture.

3.1. Task scheduling problem

A task generated by a user is characterized by several parame-
ters. Specifically, in our model, a task i (e.g., an MPI parallel pro-
gram) requests to be executed on ri processors, has a
computation workload Wi per processor (measured in millions
instructions, MI), and a non-critical deadline Di (measured in sec-
onds). By ‘‘non-critical” we mean that if the task deadline expires,
the task remains in the system until it is executed, but is recorded
as a deadline miss. Note that we have assumed that we know the
exact computation workload of a task before its execution, which
may be provided by user estimates or through a prediction mech-
anism, such as script discovery algorithms, databases containing
statistical data on previous runs of similar tasks, or some other
method. Although this assumption is rather strong, it affects in
similar ways the centralized and the distributed architectures we
investigate.

Each computation resource (cluster) P contains a number of
processors NP , each with the same computation capacity CP (mea-
sured in millions instruction per second, MIPS). The computation
resources employ a space-shared non-preemptive discipline, so
that once a task starts its execution on a set of cpus it cannot be
stopped and has to be completed on those cpus. Each resource
has a local queue for storing the arriving tasks, and a corresponding
local scheduler that assigns the tasks in the local queue to the
available processors. We assume that the local scheduler serves
tasks in the FCFS order and can use advance reservations to sche-
dule tasks to be executed in the future. In this way, a task that ar-
rives at the queue and requests to be executed at some specific
time, called Starting Time (ST), reserves r processors for the dura-
tion that it requests. If another task arrives later and its requested
execution period overlaps with a previously reserved period, this
new task is not served (assuming no other processors are avail-
able), even if it requests to start earlier. This problem is called a
racing conflict, which we solve by running a re-scheduling algo-
rithm locally at the resource.

In the case of a centralized architecture, the central meta-sched-
uler maintains utilization information for all resources that is al-
ways up-to-date, by keeping track of a cluster availability vector
per resource (see Section 4). In the distributed architecture, each
distributed meta-scheduler maintains a ‘‘picture” of the utilization
of all the cluster resources. The locally maintained picture can be
different among the distributed meta-schedulers, due to the differ-
ent propagation delays, and depends on their position in the Grid
network. Update messages are exchanged among resources and
distributed meta-schedulers, as described in Section 4, to synchro-
nize the locally maintained clusters’ profiles with the actual utili-
zation information.

The parameters of a newly created task are immediately for-
warded to the corresponding meta-scheduler (central or distrib-
uted meta-scheduler), in the form of a task request. Depending
on whether we have a centralized or distributed architecture,
the meta-scheduler has a complete or partial knowledge of
the resource utilizations. Based on this information, it exe-
cutes the scheduling algorithm and returns to the user the
assignment decision and an estimated starting time ðSTiÞ after
which the task i is going to be executed at the selected
resource. The user immediately sends the task to the selected
resource. We assume that shortest path routing is used, and
the communication delays consist of the propagation and trans-
mission delays. Queuing delays at intermediate nodes are
assumed to be negligible.

In the centralized architecture the starting time STi estimation
is always correct, since the central meta-scheduler has assigned
all the previous tasks to the resources and thus has a complete
knowledge of the resources’ utilization, assuming that tasks’ work-
loads are known in advance. In the case of a distributed scheduling
architecture, however, the computed STi can be incorrect, since the
utilization of a resource may have changed by the time the task ar-
rives at that resource. This is a problem that cannot be avoided by
any distributed algorithm in a network that has non-zero propaga-
tion delays.

Upon its arrival at a computation resource a task is locally
queued and requests to be executed at the estimated STi. If we
are using a distributed scheduling architecture and one or more
other tasks have arrived at this specific resource after the task
assignment decision at the meta-scheduler was performed, we
have a racing conflict and task i may not be executed at the pre-
dicted STi. When a task finishes its execution, the resource sends
the results to the originating user.

Fig. 2. The cluster availability profile CPðtÞ of a given cluster (computation
resource) P with NP processors, each of equal processor computation capacity CP .
A task requests to be executed in r processors.

1176 K. Christodoulopoulos et al. / Computer Communications 32 (2009) 1172–1184
3.2. Burst routing problem

The routing and data scheduling problem in a burst routed Grid
network is defined as follows. We are given a network with links l
of known propagation delays dl and capacities Cl and a source node
that requests to send a burst i of size equal to Ii bits to some des-
tination node. We are also given the utilization profiles of all links l.
We want to find a feasible path over which the burst should be
routed and the time at which the burst should start transmission,
so as to optimize some performance criterion, such as the recep-
tion time of the burst at its destination.

In the centralized scenario a node of the network plays the role
of the centralized Bandwidth Broker (BB). In that case, similar to
[22], there is a single BB in the network domain that records infor-
mation, including topology, routing information, bandwidth reser-
vations, existing data flows, etc., for the whole domain. When a
burst wishes to be transmitted, a request is sent to the centralized
BB, which executes a routing and data scheduling algorithm and
communicates the outcome (path and time offset after which the
transmission should start) back to the source. On the other hand,
in the distributed scenario each node separately maintains infor-
mation for the whole network. A node wishing to send a burst exe-
cutes locally the algorithm to obtain the path to be followed and
the time to start transmission, and informs the other nodes of its
decision.

After choosing the best available path, a tell-and-go or a tell-
and-wait reservation scheme is used to transmit the burst. If
we have a distributed architecture, contentions may occur. Specif-
ically, if a tell-and-go scheme is used, the burst is not guaranteed
to arrive at the destination, since the utilization profile at some
intermediate link may have changed by the time the setup packet
arrives at that link, in which case the burst will be dropped. Sim-
ilarly, if a tell-and-wait scheme is used, the reservation of the
path may fail, in which case the burst will be blocked but not
dropped. This is a problem that cannot be avoided by any routing
and scheduling algorithm in a network that has non-zero propa-
gation delays. In a centralized architecture, however, the central
BB has complete knowledge of the utilization of all the links,
since it has routed and scheduled all previous bursts, and thus
no contention occurs. In the centralized version there is no reason
for employing a two-way reservation scheme and thus in order to
obtain smaller delays we assume that a one-way JET protocol is
always employed.

4. Clusters utilization profiles, utilization update messages and
meta-scheduling algorithms

In this section, we present the clusters availability profile, a data
structure that can be used by a meta-scheduler (centralized or dis-
tributed) to monitor the utilization profile of a computation re-
source (cluster). We assume that a computation resource P
consists of NP number of processors that all have equal computa-
tion capacity CP (MIPS). The utilization profile UP (t) of cluster P
is defined as an integer stepwise function of time, which records
the number of processing elements already committed to tasks
at time t relative to the present time. The maximum value of this
function is the number of processors NP , while the stepwise char-
acter of UPðtÞ is due to the discontinuities of height ri (always inte-
ger) at the starting and ending times of task i. In case all tasks
request a single processor, the discontinuities are always unitary.
We also define the clusters availability profile, which gives the num-
ber of processors CPðtÞ ¼ NP � UPðtÞ that are free as a function of
time. Fig. 2 shows an example of a cluster availability profile.

In the case of the centralized architecture, the central meta-
scheduler maintains a cluster availability vector CPðtÞ for every com-
putation resource P. These profiles always contain up-to-date
information on the resources’ utilization, assuming the task execu-
tion times are known in advance. In the distributed architecture,
each distributed meta-scheduler maintains a ‘‘picture” of the re-
source utilizations by storing one vector CPðtÞ for every computa-
tion resource P. The locally maintained availability vectors are
updated by exchanging update messages (as described in Section
4.2).

The cluster availability vectors maintained at a meta-scheduler
are used in the meta-scheduling algorithm. More specifically, when
a task i requesting ri processors and having computation workload
Wi per processor arrives at the meta-scheduler, the algorithm
searches the profiles CPðtÞ of all computation resources P for suit-
able placements of the task. A cluster P can execute a task if we
can find a continuous period of duration Wi=CP during which more
than ri processors are available.

To simplify the presentation and the experiments, we will as-
sume in the remaining of this study that each task i requests
ri ¼ 1 processors, which is the most usual case.

4.1. Utilization update messages

A centralized architecture does not require the exchange of re-
source utilization information, since the central meta-scheduler
assigns all the tasks to the computation resources and can compute
exactly the time periods the tasks are going to execute on them.
However, in a distributed architecture, each distributed meta-
scheduler needs to keep track of the utilization of all the resources
to efficiently assign the tasks. In order to synchronize the locally
maintained ‘‘picture” with the actual resources’ utilization, update
messages should be sent to each distributed meta-scheduler.

In an exhaustive update strategy, update messages are sent every
time the utilization of a resource changes. In particular, a utiliza-
tion update message can be sent at the time a task arrives to be
executed at a resource. At that time, the local queue scheduler
can calculate the time di at which that specific task will start exe-
cution, taking into account the tasks already scheduled ahead of it
or under execution. Update messages are routed in the Grid net-
work over shortest paths. However, in order to maintain the con-
trol plane overhead low, update messages are not sent to all
distributed meta-schedulers, but only to those that can use this
information. A meta-scheduler is not informed about a task assign-
ment to a resource if the task will complete its execution before the
earliest time at which the meta-scheduler could send a task to that
specific resource.

More precisely, consider a resource (cluster) P on which task i, is
going to execute after time di. Resource P informs the distributed
meta-scheduler M that a task is going to start execution after time
di and for duration Wi=CP if

2 � dP;M 6 di þ
Wi

CP
; ð1Þ

K. Christodoulopoulos et al. / Computer Communications 32 (2009) 1172–1184 1177
where dP;M is the shortest path delay from P to M. Update messages
are sent to all meta-schedulers that satisfy Eq. (1). All other meta-
schedulers are not informed about this particular reservation since
they cannot use this information. This is because the update packet
will reach M after time dP;M , and the earliest time after which M can
assign a task to P is after an additional dP;M , for a total time of
2 � dP;M , assuming propagation delays are the same in both link
directions. A distributed meta-scheduler that receives a utilization
update message, uses this information to update the cluster avail-
ability profile CPðtÞ maintained locally for computation resource P.

4.2. Employed meta-scheduling algorithms

For the purposes of this study we have employed two typical
meta-scheduling algorithms and extended them to support ad-
vance reservations. A centralized and a distributed version of each
algorithm have been implemented.

4.2.1. Earliest Start Time algorithm (EST)
The EST algorithm selects the computation resource (cluster)

where the task can start execution earlier. In computing the time
at which the task can start execution at a cluster, the algorithm
takes into account the propagation delay and the cluster’s utiliza-
tion information (accurate or possibly outdated, depending on
the selected architecture). More formally, assuming that user U
wants to execute a task i that has computation workload Wi and
deadline Di, the EST algorithm calculates for each cluster P of com-
putation capacity CP the earliest start time ESTP;i, defined as the
earliest time, greater than the propagation delay dU;P from U to P,
after which one processor is available for duration Wi=CP , given
P’s availability profile CpðtÞ. The EST algorithm selects the resource

R ¼ arg min
all P

ðESTP;iÞ

with the minimum ESTP;i, and the starting time of task i is defined as
STi ¼ ESTR.

4.2.2. Earliest Completion Time algorithm (ECT)
The ECT algorithm computes for a cluster P the earliest comple-

tion time ECTP;i, of task i on resource P, defined as the earliest time,
greater than the propagation delay dU;P from U to P, at which one
processor is available for duration Wi=CR, given CpðtÞ. The algo-
rithm selects the resource

R ¼ arg min
all P

ðECTP;iÞ

with the minimum ECTP;i, and the starting time of task i is defined as
STi ¼ ECTR;i �Wi=CR.

When a task arrives at the resource it requests to be executed at
time STi. In the distributed architecture, it is possible that this is no
longer feasible (because other distributed meta-schedulers have in
the meantime sent tasks to that resource so that it is occupied at
time STiÞ, in which case we say that we have a racing conflict. A
conflict is solved locally at the cluster by applying a simple algo-
rithm that searches for the earliest placement of the task, taking
into account the already scheduled tasks. An update message is
then sent to inform the distributed meta-schedulers for this partic-
ular reservation.

5. Link utilization profiles, utilization update messages and
burst routing and scheduling algorithms

In the optical burst routing paradigm, each node needs to keep a
record of the capacity reserved on its outgoing links as a function of
time [15] in order to perform channel scheduling and reservation.
In this section, we present the link availability profile, which is a
data structure that can be used by a meta-scheduler (Bandwidth
Broker) to track and monitor the utilization profile of a communi-
cation resource (link).

Similarly to Section 4, the utilization profile UlðtÞ of a link l is de-
fined as a stepwise binary function with discontinuities at the
points at which bandwidth reservations begin or end, and is up-
dated dynamically with the admission of each new session or burst
that reserves bandwidth for a given time duration. We define the
capacity availability profile of link l of capacity Cl as
ClðtÞ ¼ Cl � UlðtÞ.

In the case of the centralized architecture, the central BB keeps
track of the utilization of all links by maintaining a utilization data-
base for all the links that is always up-to-date. In the distributed
architecture, each node maintains an estimate of the utilization
of all the links. This local picture can be different among the nodes
and depends on their position in the network, for networks with
non-zero propagation delays. Update information is communi-
cated among nodes to synchronize the locally maintained profiles
with the actual utilization information.

5.1. Link utilization update messages

Similarly to Section 4.1, link utilization update messages are re-
quired only in a distributed architecture. In an exhaustive update
strategy, link update messages are sent at the time a link is re-
served. Assuming a reservation is made for link l starting at time
ri relative to the current time, the router R that handles link l in-
forms the Bandwidth Broker of node M that a burst is going to pass
after time ri and duration Ii=Cl if

2 � dR;M 6 ri þ
Ii

Cl
; ð2Þ

where dR;M is the shortest path delay from R to M:

5.2. Burst routing and scheduling algorithms

We have implemented two burst routing and scheduling algo-
rithms, each in a centralized and a distributed version. The algo-
rithms presented here consider the burst routing and scheduling
problem jointly and thus return not only the path to be followed
(routing decision) but also a time offset (TO) after which the source
should transmit the burst (scheduling decision).

The first algorithm we used is the Availability Weighting heu-
ristic multicost algorithm (AW) introduced in [20]. The AW algo-
rithm consists of two phases. In the first phase it computes a set
of candidate so-called non-dominated paths for the given
source–destination pair. More precisely, in the AW algorithm
each link is assigned a vector of cost parameters that includes
a discretized utilization profile, and by defining appropriate
‘‘combining” operations for the link cost parameters the cost
vectors of the paths are calculated. In order to compute the set
of non-dominated paths for a given burst and source–destination
pair, the multicost algorithm also requires the definition of a
domination operation between two paths. More specifically, we
say that a path p1 dominates another path p2, for a given burst,
if all the parameters in the cost vector of p1 are better than the
corresponding parameters of p2. In the second phase of the algo-
rithm, we apply an optimization function to the cost vectors of
the non-dominated paths, which takes into account the burst
parameters and QoS requirements, in order to select the optimal
path. Specifically, the optimal path is defined as the one that re-
sults in the minimum reception time of the burst at the
destination.

The second algorithm examined is the Dijkstra shortest path
algorithm with collision avoidance (D/CA) that was also presented
in [20]. In this algorithm, the shortest paths of all source–destina-
tion pairs are computed at the beginning of the simulation. Upon

1178 K. Christodoulopoulos et al. / Computer Communications 32 (2009) 1172–1184
receiving a burst transmission request, the source/ingress node
combines the utilization profiles of the links over the shortest path
and schedules the transmission so as to avoid contention at subse-
quent nodes.

To serve a burst, in the case of the distributed architecture, the
source executes the algorithm, taking into account whether a one-
or a two-way reservation scheme is used, and schedules the burst
accordingly. A SETUP packet is forwarded on the chosen path. If the
SETUP phase is dropped or blocked at an intermediate node (which
may happen when another reservation has been performed in the
meantime) a REJ packet is sent to notify the source about the rejec-
tion. The source waits for a small period of time (back-off) and han-
dles the blocked request as a new transmission request, by re-
computing a path and scheduling the burst transmission accord-
ingly. In order to reserve the appropriate resources and set up
the lightpath, we have experimented with two connection estab-
lishment protocols, one from each family of reservation protocols.
More specifically, we have used a variation of the JET protocol (that
employs REJs for burst retransmissions) and a two-way protocol
with timed reservations that we call Wait-For-Reservation (WFR)
protocol.

In the case of the centralized architecture, the source forwards
the transmission request to the central BB, which, in contrast to
the distributed case, has complete knowledge of the utilization of
the links. Since contentions do not occur, there is no reason for
employing a two-way scheme and thus to obtain a low average
end-to-end delay we have used a one-way JET protocol.

To sum up, we have experimented with two routing and data
scheduling algorithms (AW and D/CA) when these are imple-
mented either in a centralized or distributed scheduling environ-
ment. In the distributed approach, we have examined the
performance of AW and D/CA algorithms when a JET and a WFR
protocol is used, while in the centralized approach we only exam-
ined the use of the JET protocol.
Fig. 3. (a) 5� 5 mesh with wraparounds topology and (b) a realistic Pan-European
network topology. Both topologies were used in the simulation experiments.
6. Performance results

In order to assess the performance of the distributed and the
centralized versions of the aforementioned algorithms, we have
conducted full network simulation experiments, by extending the
ns-2 platform [30] and incorporating the appropriate entities. ns-
2 is a discrete event simulator and is a manageable environment
for simulating the network resources of the Grid, which is particu-
larly important for the evaluation of the examined distributed and
centralized scheduling architectures. More specifically, for the task
scheduling problem we have designed appropriate cluster utiliza-
tion data structures, developed appropriate ns-objects for users,
computation resources and meta-schedulers, and defined a format
for the update messages. Similarly, for the routing and data sched-
uling problem, we have designed appropriate link utilization pro-
files, developed ns-objects for users, burst routers and bandwidth
brokers, and defined a format for the link update messages.

6.1. Task scheduling performance results

6.1.1. Parameters and metrics
For the simulations, we have assumed two network topologies:

(i) a regular 5� 5 mesh with wraparounds topology (Fig. 3a) and
(ii) a more realistic topology that is based on a Pan-European Grid
network (Fig. 3b). In the mesh topology, the distance between
neighboring nodes was initially set to 400 km (20 ms link propaga-
tion delay), but we also experimented with distances of 100 and
1600 km (5 and 80 ms propagation delay, respectively). Four com-
putation resources (clusters) were placed randomly in the network
and the results were averaged over 5 runs with 30,000 tasks per
run. In the Pan-European topology, the distances between the
nodes are given by the actual strait-line distances of the capitals
of the countries that participate in the corresponding topology,
multiplied by a factor of 1.2. When we used a centralized architec-
ture, the central meta-scheduler was also randomly placed. We
have examined the performance for both homogenous and in-
homogenous resources, assuming that we have either (i) an equal
number of processors per resource all with equal computation
capacity (Section 6.1.2), or (ii) an uneven number of processors
per resource and different processor computation capacities be-
tween resources (Section 6.1.3).

Users were placed at all the 25 nodes (11 in the Pan-European
Grid network) of the network and tasks were generated following
a Poisson distribution with rate k tasks per second. When a task is
created its owner is chosen with equal probability among the 25
users (11, respectively). The assumption of a Poisson task genera-
tion process is driven by a modeling study that was performed
for an operational Grid network, and in particular for the EGEE/
LCG Grid infrastructure, and was reported in [31]. It was shown
in that work that the task arrival process at the EGEE/LCG Grid
infrastructure at the Grid level can quite accurately be modeled
as a Poisson process. The computation workload of a task follows

Fig. 4. Effect of task arrival rate k on the average total task delay. This scenario
corresponds to homogeneous computation resources.

Fig. 5. Effect of the network distances (propagation delay) on the: (a) average total
task delay and (b) conflict probability (only in distributed algorithm). The distances
between neighboring nodes were 100, 400, and 1600 km.

K. Christodoulopoulos et al. / Computer Communications 32 (2009) 1172–1184 1179
an exponential distribution with average W millions instructions.
Unless explicitly stated otherwise, the average computation work-
load of the tasks was taken to be W = 1,500,000 MI.

In order to assess the performance of the task scheduling algo-
rithms, we used the following performance metrics:

� Average total execution delay. The total execution delay of a task
is defined as the time between the task’s creation and the time
at which the task finishes its execution on a computation
resource.

� Conflict probability. This metric is defined only for the distrib-
uted architectures and records the frequency of racing conflicts
observed. A racing conflict occurs when the starting time ST of a
task predicted by the scheduling algorithm is not met due to res-
ervations made by other distributed schedulers in the
meantime.

� Average number of exchanged messages, which measures the
communication overhead of the employed distributed algo-
rithms. In the centralized version the average number of
exchanged messages is always two messages per task request
(question to/reply from the central meta-scheduler). In a distrib-
uted scheduling architecture, however, there is a considerable
control plane overhead (update messages, as presented in Sec-
tion 4.2) needed to ‘‘synchronize” the meta-schedulers. We have
assumed an exhaustive update strategy, where a resource, upon
receiving a task, informs all meta-schedulers that satisfy Eq. (1)
about the period during which the task is going to be executed.

6.1.2. Resources with equal number of processors and equal
computation capacity

In the experiments of this subsection, we assume that the four
computation resources have an equal number of processors of the
same computing capacity. More specifically, each resource consists
of a cluster of N ¼ 15 processors, each of computational capacity
CP ¼ 25;000 MIPS (a typical value for Xeon processors). Note that
when all the resources have processors of equal computation
capacity, the performance of the ECT algorithm is identical to that
of the EST algorithm. Thus, in the figures of this section we graph
only the performance of EST.

Note that, since in our experiments the tasks do not have dead-
lines, and the queue sizes at the clusters (computation elements)
are assumed to be infinite, all the tasks that are generated are
served, as long as we operate in the stability region. If we view
the Grid network as a single system, then the workload (computa-
tion or communication) that is generated per unit of time should
be on the average less than some upper bound determined by
the topology and the (computation or communication) capacities
of the Grid network. For example, in this set of experiments, we
have four clusters each with 15 CPUs each of computation capacity
equal to 25,000 MIPS. Thus, the total computation capacity of the
Grid network is 1,500,000 MIPS. For task generation, we use a Pois-
son process with average rate k tasks per second and each task has
on average workload 1,500,000 MI. Based on these values, we can
see that the arrival rate k cannot exceed 1 tasks/s. Otherwise, the
size of the queues will continuously grow and the Grid will no
longer operate in the stable region. This, of course, has to do with
the number of cluster sites, the number of CPUs and the processing
capacity of these CPUs. By changing these parameters, arrival rates
higher than 1 tasks/second can be served.

Fig. 4 shows the performance of the EST algorithm when the
average task arrival rate takes values between 0.1 and 1 tasks/s.
From Fig. 4, we can observe that the distributed version of the
EST algorithm exhibits smaller average total delay. The average to-
tal delay is dominated by the task execution time W=CP � 60 s,
while the task load affects the performance when the load takes
large values. The conflict probability of the distributed case is pre-
sented in Fig. 5.

Fig. 5 shows the performance of the EST algorithm when the
distance between neighboring nodes is set equal to 100, 400, or
1600 km. As expected, the average task delay increases with
increasing distance. From Fig. 5a, we can observe that as the dis-
tances between the nodes increase, the performance difference be-
tween the distributed and centralized architectures increases as
well. This is because the increase in the network distances affects
vastly the centralized architecture by increasing the time required
to question and obtain the reply from the central meta-scheduler.
The average total delay is dominated by the task execution time,
while the propagation delay plays a secondary role. Fig. 5b pre-
sents the conflict probability only for the distributed version of
the EST algorithm. As expected, the conflict probability increases
as the task arrival rate and the network distances increase. This
is because the increase in the arrival rate or the network distance

Fig. 7. Effect of the network distances (propagation delays) on the: (a) average total
task delay and (b) conflict probability (only in distributed algorithm). The distances
between neighboring nodes of the 5� 5 mesh network were set to 100, 400, and
1600 km.

1180 K. Christodoulopoulos et al. / Computer Communications 32 (2009) 1172–1184
increases the probability of having two (or more) distributed meta-
schedulers deciding to schedule a task on the same resource at
overlapping periods, before each of them learns of the decision of
the other.

The average number of update messages exchanged, obtained
only for the distributed architecture, was almost in all cases con-
stant and close to the upper bound 25 (equal to the number of
users and thus equal to the number of distributed meta-schedul-
ers), and for this reason we do not provide graphs for this metric.
This is because the average execution time of a task is
W=CP � 60 s, which according to Eq. (1) is quite large and gives en-
ough time for the update information to reach all the distributed
meta-schedulers, even in the case that the distance between adja-
cent nodes is 1600 km.

6.1.3. Resources with uneven number of processors and uneven
computation capacity

In this subsection, we present results for the case where the
four computation resources have an uneven number of processors
and different processor computational capacities. More specifi-
cally, two of the computation resources are clusters consisting of
20 processors of computational capacity 20,000 MIPS per proces-
sor, and the remaining two resources are clusters consisting of
10 processors of computational capacity 35,000 MIPS per proces-
sor. Note that the overall computation capacity of the Grid network
is equal to that assumed in the previous subsection. With this in-
homogeneous setting of computation elements, we have per-
formed experiments for both the regular 5� 5 mesh network
and the more realistic Pan-European network.

Fig. 6 shows the performance of the distributed and the central-
ized versions of the EST and ECT algorithms when the average task
arrival rate takes values between 0.1 and 1 tasks/s. We observe
that the EST exhibits close to constant performance, while the
ECT performs much better for low load, and deteriorates rapidly
as the load takes large values. This can be explained by the fact that
ECT is a greedy algorithm (when compared to EST) that tries to
schedule each task to the more powerful cluster. For a series of
tasks of various lengths, the EST algorithm will distribute them
more evenly, while the ECT will try to achieve the best for each task
separately, occasionally having a negative effect on the overall per-
formance. The performance of EST algorithm is similar to that pre-
sented in the previous section where all the resources had the
same number of processors and equal computation capacities.

Fig. 7 shows the performance of the ECT algorithm when the
distance between neighboring nodes was set to 100, 400, and
1600 km. We observe that as the network distances increase, the
improvements obtained by employing a distributed architecture
become more pronounced.
Fig. 6. Effect of task arrival rate k on the average total task delay for the 5� 5 mesh
topology. This scenario corresponds to in-homogeneous computation resources.
Fig. 8a shows the average total delay for the distributed and
centralized versions of the EST and ECT algorithms assuming the
realistic Pan-European Grid network topology. The average task ar-
rival rate k takes values between 0.1 and 1 tasks/s. We again ob-
serve that the ECT algorithm exhibits better performance for low
arrival rates k, while when k increases the performance of the
EST becomes better, since it has a larger maximum achievable
throughput (stability region). In this case, the performance of the
ECT algorithm deteriorates faster than in the case of the 5� 5 mesh
topology. Again, from these results we observe that the distributed
algorithms perform slightly better than the corresponding central-
ized algorithms. Comparing the delay reported for the Pan-Euro-
pean Grid network case to the delay reported for the 5� 5 mesh
topology we also observe that the tasks in the Pan-European net-
work tend to be executed with less delay (notice the different
scales used in the corresponding graphs). This is because the
Pan-European network is more compact and its physical diameter
is almost half that of the mesh 5� 5 network. Although the con-
nectivity degree of the Pan-European network is smaller, this does
not affect the execution of the computation tasks, but mainly the
network performance.

Fig. 8b shows the conflict probability for the distributed ver-
sions of the EST and ECT algorithms. As expected, the ECT algo-
rithm exhibits higher conflict probability than EST due to its
greedy nature. As the arrival rate k increases, the conflict probabil-
ities of both algorithms converge. This might seem at first glance to
contradict the results reported for the average delay but can be ex-
plained as follows. When the arrival rate k is low, although the ECT
algorithm exhibits higher conflict probability, the percentage of
tasks that experience a conflict is low and finally ECT manages to
utilize more efficiently the available in-homogeneous clusters. As
the task arrival rate increases the conflict probability also in-
creases. The EST algorithm distributes the computational load

Fig. 8. Effect of task arrival rate k on the average total task delay for the realistic
Pan-European network topology. (a) Average total delay per task and (b) conflict
probability for the distributed versions of the examined algorithms.

K. Christodoulopoulos et al. / Computer Communications 32 (2009) 1172–1184 1181
more evenly among the processors and also balances the load in
the network, while the ECT algorithm tries to greedily assign the
tasks to the best cluster(s). However, for high task arrival rates
the utilization update process becomes increasingly inefficient. It
stands to reason that the ECT algorithm is more sensitive to this
outdated utilization information effect than the EST algorithm.

6.2. Routing and burst scheduling performance results

6.2.1. Parameters and metrics
In this section, we turn our attention to the burst routing and

scheduling (communication) problem, and present simulation re-
sults obtained for the same 5� 5 mesh with wraparounds topology
of Fig. 3a. The neighboring nodes were again placed at a distance of
100, 400, and 1600 km from each other (with link propagation de-
lays 5, 20, and 80 ms, respectively). The processing delay of the set-
up packets was set to 0:02 ls and the link bandwidths Cl were
assumed equal to 1 Gb/s. Bursts transmission requests arrive at
each edge node according to a Poisson process with rate k requests
per second and their destinations are uniformly distributed over all
remaining network nodes. Burst sizes were assumed to follow the
exponential distribution with mean value equal to I bits.

For the experiments in this section, unless explicitly stated, the
distance between adjacent node was 400 km, the mean burst size I
was set equal to 100 MB, and the arrival rate k of the bursts varied
between 0.1 and 1 bursts/s per source node.

We have used the following metrics to evaluate the perfor-
mance of the routing and burst scheduling algorithms:

� Average end-to-end delay, defined as the average time that
elapses between the generation of the burst and the time that
it has been completely transferred to its destination.
� Average number of retrials for a successful reservation. This
metric is calculated only for the distributed implementations.
A retrial occurs when the burst transmission request is blocked
(when the JET protocol is used) or dropped (when the WFR pro-
tocol is used) in the core.

� Average number of update messages exchanged, which mea-
sures the communication overhead of the distributed algo-
rithms. In the centralized versions (as mentioned in Section
6.1.1) the average number of updates is always 2 messages per
request (question to/reply from the central BB), while in the dis-
tributed scheduling architectures considerable control plane
overhead is required to ‘‘synchronize” the distributed BBs (as
presented in Section 5.2).

6.2.2. Effect of arrival rate
Fig. 9a illustrates the average-end-to-end delay experienced by

the bursts. We observe that the multicost heuristic algorithm (AW)
outperforms the D/CA algorithms in all examined cases. Regarding
the architecture and the signaling protocol used, the distributed
JET case exhibits the best performance, followed by the centralized
JET case, while the worst performance was observed for the distrib-
uted WFR architecture. By comparing the results presented in
Fig. 9a to those presented in Figs. 4 and 6, we observe the differ-
ence between the time scales of the computation and the commu-
nication scheduling problems. Specifically, in the task scheduling
problem the execution times dominate the total task delays, which
take values in the order of minutes (60 s), while in the burst rout-
ing problem the transmission and propagation delays are compara-
ble and thus the network distances play a significant role. Note that
in the burst routing problem and under the parameters assumed,
the average end-to-end delay takes values in the order of seconds.

Fig. 9b shows the average number of retrials required for a suc-
cessful burst transmission only for the distributed architecture (re-
call that there are no contentions in the centralized case). We
observe that the WFR protocol results in fewer retrials, while the
choice of the routing algorithm (AW or D/CA) also affects this met-
ric, especially at heavy loads. Finally, Fig. 9c shows the average
number of messages per transmission request required for the res-
ervation updates in the network (again only for the distributed sce-
nario). We observe that the use of the WFR protocol results in the
exchange of more messages, since that protocol requests the reser-
vation of a link one round trip time (RTT) after the setup packet has
reached a node, enabling the communication of this reservation
information to more distant nodes (according to Eq. (2)).

In Fig. 10, we report the corresponding results obtained assum-
ing the realistic Pan-European Grid network topology. From these
graphs, we can again see that the distributed algorithms outper-
form the corresponding centralized algorithms and that the multi-
cost AW-JET algorithm outperforms the Dijkstra-based D/CA
algorithm. However, in these results, we can see that the perfor-
mance of all the algorithms starts to deteriorate at lower arrival
rates than in the case of the 5� 5 mesh network. This has to do
with the connectivity degree of the two topologies. In particular,
the used Pan-European network has smaller connectivity degree
than the mesh 5� 5 network. As the arrival rate increases, the net-
work becomes more congested and certain links become bottle-
necks. This was avoided in the regular mesh network where the
topology is homogeneous and highly connected, and there are al-
ways a lot of alternative routes to serve the connections. In con-
trast, in the used Pan-European network, the available routes are
rather limited, and contention becomes high even for low arrival
rates (Fig. 10b), increasing the average end-to-end delay
(Fig. 10a). With respect to the average number of update messages
(Fig. 10c) exchanged, we can see that utilization information is able

Fig. 9. Effect of the arrival rate k. (a) Average end-to-end delay per burst, (b)
average number of retrials for a successful burst transmission, and (c) average
number of exchanged messages. These results correspond to the 5� 5 mesh
network topology with 400 km distance between adjacent nodes.

Fig. 10. Effect of the arrival rate k. (a) Average end-to-end delay per burst, (b)
average number of retrials for a successful burst transmission, and (c) average
number of exchanged messages. These results correspond to the realistic Pan-
European network topology.

1182 K. Christodoulopoulos et al. / Computer Communications 32 (2009) 1172–1184
to reach almost all nodes (12 in total) of the network when two-
way reservation is performed (WFR protocols).

6.2.3. Effect of the network distances
The network propagation delays play a significant role on the

link state update mechanism used in the distributed architecture.
Cleary, information regarding a link reservation cannot be used
by a distributed BB if it reaches that BB after the time that it is use-
ful Eq. (2). On the other hand, the increase in the propagation de-
lays also has a negative effect in the case of a centralized
architecture, since it increases the delay required to question and
obtain an answer from the central BB. Thus, we expect the increase
in network distances to negatively impact the performance of both
the centralized and the distributed architectures.

Fig. 11 shows the performance of the better performing AW
algorithm, in its centralized and distributed JET versions, when
the adjacent node distances were set to 100, 400, or 1600 km. As
expected, the average end-to-end delay deteriorates as the
network propagation delays increase, in both the centralized and
distributed versions (Fig. 11a). The distributed version of the AW
algorithm always performs better than its corresponding central-
ized version. Fig. 11b shows the average number of retrials re-
quired for a successful burst transmission only for the distributed
architecture. As the network distances increase, more time elapses
between a reservation and the time this information reaches the
distributed schedulers. Thus, the bandwidth brokers do not use
up-to-date information, more burst are dropped in the core of
the network and we end up with more retrials. This phenomenon
is similar to the racing conflict observed in the task scheduling
problem. Fig. 11c shows the average number of update messages
exchanged per request. We observe that as the network distances
increase, fewer update messages are exchanged (something that
can be explained by Eq. (2)). Note that an update message is gen-
erated when a link is reserved. Thus, although in total we have

Fig. 11. Effect of the network distances (propagation delays) on the: (a) average
end-to-end delay per burst, (b) average number of retrials for a successful burst
transmission, and (c) average number of exchanged messages. The distances of
adjacent nodes were 100, 400, and 1600 km.

K. Christodoulopoulos et al. / Computer Communications 32 (2009) 1172–1184 1183
25 distributed bandwidth brokers, more than 25 messages can be
generated per burst, depending on the chosen path.

7. Conclusions

We compared the performance of centralized and distributed
architectures for scheduling computation and communication
tasks in Grid networks. Regarding computation tasks, we examined
two typical online task scheduling algorithms that incorporate ad-
vance reservations and performed full network simulation experi-
ments to measure their performance when they are implemented
in a centralized or in a distributed manner. Similarly, for commu-
nication tasks, we compared two routing and data scheduling algo-
rithms that were implemented in a centralized or a distributed
manner. We also examined the effect network propagation delays
have on the performance of these algorithms. Our simulation
results indicate that a distributed architecture with an exhaustive
utilization update strategy results in better average end-to-end de-
lay performance for computation or communication intensive
tasks than a centralized architecture employing the same algo-
rithm. The exhaustive update strategy requires a larger number
of utilization update messages, but this does not make this strategy
unrealistic, since in operational Grid networks a high number of
messages are exchanged for monitoring and other purposes.

Acknowledgements

This work has been supported by the European Commission
through the Phosphorus project. http://www.ist-phosphorus.eu/.

References

[1] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, second ed., Morgan Kaufmann, Los Altos, CA.

[2] K. Li, Experimental performance evaluation of job scheduling and processor
allocation algorithms for grid computing on metacomputers, in: International
Parallel and Distributed Processing Symposium (IPDPS), Santa Fe, NM, 2004,
pp. 170–177.

[3] T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robertson,
M. Theys, B. Yao, D. Hensgen, R. Freund, A comparison of eleven static
heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems, Journal of Parallel and Distributed Computing
61 (6) (2001) 810–837(28).

[4] S. Zhuk, A. Chernykh, A. Avetisyan, S. Gaissaryan, D. Grushin, N. Kuzjurin, A.
Pospelov, A. Shokurov, Comparison of scheduling heuristics for grid resource
broker, in: Mexican International Conference in Computer Science (Enc’04) –
Volume 00, ENC, IEEE Computer Society, Washington, DC, September 20–24,
2004, pp. 388–392.

[5] R. Buyya, D. Abramson, J. Giddy, H. Stockinger, Economic models for resource
management and scheduling in grid computing, special issue on grid
computing environments, Journal of Concurrency and Computation: Practice
and Experience 14 (2002) 1507–1542.

[6] J. Xiao, Y. Zhu, L. Ni, Z. Xu, GridIS: An incentive-based grid scheduling, in:
International Parallel and Distributed Processing Symposium (IPDPS), 2005.

[7] V. Subramani, R. Kettimuthu, S. Srinivasan, P. Sadayappan, Distributed job
scheduling on computational grids using multiple simultaneous requests, in:
High Performance Distributed Computing Symposium, (HPDC), 2002.

[8] Y. Cardinale, H. Casanova, An evaluation of job scheduling strategies for
divisible loads on grid platforms, in: High Performance Computing &
Simulation Conference (HPC&S’06), Bonn, Germany, 2006.

[9] K. Krauter, R. Buyya, M. Maheswaran, A taxonomy and survey of grid resource
management systems for distributed computing, Software: Practice and
Experience 32 (2) (2002) 135–164.

[10] W. Smith, I. Foster, V. Taylor, Scheduling with advance reservations, in: Proc. of
the 14th International Parallel and Distributed Processing Symposium, IEEE,
Washington, Brussels, Tokyo, 2000, pp. 127–132.

[11] E. Elmroth, J. Tordsson, Grid resource brokering algorithms enabling advance
reservations and resource selection based on performance predictions, Future
Generation Computer Systems 24 (6) (2008).

[12] C. Qiao, M. Yoo, Optical burst switching (OBS) – a new paradigm for an optical
Internet, Journal of High Speed Networks 8 (1) (1999) 69–84.

[13] Grid optical burst switched networks, Available from: <http://www.ogf.org/
Public_Comment_Docs/Documents/Jan-2007/OGF_GHPN_GOBS_final.pdf/>.

[14] Y. Chen, C. Qiao, X. Yu, Optical Burst Switching (OBS): a new area in optical
networking research, IEEE Network Magazine 18 (3) (2004) 16–23.

[15] E. Varvarigos, V. Sharma, An efficient reservation connection control protocol
for gigabit networks, Journal of Computer Networks and ISDN Systems 30
(1998) 1135–1156.

[16] M. Dueser, P. Bayvel, Analysis of a dynamically wavelength-routed optical
burst switched network architecture, Journal of Lightwave Technology 20
(2002) 574–585.

[17] E.A. Varvarigos, V. Sharma, The ready-to-go virtual circuit protocol: a loss-free
protocol for multigigabit networks using FIFO buffers, Transactions on
Networking 5 (5) (1997) 705–718.

[18] J. Turner, Terabit burst switching, Journal of High Speed Networks 8 (1999) 3–16.
[19] J. Teng, G. Rouskas, A comparison of the JIT, JET, and horizon wavelength

reservation schemes on a single OBS node, in: International Workshop on
Optical Burst Switching (WOBS), 2003.

[20] E.A. Varvarigos, V. Sourlas, K. Christodoulopoulos, Routing and scheduling
connections in networks that support advance reservations, Computer
Networks 52 (15) (2008).

[21] R. Guérin, A. Orda, Networks with advance reservations: the routing
perspective, Infocom, 2000.

[22] Z. Zhang, Z. Duan, Y.T. Hou, On scalable network resource management using
bandwidth brokers, NOMS 2002, pp. 169–183, 15–19.

[23] M. Yoo, C. Qiao, S. Dixit, QoS performance of optical burst switching in IP-over-WDM
networks, Journal on Selected Areas in Communication 18 (2000) 2062–2071.

http://www.ist-phosphorus.eu/
http://www.ogf.org/Public_Comment_Docs/Documents/Jan-2007/OGF_GHPN_GOBS_final.pdf
http://www.ogf.org/Public_Comment_Docs/Documents/Jan-2007/OGF_GHPN_GOBS_final.pdf

1184 K. Christodoulopoulos et al. / Computer Communications 32 (2009) 1172–1184
[24] T. Coutelen, H. Elbiaze, B. Jaumard, An efficient adaptive offset mechanism to
reduce burst losses in OBS networks, GLOBECOM 2005.

[25] A. Zapata, P. Bayvel, Dynamic wavelength-routed optical burst-switched
networks: scalability analysis and comparison with static wavelength-routed
optical networks, OFC (2003) 212–213.

[26] Lu Shen, B. Ramamurthy, Centralized vs. distributed connection management
schemes under different traffic patterns in wavelength-convertible optical
networks, ICC 5 (2002) 2712–2716.

[27] J. Cai, A. Fimagalli, C. Guan, Centralized vs. distributed on-demand bandwidth
reservation mechanisms in WDM Ring, OFC, 2001.
[28] V. Hamscher, U. Schwiegelshohn, A. Streit, R. Yahyapour, Evaluation of job-
scheduling strategies for grid computing, in: International Workshop on Grid
Computing, 2000.

[29] Available from: <http://www.itslessons.its.dot.gov/its/benecost.nsf/
Lesson?OpenForm&3176B4EBDFF65BD78525728A00766A08%5ELLCats/>.

[30] Network simulator (ns-2), Available from: <http://www.isi.edu/nsnam/ns/>.
[31] K. Christodoulopoulos, V. Gkamas, E. Varvarigos, Statistical analysis and

modeling of jobs in a grid environment, Springer Journal of Grid Computing 6
(2007) 77–101.

http://www.itslessons.its.dot.gov/its/benecost.nsf/Lesson?OpenForm&3176B4EBDFF65BD78525728A00766A08%5ELLCats
http://www.itslessons.its.dot.gov/its/benecost.nsf/Lesson?OpenForm&3176B4EBDFF65BD78525728A00766A08%5ELLCats
http://www.isi.edu/nsnam/ns/

	A comparison of centralized and distributed meta-scheduling architectures for computation and communication tasks in Grid networks
	Introduction
	Related work
	Prior work on the task scheduling problem
	Prior work on the routing and data scheduling problem
	Prior work on distributed versus centralized implementations

	Problem statement
	Task scheduling problem
	Burst routing problem

	Clusters utilization profiles, utilization update messages and meta-scheduling algorithms
	Utilization update messages
	Employed meta-scheduling algorithms
	4.2.1
	Earliest Completion Time algorithm (ECT)

	Link utilization profiles, utilization update messages and burst routing and scheduling algorithms
	Link utilization update messages
	Burst routing and scheduling algorithms

	Performance results
	Task scheduling performance results
	Parameters and metrics
	Resources with equal number of processors and equal computation capacity
	Resources with uneven number of processors and uneven computation capacity

	Routing and burst scheduling performance results
	Parameters and metrics
	Effect of arrival rate
	Effect of the network distances

	Conclusions
	Acknowledgements
	References

