COURSE OUTLINE

(1) GENERAL
SCHOOL | ENGINEERING
ACADEMIC UNIT | Department of Computer Engineering and Informatics
LEVEL OF STUDIES | Undergraduate
COURSE CODE | CEID_23Y205 | SEMESTER | Winter
COURSE TITLE | Introduction to Algorithms
INDEPENDENT TEACHING ACTIVITIES
if credits are awarded for separate components of the course, e.g. WEEKLY CREDITS

lectures, laboratory exercises, etc. If the credits are awarded for the
whole of the course, give the weekly teaching hours and the total credits

TEACHING HOURS

Lectures, Tutorials, Laboratory | 3(L), 1(T), 2(Lab) 6

Add rows if necessary. The organisation of teaching and the teaching
methods used are described in detail at (d).

COURSE TYPE

general background,

special background, specialised
general knowledge, skills
development

Special background, skills development

PREREQUISITE COURSES:

Recommended prerequisite knowledge:
(CEID_22Y101), or equivalent.

“Discrete Mathematics”

LANGUAGE OF INSTRUCTION
and EXAMINATIONS:

Greek (English if there are Erasmus students)

IS THE COURSE OFFERED TO
ERASMUS STUDENTS

Yes

COURSE WEBSITE (URL)

https://www.ceid.upatras.gr/webpages/faculty/zaro/teaching/intro-
alg/index.html

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire
with the successful completion of the course are described.

Consult Appendix A

e Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the

European Higher Education Area

e Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
e Guidelines for writing Learning Outcomes

Upon conclusion of the course the students ought to be able to:
e Understand fundamental algorithmic concepts and techniques.
e Apply basic techniques for the solution of fundamental algorithmic problems.
e Apply basic analysis methods for determining the complexity of algorithms.

® Apply basic mathematical methods for determining the correctness of algorithms.

® Understand how to implement efficiently the algorithms taught, and to how to tackle
practical issues encountered during implementation.

Upon conclusion of the course the students are expected to have the following skills/competences:
e Abstracting the core algorithmic sub-problems from given complex problems.
e Use basic techniques for designing algorithms for fundamental and more complex problems.

® Use basic methods for analyzing the complexity and correctness of algorithms.

® Implement efficiently fundamental algorithms using basic techniques and data structures.

1

Patras, July 2024
Page 1

https://www.ceid.upatras.gr/webpages/faculty/zaro/teaching/intro-alg/index.html
https://www.ceid.upatras.gr/webpages/faculty/zaro/teaching/intro-alg/index.html

General Competences
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma
Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, Project planning and management

with the use of the necessary technology Respect for difference and multiculturalism

Adapting to new situations Respect for the natural environment

Decision-making Showing social, professional and ethical responsibility and
Working independently sensitivity to gender issues

Team work Criticism and self-criticism

Working in an international environment Production of free, creative and inductive thinking
Working in an interdisciplinary environment ...

Production of new research ideas Others...

Search for, analysis and synthesis of data and information, with the use of the necessary technology
Adapting to new situations

Decision-making

Working independently

Criticism and self-criticism

Production of free, creative and inductive thinking

(3) SYLLABUS

1. Elementary Concepts in the Design and Analysis of Algorithms
The concept of algorithm, applications and importance of algorithms. The concept of efficiency,
a model for measuring efficiency, methods for analyzing the complexity of algorithms,
technological importance of efficient algorithms.

2. Basic Concepts in the Analysis and Complexity of Algorithms
Efficiency and time complexity, optimal algorithms, methods in analyzing the complexity of
algorithms, asymptotic complexity, correctness of algorithms.

3. Elementary Algorithms and Data Structures
Arrays, lists, stacks, queues, trees. Algorithms for finding the minimum or maximum in a set of
elements. Algorithms for merging sorted lists, insertion sort, binary search, counting element
tuples. Heap, priority queues, and their application in sorting (heapsort).

4. Stable Matching
Problem formulation and applications. The propose-and-reject algorithm. Correctness and
complexity analysis of the algorithm. Efficient implementation of the algorithm.

5. The Divide-and-Conquer Technique
Generic description of the divide-and-conquer technique. The merge-sort algorithm. The
algorithm for counting inversions. Recurrence relations and methods for their solution.

6. Graphs and Graph Algorithms
Graphs as fundamental model of networks and systems. Basic properties and features of graphs.
Graph connectivity. Graph traversal and searching algorithms: breadth-first-search (BFS), depth-
first-search (DFS). Extensions/applications of BFS and DFS for computing connected components,
topological sorting, strongly connected components, and for checking graph bipartiteness.

7. The Greed Technique
Generic description of the greed technique. Scheduling algorithms: interval scheduling,
scheduling all intervals, scheduling to minimize lateness. Network optimization algorithms:
minimum spanning tree (Kruskal’s and Prim’s algorithms), shortest paths (Dijkstra’s algorithms).
Efficient implementation of network optimization algorithms.

8. The Dynamic Programming Technique
Generic description of the dynamic programming technique. Efficient application and
implementation of dynamic programming. Algorithms for weighted interval scheduling and
knapsack problems.

9. Network Flows
The maximum flow problem. Maximum flow and minimum cut. The algorithm of Ford and
Fulkerson.

Patras, July 2024
i1 7 Page 2

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY

Face-to-face, Distance learning, etc.

Face-to-face. Tutorials and laboratory sessions with

exemplary solutions of exercises.

USE OF INFORMATION AND
COMMUNICATIONS TECHNOLOGY

Use of ICT in teaching, laboratory education,
communication with students

ICT methods are used in both teaching and communication
with the students. Lecture slides and supplementary
material are uploaded in the course’s web site.

TEACHING METHODS
The manner and methods of teaching are
described in detail.
Lectures, seminars, laboratory practice,
fieldwork, study and analysis of bibliography,
tutorials, placements, clinical practice, art
workshop, interactive teaching, educational
visits, project, essay writing, artistic creativity,
etc.

The student's study hours for each learning
activity are given as well as the hours of non-
directed study according to the principles of the
ECTS

Activity Semester workload
Lectures 3x13=39
Tutorials (exercises) 1x13=13
Laboratory practice 2x13=26
Individual study, 3x13=39
preparation and problem
solving
Weekend study 2x13=26
Mid-term exam 5x1=5
preparation (1 week)
Study during the 3 “empty 5x3=15
weeks” (2 weeks of
vacation and 1 week of
exam preparation)
Course total (25-30 hours

. 163

per ECTS unit)

STUDENT PERFORMANCE
EVALUATION

Description of the evaluation procedure

Language of evaluation, methods of evaluation,
summative or conclusive, multiple choice
questionnaires, short-answer questions, open-
ended questions, problem solving, written work,
essay/report, oral examination, public
presentation, laboratory work, clinical
examination of patient, art interpretation, other

Specifically-defined evaluation criteria are
given, and if and where they are accessible to
students.

The language of instruction and examination is Greek.
Special provisions (lecture notes and examinations in
English) can be made for foreign students.

Evaluation (criteria can be found in the web site of the
course):
e Coursework/theoretical
mark).
e Laboratory/programming exercises (15% of final
mark).
e Final written examination (70% of final mark).

exercises (15% of final

Written examination (mid-term and final): graded difficulty,
including short-answer questions, algorithm design for
problem solving, proofs of algorithm correctness and
complexity, exercises.

Series of coursework (theoretical) exercises aiming at
familiarizing students with:
e The design and complexity analysis of algorithms
e The application of algorithms and algorithmic
techniques for problem solving
e Proving correctness of algorithms

Series of laboratory (programming) exercises aiming at
familiarizing students with:
e Efficient implementation of algorithms in C++ using
software algorithmic platforms and libraries (e.g,
LEDA, Boost).
e The use of the algorithmic techniques taught in the

Patras, July 2024
Page 3

course.

e Solving algorithmic problems in practice as well as
in interpreting and evaluating the results obtained.

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:
e . Kleinberg and E. Tardos, Algorithm Design, Pearson Addison-Wesley, 2006.

e T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, 3™ Edition, MIT
Press, 2009.

e K. Mehlhorn and P. Sanders, Algorithms and Data Structures — The Basic Toolbox, Springer,
2008.

e Lecture notes and slides uploaded in the web site of the course.

- Related academic journals:

e This is an introductory course. Hence, there is no systematic use of articles from the
scientific literature, even though presentations make reference to the recent literature
mostly to demonstrate to students the relevance of the course for the state of the art in
Computer Science and Engineering and their applications.

Patras, July 2024
Page 4

