COURSE OUTLINE

(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT</td>
<td>Department of Computer Engineering & Informatics</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>NE5678</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>Fall (Elective Course)</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>Special Purpose Systems Design</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

<table>
<thead>
<tr>
<th>WEEKLY TEACHING HOURS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures and tutorials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

TOTAL 5

COURSE TYPE

Specialized knowledge
Skills development

PREREQUISITE COURSES:

Logic Design I (NY163),
Logic Design II (NY164),
Topics in Computer Architecture (NY261), and
Modern Topics in Computer Architecture (NY262)

LANGUAGE OF INSTRUCTION and EXAMINATIONS:

Greek

IS THE COURSE OFFERED TO ERASMUS STUDENTS

No

COURSE WEBSITE (URL)

http://pc-vlsi18.ceid.upatras.gr/design_of_special_purpose_systems.html

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon successful completion of the course, a student will be able to:

1. discriminate the attributes of reliability, availability, safety, maintainability, performability and dependability,
2. add redundancy to a system to improve any or a combination of the above attributes.
3. consider different redundancy addition fields, that is:
 - Hardware redundancy,
 - Information redundancy,
 - Time redundancy, and
 - Software redundancy,
4. understand the advantages and disadvantages of using redundancy in each field, and
5. evaluate whether the redundancy added is capable to provide the desired level of dependability.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these
appear in the Diploma Supplement and appear below, at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Team work
- Working in an international environment
- Working in an interdisciplinary environment
- Production of new research ideas

(3) SYLLABUS

Introduction
• Dependability as a Design Goal
• Applications
• Terminology, Complexity and Models

Faults, Errors, Failures
• Physical Causes of Faults
• Fault Characteristics
• Common Fault Models
• Common Error Models

Design Techniques
• Hardware Redundancy
• Information Redundancy
• Time Redundancy
• Software Redundancy

Application of the Developed Theory
• Design Cycle Modification to accommodate Dependability
• A Design Example

(4) TEACHING and LEARNING METHODS - EVALUATION

<table>
<thead>
<tr>
<th>DELIVERY</th>
<th>Face-to-face</th>
</tr>
</thead>
</table>
| USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY | Wide use of ICT and more specifically:
• The course is backed up by a web page providing all course material. This page is duly updated.
• The preferred communication method with the students is email. |

<table>
<thead>
<tr>
<th>TEACHING METHODS</th>
<th>Activity</th>
<th>Semester workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational</td>
<td>Lectures</td>
<td>26 hours</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
<td>13 hours</td>
</tr>
<tr>
<td></td>
<td>Study</td>
<td>80 hours</td>
</tr>
<tr>
<td></td>
<td>Exams</td>
<td>3 hours</td>
</tr>
<tr>
<td></td>
<td>Course total</td>
<td>122 hours</td>
</tr>
</tbody>
</table>
visits, project, essay writing, artistic creativity, etc.
The student’s study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS.

<table>
<thead>
<tr>
<th>STUDENT PERFORMANCE EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of the evaluation procedure</td>
</tr>
<tr>
<td>Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other</td>
</tr>
<tr>
<td>Specifically-defined evaluation criteria are given, and if and where they are accessible to students.</td>
</tr>
<tr>
<td>The evaluation is performed in Greek language and is based on a final written test that includes multiple choice questions, short-answer questions and problem solving.</td>
</tr>
<tr>
<td>Sample solutions to the written test are announced to provide students with a reference point for their marking. After the test marks are announced the students have the opportunity to see and argue about their mistakes.</td>
</tr>
</tbody>
</table>

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Related academic journals:
 - IEEE Transactions on Computers
 - Proceedings of the IEEE
 - IEEE Transactions on Dependable and Secure Computing