COURSE OUTLINE

(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOLS</th>
<th>Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT/UNITS</td>
<td>Computer Engineering and Informatics Department</td>
</tr>
<tr>
<td>TITLE OF MASTER'S DEGREE</td>
<td></td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>CEID_NE591</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>Spring (Core Elective)</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

If credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Weekly Teaching Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures and Tutorials</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Laboratory Exercises</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

<table>
<thead>
<tr>
<th>COURSE TYPE</th>
<th>Specialised general knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Skills development</td>
</tr>
</tbody>
</table>

PREREQUISITE COURSES:

- |

LANGUAGE OF INSTRUCTION and EXAMINATIONS:

Greek

IS THE COURSE OFFERED TO ERASMUS STUDENTS:

No

COURSE WEBSITE (URL)

https://eclass.upatras.gr/courses/CEID1101/
LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon successful completion of the course, a student will be able to:

- have the appropriate knowledge and background on cryptography and privacy basic principles, based on hardware integration platforms,
- understand the security integration, as basic target of system’s design,
- understand IPs and copyright protection of the design, from external breaks and attackers,
- analyze external attacks on hardware platforms and implementations, and to get experienced with protection methodologies,
- implement detection mechanisms, of harmful, additional integrated circuits and systems,
- evaluate the counterfeit detection.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology
Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas
Production of free, creative and inductive thinking

Project planning and management
Respect for difference and multiculturalism
Respect for the natural environment
Showing social, professional and ethical responsibility and sensitivity to gender issues
Criticism and self-criticism
Production of free, creative and inductive thinking
Others...

Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas
Production of free, creative and inductive thinking
(3) SYLLABUS

- Theoretical Background and Basic Principles: Security and Trust on Hardware Devices, Current and Future Applications, New Challenges,
- Basic Terms: Cryptography and Security,
- Digital Systems Design, Principles and Methodologies,
- Hardware Performance,
- Physical Unclonable Functions (PUFs),
- Random and Pseudo-Random Number Generators,
- Watermarking and Hardware IPs,
- Attacks: Fault Injections, Physical, Tamper Resistance,
- Side Channels Attacks: Models and Countermeasures,
- Security of Embedded Systems,
- Crypto-Processors,
- FPGAs Secure Designs,
- RFID Tags Security,
- Trojans Horses: Circuits and Systems,
- Secure JTAG.
(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY
Face-to-face, Distance learning, etc.

USE OF INFORMATION AND
COMMUNICATIONS TECHNOLOGY
Use of ICT in teaching, laboratory education, communication with students

WIDE USE OF ICT AND MORE SPECIFICALLY:
- The course is backed up by a homepage, providing all course materials. This website is duly updated.
- Course announcements are provided electronically and are available via: online news platform, and e-mail.
- The communication with the students is performed electronically: via e-mail. An online course forum is also supported, for questions/answers, comments etc.

TEACHING METHODS
The manner and methods of teaching are described in detail.
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.

The student's study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Semester Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures and Tutorials</td>
<td>39 hours</td>
</tr>
<tr>
<td>Laboratory Training</td>
<td>26 hours</td>
</tr>
<tr>
<td>Study</td>
<td>80 hours</td>
</tr>
<tr>
<td>Exams</td>
<td>5 hours</td>
</tr>
<tr>
<td>Course Total</td>
<td>150 hours</td>
</tr>
</tbody>
</table>

STUDENT PERFORMANCE EVALUATION
Description of the evaluation procedure
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

The students' assessment is supported in Greek, through a final written examination, twice in each academic year.

The examination is organized by development questions, short answer questions, exercises and problems solving. Within ten days of the examination, scores and indicative answers to the exam questions are announced, and posted electronically.

It is defined a day and an hour at which students can see their exams' papers about any questions and doubts they may have, as well as to express their disagreement in rating, if they so wish. Then the rating is validated and finalized.

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

- Related academic journals:
 - IEEE Transactions on Dependable and Secure Computing,
 - IEEE Transactions on Information Forensics & Security,
 - IEEE Security and Privacy,