(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>SCHOOL OF ENGINEERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT</td>
<td>COMPUTER ENGINEERING AND INFORMATICS</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>CEID_NY390</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>SPRING (6th)</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>Technical Writing and Communication for Computer Engineering and Informatics</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

<table>
<thead>
<tr>
<th>WEEKLY TEACHING HOURS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td>Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).</td>
<td>2</td>
</tr>
</tbody>
</table>

COURSE TYPE

Skills development

PREREQUISITE COURSES:

There are no prerequisite courses.

LANGUAGE OF INSTRUCTION and EXAMINATIONS:

Greek. Instruction may be given in English if foreign students attend the course.

IS THE COURSE OFFERED TO ERASMUS STUDENTS:

YES (in English)

COURSE WEBSITE (URL)

https://eclass.upatras.gr/courses/CEID1030/

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

With the successful completion of the course, students will be able to:

- Identify several types of technical documents in computer science and their characteristics.
- Using the appropriate tools to write simple or complex technical documents.
- Search for and use references appropriately for each document type.
- Be aware of intellectual property rights for technical documents and how to identify and avoid plagiarism.
- Present their ideas clearly in any type of audience.
- Apply all the above on their thesis.
General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Project planning and management
- Adapting to new situations
- Respect for difference and multiculturalism
- Decision-making
- Respect for the natural environment
- Working independently
- Showing social, professional and ethical responsibility and sensitivity to gender issues
- Team work
- Criticism and self-criticism
- Working in an international environment
- Production of free, creative and inductive thinking
- Working in an interdisciplinary environment
- Others...

SYLLABUS

1. Presentation of the syllabus and the course outline, scientific organizations.
3. Literature review and references, tools for references management.
4. Plagiarism and self-plagiarism, tools.
5. Technical writing for scientific and business proposals.
6. Science documents, science metrics, papers, the review process.
7. Writing documents using TeX and LaTeX.
8. Editing with LaTeX, tools, equations, tables, pictures.
9. Creating various technical documents using LaTeX.
10. Presentations, tools (power point, beamer, prezi), slides, elements of a successful presentation.
11. Online presentations, job interviews.
13. Presenting a thesis at the university, to technical audience, to a general audience.

TEACHING and LEARNING METHODS - EVALUATION

<table>
<thead>
<tr>
<th>DELIVERY</th>
<th>Face-to-face, Distance learning, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY</td>
<td>Lectures will use slides that will be available through the university LMS (eClass). Content provision and communication with the professors and peers will also be through eClass (messages and e-forum).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEACHING METHODS</th>
<th>Activity</th>
<th>Semester workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>2 hours x 13 weeks = 26</td>
<td></td>
</tr>
<tr>
<td>Project (preparation, development)</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.

The student’s study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS.

<table>
<thead>
<tr>
<th>Study and analysis of bibliography</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course total</td>
<td>60</td>
</tr>
</tbody>
</table>

STUDENT PERFORMANCE EVALUATION

Description of the evaluation procedure

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

Students’ evaluation is based on the projects.

All projects are in Greek but can be also available in English for ERASMUS students.

(5) **ATTACHED BIBLIOGRAPHY**

Basic bibliography
The course is based on the lectures and the material available through the course LMS

Suggested bibliography