Probabilistic Techniques

Homework

Problem 1 (2.5)

Prove that, for every integer \(n \), there exists a coloring of the edges of the complete graph \(K_n \) by two colours so that the total number of monochromatic \(K_4 \) subgraphs is at most \(\binom{n}{4} 2^{-5} \).

Problem 2 (2.5)

Suppose \(n > 4 \) and let \(H \) be an \(n \)-uniform hypergraph with at most \(4^{n-1}/3^n \) edges. Prove that there is a coloring of the vertices of \(H \) by 4 colors so that in every edge all 4 colors are represented.

Problem 3 (3.0)

Find the threshold probability for the existence with high probability of paths of length 2 in \(G_{n, \frac{1}{2}} \).

Problem 4 (1.0)

Prove that if there is a real \(p \), \(0 \leq p \leq 1 \), so that
\[
\binom{n}{k} p^k (1-p)^{n-k} + \binom{n}{t} (1-p)^t < 1,
\]
then the Ramsey number \(r(k, t) \) satisfies \(r(k, t) > n \).

Problem 5 (1.0)

Prove that there exists a two-coloring of the edges of the complete bipartite graph \(K_{m,n} \) with at most \(\binom{m}{a} \binom{n}{b} 2^{1-ab} + \binom{n}{a} \binom{m}{b} 2^{1-ab} \) monochromatic \(K_{a,b} \).