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1. Some basic inequalities (1)

) (1+3)" <e
Proof: It is: Vo > 0: 1+ x < ¢e®. For z = %, we get
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But -5 =1+ -1 so it suffices that (1 + %) <e
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which is true by (i).
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1. Some basic inequalities (II)
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But E — = €" from Taylor’s expansion of f(z) = e”.
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(iv) For any k < n: (%)k <
Proof: Indeed, k <n = ¥
Inductively k <n = 7 < 2=, (
Thus (3)" <3554 gen = = ()

For the right inequality we obviously have (}) < %7
and by (iii) it is k! > (£)"
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2. Preliminaries

(i) Boole’s inequality (or union bound)

Let random events &1, &, ...,&,. Then
Pr {Ug,} =Pr{€&U&U---U&} <Y Pri&}
i=1 i=1

Note: If the events are disjoint, then we get equality.
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2. Preliminaries

(ii) Expectation (or Mean)

Let X a random variable with probability density function
(pdf) f(z). Its expectation is:

Uy = E[X] sz-PT{XZ.CL‘}

oo

If X is continuous, p, = / xf(x)dx

—0o0
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2. Preliminaries

(ii) Expectation (or Mean)

Properties:

m VX (i=1,2,...,n)

£y =S
=1
This important property is called “linearity of

expectation”.

m E[cX] = cE[X], where ¢ constant

m if X, Y stochastically independent, then
E[X -Y]|=FE[X]-E[]Y]

m Let f ( ) a real-valued function of X. Then
Elf(z Z f@)Pr{X =z}

f(x:) f(x2) f(xn)

11 1
N T

Pr{X=xi} Pr{X=xz} Pr{X=x.}
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2. Preliminaries

(iii) Markov’s inequality

Theorem: Let X a non-negative random variable. Then, V¢ > 0
Pr{x >t} < £

Proof: F[X] = ZmPr{X =z} > ZxPr{X =z}

2>t
> ZtPr{X =z} =ty Pr{X=a}=tPr{X >t}
2>t x>t
Note: Markov is a (rather weak) concentration inequality, e.g.
Pr{X >2E[X]} <1
Pr{X >3E[X]} < 3
ete
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2. Preliminaries

(iv) Variance (or second moment)

m Definition: Var(X) = E[(X — u)?], where u = E[X]
i.e. it measures (statistically) deviations from mean.

m Properties:
m Var(X) = E[X?] — E?[X]
m Var(cX) = c2Var(X), where ¢ constant.
m if X,Y independent, it is Var(X +Y) = Var(X) + Var(Y)

Note: We call 0 = y/Var(X) the standard deviation of X.
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2. Preliminaries

(v) Chebyshev’s inequality

Theorem: Let X a r.v. with mean p = E[X]. It is:
Var(X
t2

Pri|X — p| >t} < YerX) vt >0
Proof: Pr{|X — u| >t} = Pr{(X — u)? > t*}
From Markov’s inequality:
2
Pr{(X ) > ) < HICCA] _ Var0

Note: Chebyshev’s inequality provides stronger (than Markov’s)
concentration bounds, e.g.
Pr{|X — | > 20} <
Pr{|X —pu| =30} <
etc

NelNNTE
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3. Occupancy - importance

m occupancy procedures are actually stochastic processes (i.e,
random processes in time). Particularly, the occupancy
process consists in placing randomly balls into bins, one at
a time.

m occupancy problems/processes have fundamental
importance for the analysis of randomized algorithms, such
as for data structures (e.g. hash tables), routing etc.
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3. Occupancy - definition and basic questions

m general occupancy process: we uniformly randomly and
independently put, one at a time, m distinct objects
(“balls”) each one into one of n distinct classes (“bins”).

m basic questions:

m what is the maximum number of balls in any bin?

m how many balls are needed so as no bin remains empty,
with high probability?

m what is the number of empty bins?

m what is the number of bins with & balls in them?

m Note: in the next lecture we will study the coupon
collector’s problem, a variant of occupancy.
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3. Occupancy - the case m =n

Let us randomly place m = n balls into n bins.

Question: What is the maximum number of balls in any bin?

Remark: Let us first estimate the expected number of balls in
any bin.

For any bin i (1 <i <n) let X; = # balls in bin i.

Clearly X; ~ B(m, %) (binomial)

So E[X;]=mi=nl=1

We however expect this “mean” (expected) behaviour to be
highly improbable, i.e.,

m some bins get no balls at all

m some bins get many balls
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3. Occupancy - the case m =n

Theorem 1. With probability at least 1 — %, no bin gets more
than k* = 31 halls,

T Inlnn

Proof: Let £j(k) the event “bin j gets k or more balls”. Because
of symmetry, we first focus on a given bin (say bin 1). It is
Pr{bin 1 gets exactly i balls} = () (£)" (1 - 1)""

since we have a binomial B(n, %) But

(DG O=-D)"" <G <) G =)

(from basic inequality iv)

Thus Pr{& (k)} < znj (g) < (%)’“ (1 n % n <Z>2 " ) _
i=k

-(0) =

€
k
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3. Occupancy - the case m =n

Now, let k* = (31“1 ] Then:

Inlnn

Pr{&i(k")} < (%)k* mF <2 ( o )k

Inlnn

since it suffices = <2(:>k* <2 k*<2k* —2e &
& k* > 2e which is true.
k*
But 2 < l > —9 (61—1n3—1n1nn+lnlnlnn)k*
3lnn -

Inlnn

< 2) (e—lnlnn—l-lnlnlnn)k* < 2exp( 31nn+6lnnlnlnlnn)

Inlnn

< 2exp(—3lnn+0.5lnn) = 2exp(—2.51nn) < nl
for n large enough.
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3. Occupancy - the case m =n

Thus,

n
Pr{any bin gets more than k* balls} = Pr U Ei(k
7j=1

< ZPT{E )} <nPr{&(k*)} < n— (by symmetry) OJ

L
n
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3. Occupancy - the case m = nlogn

m We showed that when m = n the mean number of balls in

any bin is 1, but the maximum can be as high as
k* — 3lnn
~ Inlnn

m The next theorem shows that when m = nlogn the
maximum number of balls in any bin is more or less the
same as the expected number of balls in any bin.

m Theorem 2. When m = nlnn, then with probability
1 —o(1) every bin has O(logn) balls.
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3. Occupancy - the case m = n - An improvement

m If at each iteration we randomly pick d bins and throw the
ball into the bin with the smallest number of balls, we can
do much better than in Theorem 1:

m Theorem 3. We place m = n balls sequentially in n bins as
follows:
For each ball, d > 2 bins are chosen uniformly at random
(and independently). Each ball is placed in the least full of
the d bins (ties broken randomly). When all balls are
placed, the maximum load at any bin is at most
lnn 4 (1), with probability at least 1 — o(1) (in other
words, a more balanced balls distribution is achieved).

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 3 17 / 29



3. Occupancy - tightness of Theorem 1

Theorem 1 shows that when m = n then the maximum load in
any bin is O ( Inn ) with high probability. We now show that

Inlnn />

this result is tight:

Lemma 1: Thereis a k=) ( Inn ) such that bin 1 has k balls

Inlnn

with probability at least ﬁ

Proof: Prik balls in bin 1] = (}) (£ ) (1-4H)" g
(%) (1 - 7)77,—1(: (from basic inequality iv)
ST ) =R oz
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3. Occupancy - tightness of Theorem 1

By putting & = S22 we get

Inlnn

1 1 (lnlnn\ias 1\ opn

cinn 3 3 = NiNN\Inlnn Inlnn
Pr{lnlnn balls in bin 1} > 2e (clnn) 2 (clnn)
(for n > 4)

clnn
_ 1 _ 1 _ 1 _ 1 _ —c
- (C2lnlnn)lnlnn - lnlnnclnn - chlnn — cn¢ Q(TL )
c2 Inlnn

Setting ¢ = 3 we get Pr{{E™ balls in bin 1} > Q(=) O

Inlnn n

S
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3. Occupancy - the case m = nlogn

Towards a proof of Theorem 2. We use the following bound.

Theorem (Chernoff bound). Let X a r.v.:

n
X—ZXi=X1+---+Xn

where for all i (1 < i <n) the X;’s are independent and

with probability p
with probability 1 — p
Let E[X] =np = pu.
Then, Vé§ > 0

66 K
PT{X > /L(l +(5)} < ((1—|—5)(1+6)> |
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3. Occupancy - the case m = nlogn

When placing m = nlogn balls into n bins let

B {1, if ball i lands in bin 1 (prob=1)

;= n
0, else
and
m
X = X; =4 of balls in bin 1.
=1
Then

1
pw=FE[X]=m—=Inn
n
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3. Occupancy - the case m = nlogn

Let us estimate the probability that bin 1 receives more than
e.g. 10Inn balls

m by the Markov inequality:

Pr{X >10lnn} < 1(1)’11;3” = - (the bound is not strong)
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3. Occupancy - the case m = nlogn

m by the Chebyshev’s inequality:
X is actually binomial, i.e. X ~ B ( m, 1) thus its variance
is Var(X)=m (n)(l—ﬁ):m <

n

313

n
Thus Pr{X > + k} < Pr{|X — 2| >k} < ng) < m

For m =nlnn = % = Inn and for k = 91Inn we have

Pr{X >10lnn} = Pr{X >Inn+9Inn} < ngllf:zln = Tim

(a bound which is better than the one by Markov’s
inequality)
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3. Occupancy - the case m = nlogn

Let us estimate the probability that bin 1 receives more than
e.g. 10Ilnn balls

m by Chernoff bound:

Inn
Pr{X >10lnn} = Pr{X > (14+9)Inn} < (18—?0) < ﬁ

(much stronger)

Thus,
Pr{3 bin with more than 101Inn balls } < nﬁ =n?
= Pr{all bins have less than 10Inn balls} > 1 —n=?
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3. Occupancy - the case m = nlogn

A similar bound applies to the “low tail”, i.e. the probability
that there exists a bin with less than, say, 1—10 Inn balls tends to
zero, as n tends to infinity. Overall, there is high concentration
around the mean value of Inn balls per bin.
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3. Occupancy - the case m = nlogn

Note: The corresponding bounds (for any bin) by Markov’s
inequality and Chebychev’s inequality are trivial:
m by Markov we get < {5

m by Chebyshev we get < o1—
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3. Occupancy - all balls in distinct bins

Let the experiment of sequentially putting m balls randomly in
n bins.

Problem: How large m can be so that the probability of all balls
being placed in distinct bins remains high?
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3. Occupancy - all balls in distinct bins

For 2 < i < m, let &= “the ith ball lands in a bin not occupied
by the first ¢« — 1 balls”. The desired probability is:

m m i—1
pr{&} =] Pri&l( &} =
=2 =2 j=2

Pri{&} Pr{&s|Ea} Pr{€4|E2E3} - - Pr{&€m|Ea.. . Em—1}

But

1—1 i1
<e n

n

i—1
P’r’{51| m gj} =1-
j=2

UK " _i—1 _Nxm =1 _1 m—lz» _m(m=—1)
Pr{m gl} S He n —= e =2 n — e n =1 = e 2n
=2 1=2
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3. Occupancy - all balls in distinct bins

Thus, when m = [v/2n + 1] then this probability is at most 1
while when m increases the probability decreases rapidly.

Note: This is similar to the classic “birthday paradox” in
probability theory.
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