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1. Some basic inequalities (I)

(i)
(
1 + 1

n

)n ≤ e

Proof: It is: ∀x ≥ 0: 1 + x ≤ ex. For x = 1
n , we get(

1 + 1
n

)n ≤
(
e

1
n

)n
= e

(ii)
(
1− 1

n

)n−1 ≥ 1
e

Proof: It suffices that
(
n−1
n

)n−1 ≥ 1
e ⇔

(
n

n−1

)n−1
≤ e

But n
n−1 = 1 + 1

n−1 , so it suffices that
(
1 + 1

n−1

)n−1
≤ e

which is true by (i).
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1. Some basic inequalities (II)

(iii) n! ≥
(
n
e

)n
Proof: It is obviously

nn

n!
≤

∞∑
i=0

ni

i!

But
∞∑
i=0

ni

i!
= en from Taylor’s expansion of f(x) = ex.

(iv) For any k ≤ n:
(
n
k

)k ≤
(
n
k

)
≤

(
ne
k

)k
Proof: Indeed, k ≤ n ⇒ n

k ≤ n−1
k−1

Inductively k ≤ n ⇒ n
k ≤ n−i

k−i , (1 ≤ i ≤ k − 1)

Thus
(
n
k

)k ≤ n
k · n−1

k−1 · · ·
n−(k−1)
k−(k−1) =

nk

k! =
(
n
k

)
For the right inequality we obviously have

(
n
k

)
≤ nk

k!

and by (iii) it is k! ≥
(
k
e

)k
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2. Preliminaries

(i) Boole’s inequality (or union bound)

Let random events E1, E2, . . . , En. Then

Pr

{
n∪

i=1

Ei

}
= Pr{E1 ∪ E2 ∪ · · · ∪ En} ≤

n∑
i=1

Pr{Ei}

Note: If the events are disjoint, then we get equality.
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2. Preliminaries

(ii) Expectation (or Mean)

Let X a random variable with probability density function
(pdf) f(x). Its expectation is:

µx = E[X] =
∑
x

x · Pr{X = x}

If X is continuous, µx =

∞∫
−∞

xf(x) dx
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2. Preliminaries

(ii) Expectation (or Mean)

Properties:

∀Xi (i = 1, 2, . . . , n) : E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi]

This important property is called “linearity of
expectation”.
E[cX] = cE[X], where c constant
if X,Y stochastically independent, then
E[X · Y ] = E[X] · E[Y ]
Let f(X) a real-valued function of X. Then

E[f(x)] =
∑
x

f(x)Pr{X = x}
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2. Preliminaries

(iii) Markov’s inequality

Theorem: Let X a non-negative random variable. Then, ∀t > 0
Pr{X ≥ t} ≤ E[X]

t

Proof: E[X] =
∑
x

xPr{X = x} ≥
∑
x≥t

xPr{X = x}

≥
∑
x≥t

tPr{X = x} = t
∑
x≥t

Pr{X = x} = t Pr{X ≥ t}

Note: Markov is a (rather weak) concentration inequality, e.g.
Pr{X ≥ 2E[X]} ≤ 1

2
Pr{X ≥ 3E[X]} ≤ 1

3
etc
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2. Preliminaries

(iv) Variance (or second moment)

Definition: V ar(X) = E[(X − µ)2], where µ = E[X]
i.e. it measures (statistically) deviations from mean.

Properties:

V ar(X) = E[X2]− E2[X]
V ar(cX) = c2V ar(X), where c constant.
if X,Y independent, it is V ar(X + Y ) = V ar(X) + V ar(Y )

Note: We call σ =
√

V ar(X) the standard deviation of X.
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2. Preliminaries

(v) Chebyshev’s inequality

Theorem: Let X a r.v. with mean µ = E[X]. It is:

Pr{|X − µ| ≥ t} ≤ V ar(X)
t2

∀t > 0

Proof: Pr{|X − µ| ≥ t} = Pr{(X − µ)2 ≥ t2}
From Markov’s inequality:

Pr{(X − µ)2 ≥ t2} ≤ E[(X−µ)2]
t2

= V ar(X)
t2

Note: Chebyshev’s inequality provides stronger (than Markov’s)
concentration bounds, e.g.
Pr{|X − µ| ≥ 2σ} ≤ 1

4
Pr{|X − µ| ≥ 3σ} ≤ 1

9
etc

Sotiris Nikoletseas, Professor Randomized Algorithms - Lecture 3 9 / 29



3. Occupancy - importance

occupancy procedures are actually stochastic processes (i.e,
random processes in time). Particularly, the occupancy
process consists in placing randomly balls into bins, one at
a time.

occupancy problems/processes have fundamental
importance for the analysis of randomized algorithms, such
as for data structures (e.g. hash tables), routing etc.
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3. Occupancy - definition and basic questions

general occupancy process: we uniformly randomly and
independently put, one at a time, m distinct objects
(“balls”) each one into one of n distinct classes (“bins”).

basic questions:

what is the maximum number of balls in any bin?
how many balls are needed so as no bin remains empty,
with high probability?
what is the number of empty bins?
what is the number of bins with k balls in them?

Note: in the next lecture we will study the coupon
collector’s problem, a variant of occupancy.
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3. Occupancy - the case m = n

Let us randomly place m = n balls into n bins.

Question: What is the maximum number of balls in any bin?

Remark: Let us first estimate the expected number of balls in
any bin.
For any bin i (1 ≤ i ≤ n) let Xi = # balls in bin i.
Clearly Xi ∼ B(m, 1

n) (binomial)
So E[Xi] = m 1

n = n 1
n = 1

We however expect this “mean” (expected) behaviour to be
highly improbable, i.e.,

some bins get no balls at all

some bins get many balls
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3. Occupancy - the case m = n

Theorem 1. With probability at least 1− 1
n , no bin gets more

than k∗ = 3 lnn
ln lnn balls.

Proof: Let Ej(k) the event “bin j gets k or more balls”. Because
of symmetry, we first focus on a given bin (say bin 1). It is

Pr{bin 1 gets exactly i balls} =
(
n
i

) (
1
n

)i (
1− 1

n

)n−i

since we have a binomial B(n, 1
n). But(

n
i

) (
1
n

)i (
1− 1

n

)n−i ≤
(
n
i

) (
1
n

)i ≤ (
ne
i

)i ( 1
n

)i
=

(
e
i

)i
(from basic inequality iv)

Thus Pr{E1(k)} ≤
n∑

i=k

(e
i

)i
≤

( e
k

)k
·
(
1 +

e

k
+

( e
k

)2
+ · · ·

)
=

=
( e
k

)k 1

1− e
k
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3. Occupancy - the case m = n

Now, let k∗ =
⌈
3 lnn
ln lnn

⌉
. Then:

Pr{E1(k∗)} ≤
(

e
k∗

)k∗ 1
1− e

k∗
≤ 2

(
e

3 lnn
ln lnn

)k∗

since it suffices 1
1− e

k∗
≤ 2 ⇔ k∗

k∗−e ≤ 2 ⇔ k∗ ≤ 2k∗ − 2e ⇔
⇔ k∗ ≥ 2e which is true.

But 2

(
e

3 lnn
ln lnn

)k∗

= 2
(
e1−ln 3−ln lnn+ln ln lnn

)k∗
≤ 2

(
e− ln lnn+ln ln lnn

)k∗ ≤ 2 exp
(
−3 lnn+ 6 lnn ln ln lnn

ln lnn

)
≤ 2 exp(−3 lnn+ 0.5 lnn) = 2 exp(−2.5 lnn) ≤ 1

n2

for n large enough.
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3. Occupancy - the case m = n

Thus,

Pr{any bin gets more than k∗ balls} = Pr


n∪

j=1

Ej(k∗)


≤

n∑
j=1

Pr{Ej(k∗)} ≤ nPr{E1(k∗)} ≤ n
1

n2
=

1

n
(by symmetry) □
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3. Occupancy - the case m = n log n

We showed that when m = n the mean number of balls in
any bin is 1, but the maximum can be as high as
k∗ = 3 lnn

ln lnn

The next theorem shows that when m = n log n the
maximum number of balls in any bin is more or less the
same as the expected number of balls in any bin.

Theorem 2. When m = n lnn, then with probability
1− o(1) every bin has O(log n) balls.
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3. Occupancy - the case m = n - An improvement

If at each iteration we randomly pick d bins and throw the
ball into the bin with the smallest number of balls, we can
do much better than in Theorem 1:

Theorem 3. We place m = n balls sequentially in n bins as
follows:
For each ball, d ≥ 2 bins are chosen uniformly at random
(and independently). Each ball is placed in the least full of
the d bins (ties broken randomly). When all balls are
placed, the maximum load at any bin is at most
ln lnn
ln d +O(1), with probability at least 1− o(1) (in other

words, a more balanced balls distribution is achieved).
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3. Occupancy - tightness of Theorem 1

Theorem 1 shows that when m = n then the maximum load in
any bin is O

(
lnn

ln lnn

)
, with high probability. We now show that

this result is tight:

Lemma 1: There is a k = Ω
(

lnn
ln lnn

)
such that bin 1 has k balls

with probability at least 1√
n
.

Proof: Pr[k balls in bin 1] =
(
n
k

) (
1
n

)k (
1− 1

n

)n−k

≥
(
n
k

)k 1
nk

(
1− 1

n

)n−k
(from basic inequality iv)

=
(
1
k

)k (
1− 1

n

)n−k ≥
(
1
k

)k ( 1
2e

)
= 1

2e

(
1
k

)k
(for n ≥ 2)
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3. Occupancy - tightness of Theorem 1

By putting k = c lnn
ln lnn we get

Pr{ c lnn
ln lnn balls in bin 1} ≥ 1

2e

(
ln lnn
c lnn

) c lnn
ln lnn ≥

(
1

c lnn

) c lnn
ln lnn

(for n ≥ 4)

=
(

1
c2ln lnn

) c lnn
ln lnn = 1

c2ln lnn c lnn
ln lnn

= 1
c2c lnn = 1

cnc = Ω(n−c)

Setting c = 1
2 we get Pr{ c lnn

ln lnn balls in bin 1} ≥ Ω( 1√
n
) □
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3. Occupancy - the case m = n log n

Towards a proof of Theorem 2. We use the following bound.

Theorem (Chernoff bound). Let X a r.v.:

X =
n∑

i=1

Xi = X1 + · · ·+Xn

where for all i (1 ≤ i ≤ n) the Xi’s are independent and

Xi =

{
1, with probability p

0, with probability 1− p

Let E[X] = np = µ.
Then, ∀δ > 0

Pr{X ≥ µ(1 + δ)} ≤
(

eδ

(1 + δ)(1+δ)

)µ

□
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3. Occupancy - the case m = n log n

When placing m = n log n balls into n bins let

Xi =

{
1, if ball i lands in bin 1 (prob= 1

n)

0, else

and

X =

m∑
i=1

Xi = # of balls in bin 1.

Then

µ = E[X] = m
1

n
= lnn

.
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3. Occupancy - the case m = n log n

Let us estimate the probability that bin 1 receives more than
e.g. 10 lnn balls

by the Markov inequality:

Pr{X ≥ 10 lnn} ≤ lnn
10 lnn = 1

10 (the bound is not strong)
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3. Occupancy - the case m = n log n

by the Chebyshev’s inequality:

X is actually binomial, i.e. X ∼ B(m, 1
n) thus its variance

is V ar(X) = m
(
1
n

) (
1− 1

n

)
= m

n − m
n2 ≤ m

n

Thus Pr{X ≥ m
n + k} ≤ Pr{|X − m

n | ≥ k} ≤ V ar(X)
k2

≤ m
nk2

For m = n lnn ⇒ m
n = lnn and for k = 9 lnn we have

Pr{X ≥ 10 lnn} = Pr{X ≥ lnn+9 lnn} ≤ n lnn
n81 ln2 n

= 1
81 lnn

(a bound which is better than the one by Markov’s
inequality)
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3. Occupancy - the case m = n log n

Let us estimate the probability that bin 1 receives more than
e.g. 10 lnn balls

by Chernoff bound:

Pr{X ≥ 10 lnn} = Pr{X ≥ (1 + 9) lnn} ≤
(

e9

1010

)lnn
≤ 1

n10

(much stronger)

Thus,
Pr{∃ bin with more than 10 lnn balls } ≤ n 1

n10 = n−9

⇒ Pr{all bins have less than 10 lnn balls} ≥ 1− n−9
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3. Occupancy - the case m = n log n

A similar bound applies to the “low tail”, i.e. the probability
that there exists a bin with less than, say, 1

10 lnn balls tends to
zero, as n tends to infinity. Overall, there is high concentration
around the mean value of lnn balls per bin.
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3. Occupancy - the case m = n log n

Note: The corresponding bounds (for any bin) by Markov’s
inequality and Chebychev’s inequality are trivial:

by Markov we get ≤ n
10

by Chebyshev we get ≤ n
81 lnn
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3. Occupancy - all balls in distinct bins

Let the experiment of sequentially putting m balls randomly in
n bins.

Problem: How large m can be so that the probability of all balls
being placed in distinct bins remains high?
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3. Occupancy - all balls in distinct bins

For 2 ≤ i ≤ m, let Ei= “the ith ball lands in a bin not occupied
by the first i− 1 balls”. The desired probability is:

Pr{
m∩
i=2

Ei} =

m∏
i=2

Pr{Ei|
i−1∩
j=2

Ej} =

Pr{E2}Pr{E3|E2}Pr{E4|E2E3} · · ·Pr{Em|E2 . . . Em−1}

But

Pr{Ei|
i−1∩
j=2

Ej} = 1− i− 1

n
≤ e−

i−1
n

Pr{
m∩
i=2

Ei} ≤
m∏
i=2

e−
i−1
n = e−

∑m
i=2

i−1
n = e−

1
n

∑m−1
i=1 i = e−

m(m−1)
2n
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3. Occupancy - all balls in distinct bins

Thus, when m = ⌈
√
2n+ 1⌉ then this probability is at most 1

e
while when m increases the probability decreases rapidly.

Note: This is similar to the classic “birthday paradox” in
probability theory.
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