Lecture 4: “Randomized selection”

Sotiris Nikoletseas
Associate Professor

CEID - ETY Course
2016 - 2017
1. Preliminaries

(i) Boole’s inequality (or union bound)

Let random events $\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_n$. Then

$$
Pr \left\{ \bigcup_{i=1}^{n} \mathcal{E}_i \right\} = Pr\{\mathcal{E}_1 \cup \mathcal{E}_2 \cup \cdots \cup \mathcal{E}_n\} \leq \sum_{i=1}^{n} Pr\{\mathcal{E}_i\}
$$

Note: If the events are disjoint, then we get equality.
(ii) Expectation (or Mean)

Let X a random variable with probability density function (pdf) $f(x)$. Its expectation is:

$$\mu_x = E[X] = \sum_x x \cdot Pr\{X = x\}$$

If X is continuous, $\mu_x = \int_{-\infty}^{\infty} x f(x) \, dx$
1. Preliminaries

(ii) **Expectation (or Mean)**

Properties:

- \(\forall X_i \; (i = 1, 2, \ldots, n) : E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i] \)

 This important property is called “linearity of expectation”.

- \(E[cX] = cE[X] \), where \(c \) constant

- if \(X, Y \) stochastically independent, then

 \(E[X \cdot Y] = E[X] \cdot E[Y] \)

- Let \(f(X) \) a real-valued function of \(X \). Then

 \(E[f(x)] = \sum_{x} f(x) Pr\{X = x\} \)
1. Preliminaries

(iii) Markov’s inequality

Theorem: Let X a non-negative random variable. Then, $\forall t > 0$

$$Pr\{X \geq t\} \leq \frac{E[X]}{t}$$

Proof: $E[X] = \sum_x xPr\{X = x\} \geq \sum_{x \geq t} xPr\{X = x\}$

$$\geq \sum_{x \geq t} tPr\{X = x\} = t \sum_{x \geq t} Pr\{X = x\} = t \Pr\{X \geq t\}$

Note: Markov is a (rather weak) concentration inequality, e.g.

$$Pr\{X \geq 2E[X]\} \leq \frac{1}{2}$$

$$Pr\{X \geq 3E[X]\} \leq \frac{1}{3}$$

etc
1. Preliminaries

(iv) Variance (or second moment)

Definition: \(\text{Var}(X) = E[(X - \mu)^2] \), where \(\mu = E[X] \)
i.e. it measures (statistically) deviations from mean.

Properties:

- \(\text{Var}(X) = E[X^2] - E^2[X] \)
- \(\text{Var}(cX) = c^2 \text{Var}(X) \), where \(c \) constant.
- if \(X, Y \) independent, it is \(\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y) \)

Note: We call \(\sigma = \sqrt{\text{Var}(X)} \) the standard deviation of \(X \).
1. Preliminaries

(v) Chebyshev’s inequality

Theorem: Let X a r.v. with mean $\mu = E[X]$. It is:

$$Pr\{|X - \mu| \geq t\} \leq \frac{Var(X)}{t^2} \quad \forall t > 0$$

Proof: $Pr\{|X - \mu| \geq t\} = Pr\{(X - \mu)^2 \geq t^2\}$

From Markov’s inequality:

$$Pr\{(X - \mu)^2 \geq t^2\} \leq \frac{E[(X - \mu)^2]}{t^2} = \frac{Var(X)}{t^2}$$

Note: Chebyshev’s inequality provides stronger (than Markov’s) concentration bounds, e.g.

$$Pr\{|X - \mu| \geq 2\sigma\} \leq \frac{1}{4}$$

$$Pr\{|X - \mu| \geq 3\sigma\} \leq \frac{1}{9}$$

etc
2. The Randomized Selection Algorithm

- **The problem:** We are given a set \(S \) of \(n \) distinct elements (e.g. numbers) and we are asked to find the \(k \)th smallest.

- **Notation:**
 - \(r_S(t) \): the rank of element \(t \) (e.g. the smallest element has rank 1, the largest \(n \) and the \(k \)th smallest has rank \(k \)).
 - \(S(i) \) denotes the \(i \)th smallest element of \(S \) (clearly, we seek \(S(k) \) and \(r_S(S(k)) = k \)).

- **Remark:** the fastest known deterministic algorithm needs \(3n \) time and is quite complex. Also, any deterministic algorithm requires \(2n \) time (a tight lower bound).
2. The basic idea: random sampling

- we will randomly sample a subnet of elements from S, trying to optimize the following trade-off:

 - the sample should be small enough to be processed (e.g. ordered) in small time

 - the sample should be large enough to contain the kth smallest element, with high probability
2. The Lazy Select Algorithm

1. Pick randomly uniformly, with replacement, a subset R of $n^{3/4}$ elements from S.

2. Sort R using an optimal deterministic sorting algorithm.

3. Let $x = k \cdot n^{-1/4}$.

 $l = \max\{\lfloor x - \sqrt{n} \rfloor, 1\}$ and $h = \min\{\lceil x + \sqrt{n} \rceil, n^{3/4}\}$.

 $a = R(l)$ and $b = R(h)$

 By comparing a and b to every element of S, determine $r_S(a), r_S(b)$.

4. If $k \in [n^{1/4}, n - n^{1/4}]$, let $P = \{y \in S : a \leq y \leq b\}$.

 Check whether $S(k) \in P$ and $|P| \leq 4n^{3/4} + 2$. If not, repeat steps 1-3 until such a P is found.

5. By sorting P, identify $P(k-r_S(a)+1) = S(k)$.
2. Remarks on the Lazy Select Algorithm

- In Step 1, sampling is done with replacement to simplify the analysis. Sampling without replacement is marginally faster but more complex to implement.
- Step 2 takes $O(n^{3/4} \log n)$ time (which is $o(n)$).
- Step 3 clearly takes $2n$ time ($2n$ comparisons). Graphically,

An example: assume $r_S(a) = 3$ and we want $S_{(7)}$. In the sorted list of P elements, $S_{(7)} = P_{(k-r_S(a)+1)} = P_{(7-3+1)} = P_5$, i.e. the 5th element indeed.
2. Remarks on the Lazy Select Algorithm

- In Step 4, it is easy to check (in constant time) whether \(S(k) \in P \) by comparing \(k \) to (the now known) \(r_S(a), r_S(b) \).

- In Step 5, sorting \(P \) takes \(O(n^{3/4} \log n) = o(n) \) time.

Note: we skip in Step 4 the (less interesting) cases where \(k < n^{1/4} \) and \(k > n - n^{1/4} \). Their analysis is similar.
2. When Lazy Select fails?

The algorithm may fail in Step 4, either because $S(k) \notin P$ because $|P|$ is large. We will show that the probability of failure is very small.

Lemma 1. The probability that $S(k) \notin P$ is $O(n^{-\frac{1}{4}})$.

Proof: This happens if i) $S(k) < a$ or ii) $S(k) > b$.

i) $S(k) < a \Leftrightarrow$ fewer than l ($l = k \cdot n^{-\frac{1}{4}} - \sqrt{n}$) of the samples in R are less than or equal to $S(k)$. Let:

$$X_i = \begin{cases} 1, & \text{the } i\text{th random sample is at most } S(k) \\ 0, & \text{otherwise} \end{cases}$$

Clearly, $E(X_i) = Pr\{X_i\} = \frac{k}{n}$ and $Var(X_i) = \frac{k}{n} (1 - \frac{k}{n})$

Let $X = \sum_{i=1}^{\lfloor R \rfloor} X_i = \# \text{ samples in } R \text{ that are at most } S(k)$. Then
2. When Lazy Select fails?

\[\mu_X = E[X] = |R| \cdot E[X_i] = n^\frac{3}{4} \frac{k}{n} = kn^{-\frac{1}{4}} \text{ and } \]

\[\sigma_X^2 = Var[X] = \sum_{i=1}^{\frac{|R|}{n}} Var(X_i) = n^\frac{3}{4} \frac{k}{n} (1 - \frac{k}{n}) \leq \frac{n^\frac{3}{4}}{4} \text{ (since the samples are independent)} \]

Thus, \(Pr\{|X - \mu_X| \geq \sqrt{n}\} \leq \frac{\sigma_X^2}{n} \leq \frac{n^\frac{3}{4}}{4n} = O(n^{-\frac{1}{4}}) \)

\[\Rightarrow Pr\{X - \mu_X < -\sqrt{n}\} \leq O(n^{-\frac{1}{4}}) \]

\[\Rightarrow Pr\{X < \mu_X - \sqrt{n}\} = Pr\{X < kn^{-\frac{1}{4}} - \sqrt{n}\} \leq O(n^{-\frac{1}{4}}) \]
ii) The case $S_{(k)} > b$ is essentially symmetric (at least h of the random samples should be smaller than $S_{(k)}$), so

$$Pr\{S_{(k)} > b\} = O(n^{-\frac{1}{4}})$$

Overall $Pr\{S_{(k)} \notin P\} = Pr\{S_{(k)} < a \cup S_{(k)} > b\} = O(n^{-\frac{1}{4}}) + O(n^{-\frac{1}{4}}) = O(n^{-\frac{1}{4}})$
Lemma 2 The probability that P contains more than $4n^{\frac{3}{4}} + 2$ elements is $O(n^{-\frac{1}{4}})$

Proof: Very similar to the proof of Lemma 1: Let

$$k_e = \max\{1, k - 2n^{\frac{3}{4}}\} \text{ and } k_n = \min\{k + 2n^{\frac{3}{4}}, n\}$$

If $S_{(k_l)} < a$ or $S_{(k_h)} > b$ then P contains more than $4n^{\frac{3}{4}} + 2$ elements. For simplicity, let $k_l = k - 2n^{\frac{3}{4}}$, $k_h = k + 2n^{\frac{3}{4}}$

Then, it suffices to “simulate” the proof of Lemma 1 for $k = k_l$ and then for $k = k_h$.
2. The Lazy Select Algorithm

Theorem The Algorithm Lazy Select finds the correct solution with probability $1 - O(n^{-\frac{1}{4}})$ performing $2n + o(n)$ comparisons.

Proof: Due to Lemmata 1, 2 the Algorithm finds $S_{(k)}$ on the first pass through steps 1-5 with probability $1 - O(n^{-\frac{1}{4}})$ (i.e., it does not fail in Step 4 avoiding a loop to Step 1). Step 1 obviously takes $o(n)$ time. Step 2 requires $O(n^{\frac{3}{4}} \log n) = o(n)$ time, and Step 3 clearly needs $2n$ comparisons (comparing each of the n elements of S to a and b). Overall the time needed is thus $2n + o(n)$.