Lecture 6:
“Coupon Collector’s problem”

Sotiris Nikoletseas
Professor

CEID - ETY Course
2017 - 2018
Variance: key features

- **Definition:**
 \[
 \text{Var}(X) = E[(X - \mu)^2] = \sum (x - \mu)^2 \Pr\{X = x\}
 \]
 where \(\mu = E[X] = \sum x \Pr\{X = x\} \)

- We call **standard deviation of** \(X \) **the** \(\sigma = \sqrt{\text{Var}(X)} \)

- **Basic Properties:**

 (i) \(\text{Var}(X) = E[X^2] - E^2[X] \)

 (ii) \(\text{Var}(cX) = c^2 \text{Var}(X) \), where \(c \) constant.

 (iii) \(\text{Var}(X + c) = \text{Var}(X) \), where \(c \) constant.

- **proof of (i):**
 \[
 \text{Var}(X) = E[(X - \mu)^2] = E[X^2 - 2\mu X + \mu^2] = E[X^2] + E[-2\mu X] + E[\mu^2] = E[X^2] - 2\mu E[X] + \mu^2 = E[X^2] - \mu^2
 \]
On the Additivity of Variance

- In general the variance of a sum of random variables is not equal to the sum of their variances.
- However, variances do add for independent variables (i.e. mutually independent variables). Actually pairwise independence suffices.
Conditional distributions

- Let X, Y be discrete random variables. Their joint probability density function is

 $$f(x, y) = \Pr\{(X = x) \cap (Y = y)\}$$

- Clearly $f_1(x) = \Pr\{X = x\} = \sum_y f(x, y)$

 and $f_2(y) = \Pr\{Y = y\} = \sum_x f(x, y)$

- Also, the conditional probability density function is:

 $$f(x|y) = \Pr\{X = x|Y = y\} = \frac{\Pr\{(X = x) \cap (Y = y)\}}{\Pr\{Y = y\}} = \frac{f(x, y)}{f_2(y)} = \frac{f(x, y)}{\sum_x f(x, y)}$$
Pairwise independence

Let random variables X_1, X_2, \ldots, X_n. These are called pairwise independent iff for all $i \neq j$ it is

$$\Pr\{(X_i = x) | (X_j = y)\} = \Pr\{X_i = x\}, \forall x, y$$

Equivalently, $\Pr\{(X_i = x) \cap (X_j = y)\} =$

$$= \Pr\{X_i = x\} \cdot \Pr\{X_j = y\}, \forall x, y$$

Generalizing, the collection is k-wise independent iff, for every subset $I \subseteq \{1, 2, \ldots, n\}$ with $|I| < k$ for every set of values $\{a_i\}, b$ and $j \notin I$, it is

$$\Pr\left\{X_j = b | \bigwedge_{i \in I} X_i = a_i\right\} = \Pr\{X_j = b\}$$
Mutual (or “full”) independence

- The random variables X_1, X_2, \ldots, X_n are mutually independent iff for any subset $X_{i_1}, X_{i_2}, \ldots, X_{i_k}, (2 \leq k \leq n)$ of them, it is

$$\Pr\{(X_{i_1} = x_1) \cap (X_{i_2} = x_2) \cap \cdots \cap (X_{i_k} = x_k)\} = \Pr\{X_{i_1} = x_1\} \cdot \Pr\{X_{i_2} = x_2\} \cdots \Pr\{X_{i_k} = x_k\}$$

- Example (for $n = 3$). Let A_1, A_2, A_3 3 events. They are mutually independent iff all four equalities hold:

$$\Pr\{A_1A_2\} = \Pr\{A_1\} \Pr\{A_2\} \quad (1)$$
$$\Pr\{A_2A_3\} = \Pr\{A_2\} \Pr\{A_3\} \quad (2)$$
$$\Pr\{A_1A_3\} = \Pr\{A_1\} \Pr\{A_3\} \quad (3)$$
$$\Pr\{A_1A_2A_3\} = \Pr\{A_1\} \Pr\{A_2\} \Pr\{A_3\} \quad (4)$$

They are called pairwise independent if (1), (2), (3) hold.
The Coupon Collector’s problem

- There are n distinct coupons and at each trial a coupon is chosen uniformly at random, independently of previous trials.

- Let m the number of trials.

- **Goal:** establish relationships between the number m of trials and the probability of having chosen each one of the n coupons at least once.

Note: the problem is similar to occupancy (number of balls so that no bin is empty).
Let X the number of trials (a random variable) needed to collect all coupons at least once each.

Let C_1, C_2, \ldots, C_X the sequence of trials, where $C_i \in \{1, \ldots, n\}$ denotes the coupon type chosen at trial i. We call the ith trial a success if coupon type chosen at C_i was not drawn in any of the first $i-1$ trials (obviously C_1 and C_X are always successes).

We divide the sequence of trials into epochs, where epoch i begins with the trial following the ith success and ends with the trial at which the $(i+1)$st success takes place. Let r.v. $X_i (0 \leq i \leq n-1)$ be the number of trials in the ith epoch.
The expected number of trials needed (II)

- Clearly, \(X = \sum_{i=0}^{n-1} X_i \)
- Let \(p_i \) the probability of success at any trial of the \(i \)th epoch. This is the probability of choosing one of the \(n - i \) remaining coupon types, so:
 \[p_i = \frac{n-i}{n} \]
- Clearly, \(X_i \) follows a geometric distribution with parameter \(p_i \), so
 \[E[X_i] = \frac{1}{p_i} \text{ and } Var(X_i) = \frac{1-p_i}{p_i^2} \]
- By linearity of expectation:
 \[E[X] = E \left[\sum_{i=0}^{n-1} X_i \right] = \sum_{i=0}^{n-1} E[X_i] = \sum_{i=0}^{n-1} \frac{n}{n-i} = n \sum_{i=1}^{n} \frac{1}{i} = nH_n \]
 But \(H_n \sim \ln n + \Theta(1) \Rightarrow E[X] \sim n \ln n + \Theta(n) \)
The variance of the number of needed trials

Since the X_i’s are independent, we have:

$$Var(X) = \sum_{i=0}^{n-1} Var(X_i) = \sum_{i=0}^{n-1} \frac{ni}{(n - i)^2} = \sum_{i=1}^{n} \frac{n(n - i)}{i^2} =$$

$$= n^2 \sum_{i=1}^{n} \frac{1}{i^2} - n \sum_{i=1}^{n} \frac{1}{i}$$

Since $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{i^2} = \frac{\pi^2}{6}$ we get $Var(X) \sim \frac{\pi^2}{6} n^2$

Concentration around the expectation

The Chebyshev inequality does not provide a strong result:

For $\beta > 1$,

$$Pr\{X > \beta n \ln n\} = Pr\{X - n \ln n > (\beta - 1) n \ln n\} \leq Pr\{|X - n \ln n| > (\beta - 1) n \ln n\} \leq \frac{Var(X)}{(\beta - 1)^2 n^2 \ln^2 n}$$

$$\sim \frac{n^2}{n^2 \ln^2 n} = \frac{1}{\ln^2 n}$$
Let \(\mathcal{E}_i^r \) the event: “coupon type \(i \) is not collected during the first \(r \) trials”. Then

\[
\Pr\{\mathcal{E}_i^r\} = (1 - \frac{1}{n})^r \leq e^{-\frac{r}{n}}
\]

For \(r = \beta n \ln n \) we get

\[
\Pr\{\mathcal{E}_i^r\} \leq e^{-\frac{\beta n \ln n}{n}} = n^{-\beta}
\]

By the union bound we have

\[
\Pr\{X > r\} = \Pr\left\{ \bigcup_{i=1}^{n} \mathcal{E}_i^r \right\}
\]

(i.e. at least one coupon is not selected), so

\[
\Pr\{X > r\} \leq \sum_{i=1}^{n} \Pr\{\mathcal{E}_i^r\} \leq n \cdot n^{-\beta} = n^{-(\beta-1)} = n^{-\epsilon},
\]

where \(\epsilon = \beta - 1 > 0 \).
Sharper concentration around the mean - a heuristic argument

- **Binomial distribution** (#successes in n independent trials each one with success probability p)
 \[X \sim B(n, p) \Rightarrow \Pr\{X = k\} = \binom{n}{k} p^k (1 - p)^{n-k} \]
 ($k = 0, 1, 2, \ldots, n$)
 \[E(X) = np, \ Var(X) = np(1 - p) \]

- **Poisson distribution**
 \[X \sim P(\lambda) \Rightarrow \Pr\{X = x\} = e^{-\lambda} \frac{\lambda^x}{x!} \quad (x = 0, 1, \ldots) \]
 \[E(X) = Var(X) = \lambda \]

- **Approximation:** It is $B(n, p) \xrightarrow{\infty} P(\lambda)$, where $\lambda = np$.
 For large n, the approximation of the binomial by the Poisson is good.
Towards the sharp concentration result

- Let N_i^r = number of times coupon i chosen during the first r trials.

- Then \mathcal{E}_i^r is equivalent to the event \{ $N_i^r = 0$ \}.

- Clearly $N_i^r \sim B \left(r, \frac{1}{n} \right)$, thus
 \[
 \Pr \{ N_i^r = x \} = \binom{r}{x} \left(\frac{1}{n} \right)^x \left(1 - \frac{1}{n} \right)^{r-x}
 \]

- Let λ a positive real number. A r.v. Y is $P(\lambda) \iff$
 \[
 \Pr \{ Y = y \} = e^{-\lambda} \cdot \frac{\lambda^y}{y!}
 \]

- As said, for suitable small λ and as r approaches ∞, $P \left(\frac{r}{n} \right)$
 is a good approximation of $B \left(r, \frac{1}{n} \right)$. Thus
 \[
 \Pr \{ \mathcal{E}_i^r \} = \Pr \{ N_i^r = 0 \} \simeq e^{-\lambda} \frac{\lambda^0}{0!} = e^{-\lambda} = e^{-\frac{r}{n}} \quad \text{(fact 1)}
 \]
An informal argument on independence

We will now claim that the E_i^r ($1 \leq i \leq n$) events are “almost independent”, (although it is obvious that there is some dependence between them; but we are anyway heading towards a heuristic).

Claim 1. For $1 \leq i \leq n$, and any set of indices $\{j_1, \ldots, j_k\}$ not containing i,

$$\Pr\left\{ E_i^r \bigg| \bigcap_{l=1}^k E_{j_l}^r \right\} \simeq \Pr\{ E_i^r \}$$

Proof: \[
\Pr\left\{ E_i^r \bigg| \bigcap_{l=1}^k E_{j_l}^r \right\} = \frac{\Pr\left\{ E_i^r \cap \left(\bigcap_{l=1}^k E_{j_l}^r \right) \right\}}{\Pr\left\{ \bigcap_{l=1}^k E_{j_l}^r \right\}} = \frac{(1 - \frac{k+1}{n})^r}{(1 - \frac{k}{n})^r} \\
\simeq \frac{e^{-r(k+1)/n}}{e^{-rk/n}} = e^{-r/n} \simeq \Pr\{ E_i^r \} \]

□
An approximation of the probability

Because of fact 1 and Claim 1, we have:

\[
Pr\left\{ \bigcup_{i=1}^{n} E_i^m \right\} = Pr\left\{ \bigcap_{i=1}^{n} \overline{E_i^m} \right\} \simeq (1 - e^{-\frac{m}{n}})^n \simeq e^{-ne^{-\frac{m}{n}}}
\]

For \(m = n(\ln n + c) = n \ln n + cn \), for any constant \(c \in R \), we then get

\[
Pr\{X > m = n \ln n + cn\} = Pr\left\{ \bigcup_{i=1}^{n} E_i^m \right\} \simeq Pr\left\{ \bigcap_{i=1}^{n} \overline{E_i^m} \right\}
\]

\[= 1 - e^{-e^{-c}}\]

The above probability:
- is close to 0, for large positive \(c \)
- is close to 1, for large negative \(c \)

Thus the probability of having collected all coupons, rapidly changes from nearly 0 to almost 1 in a small interval centered around \(n \ln n \) (!)
The rigorous result

Theorem: Let X the r.v. counting the number of trials for having collected each one of the n coupons at least once. Then, for any constant $c \in \mathbb{R}$ and $m = n(\ln n + c)$ it is

$$
\lim_{n \to \infty} \Pr\{X > m\} = 1 - e^{-e^{-c}}
$$

Note 1. The proof uses the Boole-Bonferroni inequalities for inclusion-exclusion in the probability of a union of events.

Note 2. The power of the Poisson heuristic is that it gives a quick, approximative estimation of probabilities and offers some intuitive insight towards the accurate behaviour of the involved quantities.