
50 ways to build your application: A Survey of Middleware and Systems for
Wireless Sensor Networks

Ioannis Chatzigiannakis, Georgios Mylonas and Sotiris Nikoletseas
Research Academic Computer Technology Institute (CTI) and University of Patras, Greece

{ichatz, mylonasg, nikole}@cti.gr

Abstract

In this paper, we survey the current state-of-the-art
in middleware and systems for Wireless Sensor Networks
(WSN). We provide a discussion on the definition of WSN
middleware, design issues associated with it, and the tax-
onomies commonly used to categorize it. We also present
a categorization of a number of such middleware plat-
forms, using middleware functionalities and challenges
which we think will play a crucial role in developing soft-
ware for WSN in the near future. Finally, we provide a
short discussion on WSN middleware trends.

1. Introduction

As wireless sensor networks are becoming increasingly
popular in the research community and their costs are
steadily going down the last few years, allowing more re-
searchers to build their own sensor network testbeds, the
number of available software environments specifically
for these networks also keeps increasing at a steady pace.
Although we haven’t yet reached the point of each sensor
node being available for only a few euros/dollars, things
have changed greatly for the better in that respect since
the appearance of the first sensor nodes.

This came along with the proposal of using WSN for
a multitude of applications, that was constantly updated
in the recent years. Although many of these applications
have quite unique characteristics, they still share many
common features, and it is also interesting to see how the
vision for such applications has progressed through time.
Generally, we can divide WSN applications proposed and
developed in three “waves”:

• The first applications that appeared (target tracking,
room surveillance, environmental tracking, etc.) re-
garded a number of sensor nodes belonging to a
single sensor network. The emphasis was mostly
on providing algorithms and protocols for efficient
power management, routing, localization, etc.

• The (recent) second wave of applications provides
added capabilities and services, and to some extent

utilizes a number of sensor gateways (rather than a
single one), thus setting new standards in terms of
size and heterogeneity, also allowing multiple sensor
networks to be administered as one.

• The third wave, that currently is starting to take
place, relates to Internet-scale sensing applications.
Unlike previous WSN applications, interfacing be-
tween/with different networks and applications is
gaining importance. This kind of applications is re-
lated to what some call “the Internet of things”.

This progression of WSN applications, along with
other important factors, such as the lack of standardiza-
tion in hardware and software, led to:

i) Multitude of programming paradigms to fill in the gap:
A large number of different approaches concerning mid-
dleware and network management environments for sen-
sor networks has been proposed the last few years. Be-
tween choosing any of these different approaches there is
a certain trade off between ease of use, expressiveness (re-
garding available network functionality) and usage of the
nodes’ resources (energy, memory, etc.).
ii) Multitude of functionalities and services these ap-
proaches provide: gradually the number of services WSN
software provide has increased, due to additional ap-
plication requirements. It is becoming more common
to talk about heterogeneity, quality of service, security,
trust, standardized interfaces, apart from efficient resource
management, data delivery success rates, etc., nowadays.
Also, actuators and wired sensor networks are gaining im-
portance.
iii) Multitude of levels in which these software environ-
ments function: More recent WSN applications may re-
quire different architectures than the ones used in the first
implementations of such applications. For example, tiered
networks, that use different kinds of sensor nodes, in terms
of available resources creating additional hierarchical lev-
els, are proposed to be used in a number of cases. Also,
Internet-scale sensing implies software running also on
top of WSN nodes and gateways.

The fact is that, still, WSN remain relatively difficult
to program and integrate into a commercial platform, and
have some road ahead of them. Naturally, it is our belief



that this is a crucial factor for the eventual success of WSN
in general.

As the scope of WSN applications continues to grow, in
order to harvest their potential benefits, and ultimately be-
come a part of everyday life, a vision needs to be realized
which goes well beyond incremental and disconnected
improvements of diverse (and often incompatible) imple-
mentations. It is our belief that they will have an important
role in what is called global computing. To accomplish
this, software for WSN applications must adapt to the new
requirements posed. Global Computing is about compu-
tational infrastructures available globally, able to provide
uniform services with variable guarantees for communi-
cation, co-operation and mobility, resource usage, secu-
rity policies and mechanisms, etc., with particular regard
to exploiting their universal scale and the programmabil-
ity of their services. The seeming integration of the Inter-
net and sensor domains and its benefits can be better de-
scribed e.g., by the concept of a Sensor-oogle or a Google
Earth Sense. A whole new layer of information can be
used for offering new services to existing or new systems.
Imagine a version of Google offering search capabilities
for sensing services or a Google Earth with live sensing
data coverage per square mile.

Future systems that will exploit WSN infrastruc-
tures could be powerful distributed search engines that
operate without any central database, but instead use
geographically-separate networked computers to index
documents locally within each node, using whichever pro-
cessing resources are available. Of course, on this level,
what becomes the most important is the data itself from
all the available sensor networks. Managing, analyzing
and understanding such data, through the use of suitable
tools, poses new unique challenges. A recent discussion
on properties of such systems can be found in [12].

There is some previous related work surveying
middleware for wireless sensor networks, namely
[22],[21],[39],[28]. A more detailed comparison of a
number of WSN middleware systems is presented in [37].
The present paper in some ways complements these works
and provides another perspective to the categorization of
such software, along with an extended bibliography con-
taining recent developments in middleware for WSN.

2. What is WSN middleware?

Before going into further detail in describing the tax-
onomies and the state-of-the-art in middleware for wire-
less sensor networks, it is reasonable that we provide a
description of what we refer to as middleware in the case
of WSN. This is not a simple issue, since, as stated in the
introduction, the scope of WSN is changing and growing
constantly the last few years.

The term middleware itself can sometimes be a buz-
zword, meaning different things, depending on the com-
puting field its used for and the scope of the person re-
ferring to it. In distributed systems, middleware is usu-

ally defined as software that lies between the operating
system and applications running on each node of the sys-
tem. Generally, middleware is expected to hide the inter-
nal workings and the heterogeneity of the system, provid-
ing standard interfaces, abstractions and a set of services,
that depends largely on the application. Regarding ab-
stractions offered by WSN middleware, in [28] it is stated
that “the middleware layer is equivalent to the presentation
layer in the OSI model”, although this description does not
cover all cases.

An interesting definition of WSN middleware is given
in [39]. In short, middleware has to provide support for the
development, maintenance, deployment and execution of
WSN application. It is also stated that “the scope of mid-
dleware for WSN is not restricted to the sensor network
alone, but also covers devices and networks connected to
the WSN”. This perspective of WSN middleware is ne-
glected in most of the work surveying such software, if
not even taken into consideration. Essentially, someone
could argue that since WSN are application-specific sys-
tems all software interfacing such networks with more tra-
ditional systems can be classified as middleware, since it
is a means of developing sensing applications.

For this reason, since we agree with such a definition
of WSN middleware, we chose to include in this survey
and classify it as middleware even software that does not
act on a sensor network level, but rather as a means e.g., to
provide transparency between a number of discrete WSN.
Also, when we refer to WSN systems, we include soft-
ware that can act as a way for developers to build a com-
plete WSN application, top-down, regardless of the over-
all capabilities such systems provide to the final user.

3. Middleware design issues and require-
ments

Regarding the requirements and other issues that gov-
ern the design and implementation of WSN middleware,
it should be noted that the situation is still rather fluid, as
stated in the introduction. There is still no wide consen-
sus over things such as hardware platforms and operating
systems design, and there is also the constantly expand-
ing WSN application field. Also, the vision of WSN itself
is changing, as applied research in the field progresses.
From the initial vision of “hundreds or tens of thousands
of sensor nodes in each sensor network”, we are moving to
more realistic sensor node numbers (in the scale of thou-
sands currently), or to a number of sensor networks with
a rather small number of sensors in each such network.
This is not irrelevant to the practical difficulties program-
mers face while developing WSN applications.

Having these parameters in mind, there are some issues
and requirements that are common in most of the WSN
middleware platforms proposed so far, and the things that
change are the abstractions provided to the developers, as
a result of the different approaches taken. Efficient re-
source management is the definitive issue in designing

2



software for WSN – restrictions in processing capabili-
ties, energy and communication bandwidth, simply put,
cannot be easily ignored in WSN. Then, fault tolerance
and adaptability are the other factors traditionally used as
design issues for WSN software. Data-centric tasking is
another important factor, but as tiered and heterogeneous
sensor networks become more important, so do the capa-
bilities of specific network nodes, which somehow comes
in contrast to the data-centric paradigm. Data aggregation
was evaluated as an important factor, but in recent years
there have been proposals of moving complexity to up-
per network tiers (i.e., nodes with more processing capa-
bilities). Security and trust, heterogeneity and scalability
are four very important factors in developing future WSN
applications, even more so in the vision of massive-scale
sensing applications.

We have selected a number of these issues and require-
ments as the basis of a categorization of current WSN
middleware platforms, in Section 5. A more detailed de-
scription of these selected criteria, along with a number of
examples, is provided in that section.

4. Taxonomies for WSN middleware

A popular taxonomy of WSN platforms is the follow-
ing:

• sensor databases,

• virtual machines,

• agent-based approaches,

• network management tools,

• other approaches.

The central idea in sensor databases (e.g., [30],[6]) is
to provide an SQL-like interface to the programmer that
makes the sensor network look like a DBMS. Virtual ma-
chines (e.g., [31]), on the other hand, provide sensor pro-
gramming primitives in an assembly-like language. Users
compose scripts that are uploaded to the network nodes
and are executed in a virtual machine running in each of
these nodes. In agent-based approaches ([15]) the soft-
ware provides abstractions for computing tasks to the pro-
grammer (like in virtual machines), such as events firing,
complex sensing tasks, etc., that are used to program mo-
bile agents, that can move from node to node. In this way,
complex tasks can be realized in situations where each
node may have to run different software, depending on
what tasks it has to carry out. Finally, network manage-
ment tools (e.g., [32],[41]) provide the user capabilities to
visualize results from a sensor network, combined with a
data logger that runs on a gateway. There is not much pro-
gramming flexibility provided in these tools, i.e., there is
only a number of certain functionalities available. Motes
in the network poll their sensors at a sampling rate spec-
ified by the user and send them to the gateway using a

multi-hop protocol; readings from the network are usually
stored in a relational database for further processing. All
these environments can be combined or come with tools
for remote reprogramming of the network nodes to ease
development and deployment. There are also some other
approaches, like publish/subscribe ([11]) or tuple-based
([8]), but, currently, these are not as popular as the afore-
mentioned ones, or cover specific application cases.

Another, more general, taxonomy, included in [19], is
categorizing WSN middleware into two classes, based on
their programming scope, i.e., the way they aid developers
in implementing WSN applications:

• Programming abstractions: they provide program-
mers with abstractions for viewing sensor nodes and
sensor data, or the network as a whole.

• Programming support: these provide mechanisms
and services for making programming WSN simpler,
e.g., high-level composition of applications, remote
code update, remote debugging, etc.

Each of these two classes is further subdivided into a
number of subclasses, according to the specifics of the ap-
proach followed in each case. Programming abstractions,
e.g., depending on whether they are used to abstract the
behavior of the whole sensor network or only node neigh-
borhoods, are characterized as global and local behavior
programming abstractions, respectively. Further subdivi-
sions are possible, based on a number of other criteria,
such as consideration of each node separately, etc.

A mixed approach of the previous two taxonomies is
presented in [21], where the categories of the first taxon-
omy (sensor databases, etc.) are all characterized as pro-
gramming support middleware. Also, virtual machines in
[22] are dismissed as being not middleware, since current
implementations do not provide enough capabilities, but
it is our belief that they do fit in our description of WSN
middleware. In other words, there is an active debate re-
garding the categorization of WSN software.

A problem with these taxonomies is that they do not
cater for middleware that is actually running, partly or
entirely, on top of the sensor network level (i.e., not in
the sensor network nodes). Also, in some cases, it is
not easy to place certain WSN middleware in just one of
the above taxonomy classes. Lastly, one other aspect that
these taxonomies do not cover, albeit not as important, is
whether the middleware in question follows a completely
distributed, hierarchical or more centralized software ar-
chitecture model. Therefore, it is our belief that these tax-
onomies, though quite general and successful, are not en-
tirely adequate for describing the current trends in WSN
middleware.

3



5. A categorization of WSN middleware and
systems based on present and future chal-
lenges

In this section, we make an attempt to provide a cat-
egorization of the current systems, based on a number of
other criteria than those discussed above. It is important to
note that lately there is a shift from the single sensor net-
work domain concept used in the earlier approaches, to a
multiple sensor network application domain, so we must
choose criteria that reflect this philosophy. We include a
number of the most representative platforms for WSNs as
examples for each criterion. Although not exhaustive, it
our belief that such a list is quite indicative of the current
situation in WSN software. We include only a short refer-
ence to each of these platforms.

5.1. Purpose – Application development characteris-
tics and extendability

The question here is whether to provide a number of
implemented features and functionalities to the final users,
through which a certain sensor network application is im-
plemented (i.e., have limited extendability), or to provide
a set of tools and APIs to implement such an application
and interface it to other environments (application devel-
opment). In many cases a mixed approach is followed.

It could be said that platforms like MoteView [32] and
ScatterViewer [41] are on the side of tools with rather
limited extendability, providing a set of functionalities
that cannot be easily extended or their architecture is
too tightly coupled, while platforms like SenseWeb [40],
P2PBridge [24], Hourglass [47], GSN [1], are on the side
of application development tools, providing environments
general enough to help developing large-scale WSNs,
each one in its own way. SNACK [18] and DSN [4]
provide users with logical abstractions-languages in or-
der to compose new software application components, as
an alternative to the widely used nesC programming lan-
guage. In short, they provide higher-level programming
abstractions and mechanisms, but not as high-level as,
e.g., TinyDB. Most of the other platforms fall somewhere
in the middle, since most provide some degree of flexibil-
ity into building custom WSN applications. There are also
some solutions like Abstract Regions [49], Hood [46],
and Neidas [10] that provide logical abstractions of net-
work neighborhoods to ease local node interaction and
data sharing. Kairos [19] provides programming abstrac-
tions, but on a global network behavior scope (regarding
specific nodes not necessarily in the same neighborhood),
implemented as an extension to Python. Tenet [13] de-
fines a sensor tasking language, along with providing a
task library and a tiered architecture, where more demand-
ing tasks are executed at master nodes, which are more
capable than the rest of the nodes.

To some extent, a complete WSN middleware solution
should be able to provide an application development en-
vironment, simplifying the development of custom WSN

applications, without sacrificing generality of use. This
means that network administrators will be able to leverage
existing solutions for sensor networks along with creating
new ones. However, there is of course room for solutions
providing limited services to the programmer.

5.2. Adaptability – Network management or self-
organizing

The next question we consider is whether the software
in question provides self-organizing features or if the net-
work parameters can or have to be specified by the net-
work administrator. E.g., do the network nodes organize
in multiple cluster levels and adjust to the network condi-
tions automatically, does the network administrator have
any control over this situation, does the administrator have
to tune specific network parameters instead of relying on
the network node software, etc.

Most existing sensor network applications provide
some self-organizing and network management features.
Most self-organizing features revolve around providing
services like time synchronization (e.g., TinyDB [30]),
routing protocols (e.g., the ZigBee stack), but in gen-
eral the network administrator has little control over such
features. On the other hand, some applications (e.g.,
MoteView [32]) require the intervention of the network
administrator to carry out even simple tasks. There is
also the issue of whether the policies providing these dy-
namic behavior, can be dynamically updated themselves.
RUNES [5] explicitly caters for such issues allowing soft-
ware components to be updated on-the-fly. Impala [29]
is also able to update on run-time and adapt to changing
network conditions and hardware failures.

We believe that a sensor network application environ-
ment should provide both self-organizing features and the
flexibility to tune them in according to the needs of the
administrator and the application itself.

5.3. Fault tolerance
Fault tolerance in WSN is a concept whose semantics

vary greatly depending on the level of the sensor network
discussed. On a middleware level, it also has multiple
ways to be applied. Regarding the tasking operations in-
side the network, what happens if a node faces a tem-
porary hardware or software failure and reboots? There
should be a way to learn if this node has been assigned
with specific sensing tasks, some sort of a reverse service
discovery procedure. As an example approach, TASK [2]
deals with this situation using a watchdog timer to detect
failures and then retains state from non-failed nodes sur-
rounding failed ones using a query sharing scheme.

There is also the issue of separate sensor hardware fail-
ures. Given that some sensor hardware has gone faulty
(and not the node as a whole) and starts transmitting mis-
taken sensed values, is there a way to compare these val-
ues to the ones produced by neighboring nodes, in order to
test the validity of the sensed values? This aspect of fault
tolerance is closely tied to data aggregation, but it can also

4



be done in a more centralized manner. There is finally the
issue of the reliable transmission of data and binary code
across the sensor network.

5.4. Software runs on top of the sensor application or
runs also on a sensor node level

This criterion refers to whether the software in question
runs only on top of an existing sensor network application
(and apart from the sensor network itself), or if part of the
software environment also runs on a sensor node level.
Most of the current implementations feature custom soft-
ware running on the sensor node level. On the other hand,
SenseWeb and GSN use some abstractions to communi-
cate with the the software running on the sensor network
gateways, thus they do not depend on the use of some cus-
tom software of their own (of course software drivers for
each application case have to be implemented).

We believe that both approaches are useful: one should
implement functionality on the sensor node level, in or-
der to provide novel services, but also define abstractions,
general enough so as to use other types of software, too (in
the form of defined APIs and respective drivers). It is an
important issue how to extend already implemented plat-
forms and provide application development environments
(i.e., software runs above sensor gateway level) to help in
the implementation of truly distributed WSN applications.

5.5. Number of wireless sensor networks and hetero-
geneity

Another important feature is the number of distinct
sensor networks in the system and whether these networks
comprise of different hardware and software subcompo-
nents. The majority of the platforms that appeared in re-
cent years did not take such matters into much consider-
ation. Multiple sources of information, possibly coming
from entirely different sensor networks, will be a key fea-
ture in implementing very large WSNs. Regarding sin-
gle sensor networks, some representative approaches are
TinyDB [30], Cougar [6], Mote-View [32], Maté [31],
ScatterViewer [41] and Agilla [15]. These approaches are
also limited in terms of heterogeneity, partly because they
assume use of specific OS platforms and hardware, al-
though some provide mechanisms for defining e.g., new
sensors. Impala, on the other hand, assumes almost com-
pletely homogeneous systems.

Multiple sensor network management is a concept dis-
cussed in jWebdust [3]. jWebdust proposes the notion of
a virtual sensor network that is comprised of a number
of a discrete sensor networks that can be managed as a
single one. Extending this multiple sensor network man-
agement concept, and introducing a peer-to-peer notion,
Hourglass [47] and Global Sensor Networks [1] build on
these single sensor network environments to support geo-
graphically separated networks and connect them with ap-
plications providing a number of services. The key idea is
to interface sensor networks and end-user applications to
publish locally-generated data streams or request streams

of interest, without worrying about the underlying sen-
sor infrastructure. SenseWeb, GSN, MetroSense [9], Car-
Tel [23], furthermore, seem to be supporting heterogene-
ity to a larger extent, at least theoretically. Another inter-
esting recent environment that enables the use of multiple
sensor networks is Sensor Web Enablement [36].

One of future WSN applications objectives should be
the support of multiple WSNs in a similar fashion to the
way clients connect to a P2P file sharing network, so as
to simplify the overall process, extend the functionalities
provided in current platforms, and truly support Internet-
scale sensing.

5.6. Mobility of nodes and gateways
Another important feature is whether the system sup-

ports mobility of nodes and gateways. At the present time,
there seem to be only a few systems that explicitly support
such features. As the vision of future WSNs grows wider
to include new applications, mobility is expected to play
a crucial role in the future. The architecture and imple-
mentation of a WSN platform will be heavily influenced
in the case of adopting such concepts. The idea of using
mobile devices, such as mobile phones, to act as sensing
devices or intermediates is an example of such a concept.
In this case, we believe that the use of both mobility cases
is justified. CarTel, Skylark [27] and MetroSense use this
idea (of utilizing mobile phones) to a certain extent, while
SenseWeb can probably use it as well. TinyLIME [8] is
specifically designed to meet mobile gateways needs, al-
though its architecture somehow limits its general appeal,
since it uses a single-hop communication scheme. Impala
is also designed to function in high mobility scenarios, in
fact, to some extent, it bases its architecture in mobility.

We think that the support of both mobile nodes and
gateways will be a critical feature in tomorrow’s WSN ap-
plications. Mobility constraints in present sensor network
applicationslimit their applicability and usability. If WSN
are to play a part in our everyday life, they should some-
how deal e.g., with mobile sensor nodes participating to
different sensor network from time to time.

5.7. Single or multiple instances (transparency)
If there exist distinct subnetworks in the system, do

they communicate with each other, and if so, how do
they interact? System-wise we are interested in trans-
parency [7]. In most cases, even if there are multiple
WSNs supported, no direct or indirect communication is
available between them, and all results are stored in a cen-
tral database (like in TinyDB).

IrisNet [16] was a shift from this approach using a dis-
tributed database and allowing multiple instances. Hour-
glass, GSN, Skylark and P2PBridge allow for inter-WSN-
operability through P2P communication schemes. Also,
Agimone [20] is an example of mobile agents combined
with some bridging software to allow the migration of mo-
bile agents from one sensor network to another (thus al-
lowing both data and functionality to move from network

5



to network). We envision multiple sensor networks inter-
connected through a P2P network substrate, and interact-
ing by exchanging both data and resources (i.e., access to
information and functionality).

5.8. Interfacing to the rest of the world
The first platforms for WSNs provided interfaces to

the final user and the rest of the world through custom
application interfaces (like TinyDB) or through a web
page. This trend seems to be shifting toward providing
also interfaces through XML, SOAP, etc., in order to in-
tegrate them with other environments, like the case in
ArchRock [38], Octavex [35]. Similar approaches are fol-
lowed in Sensilink [42], SynapSense OneClick [48] and
XServe [33] (part of the MoteWorks platform). Of course,
in general, when you have a database in your system you
can always define interfaces to integrate it somehow with
other applications. The issue here is how well do these
interfaces work in a WSN scenario. An interesting ap-
proach, a spreadsheet interface, was used in [34].

Another approach of providing interfaces to the rest of
the world, is through the use of P2P protocols, like in
HourGlass, P2PBridge, Skylark. Usually this is done us-
ing a P2P software substrate, like JXTA [25]. Also, there
is the approach of sensor network gateways functioning
as bridges, as in ArchRock and TinyREST [14], mapping
internal WSN node IDs to IPv4 and IPv6 addresses. An
emerging standard for interconnecting IEEE 802.15.4 and
IPv6 networks is 6loWPAN, an open source implementa-
tion of which is featured in [43].

We believe that the use of interfaces like those pro-
vided by Google Maps and Google Earth, much like the
approach in SenseWeb [40] and SensorScope [45], is an
important step toward implementing Internet-scale sens-
ing applications.

5.9. Security and trust issues
By security and trust, we refer to encrypted communi-

cation and access authorization, respectively. Apart from
using, e.g., TinySec [26], on the sensor node level there
isn’t really much work implemented in these fields, when
referring both to in-sensor-network trust and to inter-WSN
application communication. For example, the problem
of accepting a newly added sensor node as a trustwor-
thy member of the network is of high importance. Fur-
thermore, it is not clear how a sensor or a user from one
WSN or an application client could or should have access
to the functionalities and resources of another WSN. A
number of these issues are dealt with in Sensor Web En-
ablement, where end-users may have different roles and
privileges accessing data and tasking different sensor net-
works through the system.

We believe that developers should start taking these
two matters seriously into consideration, since their ne-
cessity will become more evident in the emerging global
scale sensor networks, and incorporate them into their
own work. In general, these characteristics should be, to

some extent, part of any serious large-scale application.

6. Discussion – Conclusions

The last few years we have seen a large number
of WSN hardware, test-beds and application proposals
sparkle out. A diversity of approaches, regarding WSN
middleware, has been proposed to deal with the multitude
of requirements that have arisen from all this activity. As
the vision of wireless sensor networking grows to encom-
pass new challenges, new requirements are added to the
present ones. In this paper we have presented a fair sample
of current WSN middleware solutions along with a simple
categorization. The overview is that there is a number of
software platforms that offer many services to developers,
but current systems do not support all of the requirements
of the envisioned future applications. Some important is-
sues rising are the support of security and trust, trans-
parency, standardization, ontologies and mobility support.

Since WSN are currently a very active research field,
we have seen a multitude of different proposals and ap-
proaches, but still few widely accepted hardware and soft-
ware standards. Regarding inter-WSN interfacing and
service discovery, there are some proposals like Sen-
sorML [44] or the concept of virtual sensors in GSN [1],
that are specifically tailored to fill this gap.

Another benefit, apart from the introduction of stan-
dards itself, is that this could lead also to easier compar-
isons between WSN middleware solutions. Up till now,
there has not really been much work comparing perfor-
mance between different approaches in important issues
like efficiency, scalability, etc. A large part of the pub-
lished results focuses on describing software components
size, use of memory resources, total network lifetime, etc.
Though useful, these properties do not necessarily pro-
vide insight to realistic scenarios. Perhaps, some bench-
mark cases could be proposed to promote such compar-
isons. Although proposals differ in their scope, require-
ments and complexity, there are common factors that can
be evaluated. An evaluation of a number of WSN soft-
ware solutions based on factors such as power awareness,
openness, scalability, mobility, heterogeneity, ease of use,
is included in [21].

Also, as stressed in [22], there is the issue of utiliz-
ing results from neighboring research fields, like context-
aware computing, “smart spaces”, etc., that have been us-
ing specific ontologies to face application requirements.
In some ways, this is a top-down approach, contrary to
the bottom-up approach used in many WSN middleware
proposals, that were built to face specific problems like
energy efficiency, etc. Furthermore, the issue of inte-
grating WSN with expert systems is important as well.
An example of such an approach is found in GoodFood
project [17].

One last question, after seeing so many different design
and implementation approaches, is whether there exists a
least common denominator in all these approaches. If we

6



could agree on a small or large set of common services and
interfaces, we could easily settle on a number of standards
to further simplify WSN application development.

Acknowledgements

This work has been partially supported by the IST
Programme of the European Union under contract num-
ber IST-2005-15964 (AEOLUS). Also, by the Programme
PENED under contract number 03ED568, co-funded 75%
by European Union – European Social Fund (ESF), 25%
by Greek Government – Ministry of Development – Gen-
eral Secretariat of Research and Technology (GSRT), and
by Private Sector, under Measure 8.3 of O.P. Competitive-
ness – 3rd Community Support Framework (CSF).

References

[1] K. Aberer, M. Hauswirth, and A. Salehi, The global
sensor networks middleware for efficient and flexible
deployment and interconnection of sensor networks,
Tech. report, Ecole Polytechnique Federale de Lau-
sanne (EPFL), 2006, Technical Report.

[2] P. Buonadonna, D. Gay, J. Hellerstein, W. Hong, and
S. Madden, TASK: Sensor network in a box, In the
Proceedings of the 2nd European Workshop on Sen-
sor Networks, 2005, pp. 133–144.

[3] I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas,
jWebDust : A java-based generic application envi-
ronment for wireless sensor networks, In the pro-
ceedings of the first International Conference on
Distributed Computing in Sensor Systems (DCOSS
’05), 2005, pp. 376–386.

[4] D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis,
S. Shenker, and I. Stoica, The design and implemen-
tation of a declarative sensor network system, Tech.
report, University of California, 2006, Tech. Report.

[5] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo,
L. Mottola, G.P. Picco, T. Sivaharan, N. Weeras-
inghe, and S. Zachariadis, The RUNES Middleware
for Networked Embedded Systems and its Applica-
tion in a Disaster Management Scenario, Proceed-
ings of the 5th IEEE International Conference on
Pervasive Computing and Communications (PER-
COM07) (New York, USA), IEEE Press., March
2007.

[6] The Cougar Sensor Database Project homepage,
http://www.cs.cornell.edu/database/cougar.

[7] G. Coulouris, J. Dollimore, and T. Kindberg, Dis-
tributed Systems: Concepts and Design, 3rd ed.,
Addison-Wesley, Boston, USA, 2001.

[8] C. Curino, M. Giani, M. Giorgetta, A. Giusti,
A. Murphy, and G. Picco, TinyLIME: Bridging
Mobile and Sensor Networks through Middleware,
Third IEEE International Conference on Pervasive
Computing and Communications, PerCom 2005,
2005, pp. 61–72.

[9] S. Eisenman, N. Lane, E. Miluzzo, R. Peterson,
G. Ahn, and A. Campbell, MetroSense project:
People-centric sensing at scale, In Workshop on
World-Sensor-Web (WSW 2006), Boulder, October
31, 2006.

[10] A. Lachenmann et al., Versatile support for efficient
neighborhood data sharing, In the Proc. of the Euro-
pean Workshop on Sensor Networks (EWSN 2007),
2007.

[11] E. Souto et al., Mires: A publish/subscribe middle-
ware for sensor networks, In the Journal of Personal
and Ubiquitous Computing 10 (2005).

[12] M. Balazinska et al., Data management in the
worldwide sensor web, IEEE Pervasive Computing
(2007).

[13] O. Gnawali et al., The Tenet architecture for tiered
sensor networks, In the Proc. of the 4th international
conference on Embedded networked sensor systems
(SenSys’06), 2006, pp. 153–166.

[14] T. Luckenbach et al., TinyREST - A protocol for In-
tegrating Sensor Networks into the Internet, In the
Proceedings of the First REALWSN 2005 Workshop
on Real-World Wireless Sensor Networks, 2005.

[15] C. Fok, G. Roman, and C. Lu, Rapid development
and flexible deployment of adaptive wireless sen-
sor network applications, In Proceedings of the 24th
International Conference on Distributed Computing
Systems (ICDCS’05), 2005, pp. 653–662.

[16] P. Gibbons, B. Karp, and S. Seshan Y. Ke, S. Nath,
IrisNet: An Architecture for a World-Wide Sensor
Web, IEEE Pervasive Computing 2 (2003), no. 4.

[17] GoodFood Integrated Project homepage,
http://www.goodfood-project.org/.

[18] B. Greenstein, E. Kohler, and D. Estrin, A Sensor
Network Application Construction Kit (SNACK), In
the Proc. of the 2nd International Conference on Em-
bedded Networked Sensor Systems (SenSys 2004),
2004, pp. 69–80.

[19] R. Gummadi, O. Gnawali, and R. Govindan,
Macro-programming wireless sensor networks us-
ing Kairos, In the Proc. of the International Confer-
ence on Distributed Computing in Sensor Systems
(DCOSS’05), Springer, 2005, pp. 126–140.

7



[20] G. Hackmann, C. Fok, G. Roman, and C. Lu, Agi-
mone: Middleware Support for Seamless Integration
of Sensor and IP Networks, In the Proceedings of
2006 International Conference on Distributed Com-
puting in Sensor Systems (DCOSS ’06).

[21] S. Hadim and N. Mohamed, Middleware challenges
and approaches for wireless sensor networks, IEEE
Distributed Systems Online 7(3) (2006).

[22] K. Henricksen and R. Robinson, A survey of middle-
ware for sensor networks: State-of-the-art and fu-
ture directions, In the Proc. of MidSens ’06, 2006.

[23] B. Hull, V. Bychkovsky, K. Chen, M. Goraczko,
A. Miu, E. Shih, Y. Zhang, H. Balakrishnan, and
S. Madden, CarTel: A distributed mobile sensor
computing system, In the Proceedings of SenSys ’06,
2006.

[24] M. Isomura, T. Riedel, C. Decker, M. Beigl, and
H. Horiuchi, Sharing sensor networks, Sixth Interna-
tional Workshop on Smart Appliances and Wearable
Computing (IWSAWC), Lisbon, Portugal, Proceed-
ings of the ICDCS 2006, 2006.

[25] Project JXTA, http://www.jxta.org/.

[26] C. Karlof, N. Sastry, and D. Wagner, Tinysec: A
link layer security architecture for wireless sensor
networks, In the Proc. of the 2nd ACM Conference
on Embedded Networked Sensor Systems (SensSys
2004), 2004.

[27] S. Krco, D. Cleary, and D. Parker, Enabling ubiq-
uitous sensor networking over mobile networks
through peer-to-peer overlay networking, Computer
communications 28 (2005), 1586–1601.

[28] M. Kuorilehto, M. Hannikainen, and T. Hamalainen,
A survey of Application Distribution in Wireless Sen-
sor Networks, EURASIP Journal on Wireless Com-
munication and Networking 5 (2005), 774–788.

[29] T. Liu and M. Martonosi, Impala: A middleware sys-
tem for managing autonomic, parallel sensor sys-
tems, In the proc. of the 9th ACM SIGPLAN sympo-
sium on Principles and Practice of Parallel Program-
ming (PPoPP’03), 2003, pp. 107–118.

[30] S. Madden, M. Franklin, J. Hellerstein, and
W. Hong, TinyDB: An Acquisitional Query Process-
ing System for Sensor Networks, Journal of ACM
TODS 30 (2005), 122–173.

[31] Application specific virtual machines for TinyOS,
http://www.cs.berkeley.edu/ pal/mate-web/.

[32] Mote-VIEW monitoring software, Crossbow Tech-
nology Inc., http://www.xbow.com/.

[33] Moteworks software platform,
http://www.xbow.com.

[34] MSR Networked Embedded Sensing Toolkit,
http://research.microsoft.com/nec/msrsense/.

[35] The Octavex platform, Octave Technology Inc.,
http://www.octavetech.com/solutions/octavex.html.

[36] OGC Sensor Web Enablement, Overview and high-
level architecture, OpenGIS white paper, OGC 06-
050r2.

[37] RUNES Project, Survey of middleware for net-
worked embedded systems, 2005, Deliverable 5.1.

[38] Arch Rock, A new embedded web services experi-
ence for wireless sensor networks, In the Proc. of
the 4th International Conference on Embedded Net-
worked Sensor Systems (SenSys ’06), 2006.

[39] K. Romer, O. Kasten, and F. Mattern, Middle-
ware challenges for wireless sensor networks, ACM
Mobile Computing and Communications Review 6
(2002), 59–61.

[40] A. Santanche, S. Nath, J. Liu, B. Priyantha, and
F. Zhao, SenseWeb: Browsing the physical world
in real time, Demo Abstract, ACM/IEEE IPSN06,
Nashville, TN, 2006.

[41] The Scatterweb wireless sensor network platform,
http://www.scatterweb.de.

[42] Sensilink WSN Middleware Platform, Meshnetics,
http://www.meshnetics.com.

[43] NanoStack 6loWPAN open-source implementation,
http://www.sensinode.com.

[44] Introduction to SensorML, webpage,
http://vast.uah.edu/SensorML/.

[45] Web page of the Sensorscope project,
http://sensorscope.epfl.ch.

[46] C. Sharp, E. Brewer, and D. Culler, Hood: A neigh-
borhood abstraction for sensor networks, In the
Proc. of MobiSYS’04, 2004.

[47] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopou-
los, M. Seltzer, and M. Welsh, Hourglass: An in-
frastructure for connecting sensor networks and ap-
plications, Tech. report, Harvard TR-21-04, 2004.

[48] SynapSense OneClick WSN software architecture,
http://www.synapsense.com.

[49] M. Welsh and G. Mainland, Programming sensor
networks using abstract regions, In the Proc. of
1st Usenix/ACM Symposium on Networked Sys-
tems Design and Implementation (NSDI’04), 2004,
pp. 29–42.

8


