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Abstract— This paper investigates theoretical aspects of
the uneven energy depletion phenomenon recently noticed
in sink-based wireless sensor networks. We consider uni-
formly distributed sensors, each sending roughly the same
number of reports toward the closest sink. We assume
an energy consumption model governed by the relation
E = dα +c where d, (d ≤ tx), is the transmission distance,
α ≥ 2 is the power attenuation, c is a technology-dependent
positive constant, and tx is the maximum transmission
range of sensors. Our results are multifold. First, we show
that for α > 2, all sensors whose distance to the sink
is min{tx, ( 2c

α−2 )
1
α } should transmit directly to the sink.

Interestingly, this limit does not depend on the size of the
network, expressed as the largest distance R from a sensor
to the closest sink. Next, we prove that in order to minimize
the total amount of energy spent on routing along a path
originating at a sensor in a corona and ending at the sink,
all the coronas must have the same width, equal to the
above expression. This choice, however, leads to uneven
energy depletion and to the creation of energy holes. We
show that for α > 2 the uneven energy depletion can be
prevented by judicious system design, resulting in balanced
energy expenditure across the network. We describe an
iterative process for determining the sizes of coronas.
Their optimal sizes (and corresponding transmission radii)
and the number of coronas depend on R. As expected,
the width of coronas in energy-balanced sensor network
increases. Finally, we show that for α = 2, the uneven
energy depletion phenomenon is intrinsic to the system
and no routing strategy can avoid the creation of an energy
hole around the sink.

I. INTRODUCTION

Aggregating tiny sensors into sophisticated commu-
nication infrastructures, called wireless sensor networks
(sensor networks, for short) is expected to have a signif-
icant impact establishing ubiquitous networks that will

pervade society redefining the way in which we live
and work. The novelty of sensor networks and their
potential applications have triggered a well-deserved
flurry of activity in both industry and academia. We
refer the reader to [1]–[3], [15] for a summary of recent
applications.

We assume that the sensor network interfaces with
the outside world via one or several sinks. The sensory
data collected by the sensors is routed to the closest sink
where it is further aggregated. Recently, it was noticed
that the sensors closest to the sink tend to deplete their
energy budget faster than other sensors [6], [7], [10],
[11], [16], [26]. This uneven energy depletion is apt to
drastically reduce the useful lifespan of sensor networks
and should be prevented to the largest extent possible.
In fact, [26] argue that by the time the sensors one hop
away from the sink exhaust their energy budget, sensor
farther away still have up to 93% of their initial energy
budget. These studies assume that each sensor uses the
same fixed transmission radius for reporting.

The main contribution of this work is to provide a
theoretical explanation of the uneven energy depletion
phenomenon noticed in sink-based wireless sensor net-
works.

We prove that in order to minimize the total amount
of energy spent on routing along a path originating at
a sensor in a corona and ending at the sink, all the
coronas must have the same width, equal to ( 2c

α−2)
1
α or

the maximal transmission radius tx, whichever is smaller.
However, we show that this choice necessarily leads to
uneven energy depletion and to the creation of energy
holes, regardless of the value of α.

To remedy the energy imbalance problem, we assume
that the transmission radii of sensors are adjustable, and

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

1-4244-0222-0/06/$20.00 (c)2006 IEEE



attempt to balance the energy expenditure among sensors
by selecting proper sizes of coronas around the sink.
The transmission radius of a given sensor is assumed to
be equal to the width of the corona containing it. Our
most interesting result is to show that, for α > 2, all
sensors whose distance to the sink is min{tx,≤ 2c

α−2)
1
α }

should transmit directly to the sink. Surprisingly, this
limit does not depend on the size of the network,
expressed as the maximum distance R from a sensor
to the closest sink. However, such balancing is possible
as long as the required corona widths do not exceed
the maximum transmission radius. There also exists a
maximum network radius around the sink that allows
for energy balancing, and that radius depends solely on
α, c and tx.

We describe an iterative process for determining the
sizes of coronas. Their optimal sizes are obtained by
equating the energy expenditure in a given corona with
the expenditure in the rink containing the sink. The
width of coronas in an energy-balanced sensor network
increases with the distance to the sink.

Finally, we show that for α = 2, the uneven energy
depletion phenomenon is intrinsic to the system and no
routing strategy can avoid the creation of an energy hole
around the sink.

The remainder of the paper is organized as follows.
Our literature review is presented in section II. Section
III introduces the system assumptions used throughout
the work. Section IV establishes general formulas for
energy expenditure. In Section V these results will be
used to evaluate the energy expenditure for individual
sensors. In Section VI we show that by insisting on
the energy-optimality of each path to the sink we, in
fact, are guaranteed to create an energy hole around the
sink drastically curtailing the lifetime of the network.
In Section VII we show that the energy hole problem
can be avoided by carefully tailoring the coronas. In this
case we avoid uneven energy depletion at the cost of
suboptimal routing. Finally, Section X offers concluding
remarks and points out directions for further work.

II. LITERATURE REVIEW

Mhatre and Rosenberg [16] consider sensor networks
containing two types of sensors. Regular sensors use ei-
ther single or multi-hop communication to send their data
to their respective cluster-heads (CHs), have a smaller
energy budget, and the same transmission radius. The
other type of sensors have more energy, and can serve
as CHs for regular sensors. CH sensors send data directly
to a helicopter, therefore requiring the same energy. They

aggregate received data (energy needed for aggregating
is proportional to number of incoming reports) before
transmitting to the helicopter. The problem is to find
design parameters so that both types of sensors loose
energy at about the same time, network life exceeds a
threshold set in advance, and total cost of the network
is minimized. The total cost includes the cost to build
sensors and the energy spent by them, combined into
a linear function. The total number of sensors of both
types is fixed. The authors of [16] conclude that the
number of regular sensors is proportional to the square
of the number of CHs. They analyze two modes of
communicating between sensors and base stations, and
derive conditions under which single-hop transmission
by all nodes is best. One of the conclusions reached
is that for α = 2, there is no benefit from multi-
hop communication. When multi-hop communication is
better, each CH is assumed to be at the center of a
circle divided into equal width rings (the width is equal
to the transmission radius). Therefore they assume that
each of multiple hops is approximately of equal length
and find the optimal forwarding distance for each hop.
The authors [16] do not actually prove that it is indeed
optimal to use each hop of equal length (that is, that the
rings indeed all need to have equal width for optimality).
Their result is based on minimizing energy in a ring that
is found to be critical. However, other rings may not be
critical at that time. In this article, we prove that the
minimal energy consumption per path is achieved for
equal width rings.

Mhatre et al. [17] considered a heterogeneous sensor
network in which the nodes are to be deployed over a
unit area for the purpose of surveillance. An aircraft
visits the area periodically and gathers data about the
activity in the area from the sensor nodes. There are
two types of nodes that are distributed over the area
uniformly, but each with its own densities and battery
energy. Type 0 nodes do the sensing while type 1
nodes act as the cluster heads besides doing sensing.
Nodes use multi-hopping to communicate with their
closest cluster heads. The authors of [17] determine
the optimum node intensities and node energies that
guarantee a lifetime of at least T units, while ensuring
connectivity and coverage of the surveillance area with
a high probability. They minimize the overall cost of the
network under these constraints. Lifetime is defined as
the number of successful data gathering trips (or cycles)
that are possible until connectivity and/or coverage are
lost. Conditions for a sharp cutoff are also taken into
account, to ensure that almost all the nodes run out of
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energy at about the same time so that there is very little
energy waste due to residual energy.

Node clustering is commonly considered as one of
the most promising techniques for dealing with max-
imizing network lifetime and has been addressed by
many researchers. However, very few, if any, provide
explicit analysis of node clustering in sensor networks
and/or manage to prove its actual effectiveness. Vlajic
and Xia [25] take a close analytical look at clustered
sensor networks They prove that these networks do not
necessarily outperform non-clustered sensor networks.
The condition that ensures superior performance of clus-
tered sensor networks, with absolute certainty, is that
their resultant clusters lie within the isoclusters of the
monitored phenomenon. They also show that in clustered
sensor networks that satisfy the given condition, cluster
sizes do not need to match the sizes of their respective
underlying isocluster. Instead, simple 5-hop clusters can
ensure near-optimal network performance under a wide
range of cluster-to-sink and cluster-to-isocluster spatial
arrangements.

Perillo, Cheng, and Heinzelman [20] study the energy
imbalance among sensors. When each node has a fixed
transmission range, the amount of traffic that sensor
nodes are required to forward increases dramatically as
the distance to the data sink becomes smaller. Thus,
sensors closest to the data sink tend to die early, leav-
ing areas of the network completely unmonitored and
causing network partitions. Alternatively, if all sensors
transmit directly to the data sink, the furthest nodes
from the data sink will die much more quickly than
those close to the sink. While it may seem that network
lifetime could be improved by use of a more intelli-
gent transmission power control policy that balances the
energy used in each node by requiring nodes further
from the data sink to transmit over longer distances,
such a policy can only have a limited effect. In fact, this
energy balancing can be achieved only at the expense of
gross energy inefficiencies. In this paper, we investigate
the transmission range distribution optimization problem
and show where these inefficiencies exist when trying to
maximize the lifetime of many-to-one wireless sensor
networks. Soro and Heinzelman [23] proposed unequal
clustering size model for network organization, which
can lead to more uniform energy dissipation among the
cluster head nodes, thus increasing network lifetime.
The approach is applied for both homogeneous and
heterogeneous sensor networks.

Lian, Naik and Agnew [11] also recognize the energy
imbalance problem and propose a non-uniform sensor

distribution strategy. The density of sensors increases
when the distance to the sink decreases. Simulation
results show that for large dense networks, the non-
uniform sensor distribution strategy can increase the
total data capacity by an order of magnitude. Lian et
all [12] proposed a Broadcasting-Based query Scheme
(BBS) that reduces the energy depletion rate of sensors
near the sink, builds different localized routing trees for
different query types, and eliminates the flooding cost
of query distribution. In [13], Lian, Naik and Agnew
proposed to use mobile sinks in sensor networks with
uniform distribution. In [14], Lian et all propose a
strategy that employs uniform energy distribution but
applies broadcasting to a specific sensor (local root)
before the aggregated report is sent to the sink.

While most recent work has focused on the deploy-
ment of large numbers of cheap homogeneous sensor de-
vices, in practical settings it is often feasible to consider
heterogeneous deployments of devices with different
capabilities. Lee, Krishnamachari and Kuo [9] introduce
cost constraints, and analyze such heterogeneous de-
ployments both mathematically and through simulations,
and show how they impact the coverage aging process
of a sensor network, i.e., how it degrades over time
as some nodes become energy-depleted. They derive
expressions for the heterogeneous mixture of devices
that optimizes the lifetime sensing coverage in a single-
hop direct communication model. They also investigate
a multi-hop communication model through simulations,
and examine the impact of heterogeneity on lifetime
sensing coverage and coverage aging both with and
without data aggregation.

Sheldon, Chen, Nixon and Mok [22] seek the ways
to deploy the network so that the workload is evenly
distributed, thus the network overall behavior degrades
in a smooth fashion. Assuming that the sensors should
be evenly deployed within the monitored area, they look
at the approach where a set of more powerful nodes are
designated for data relaying. In particular, they select
subregions to deploy relaying nodes at calculated density,
and propose a simple method where the density is simply
based on the size of the area whose data will be relayed
by these nodes.

Li and Mohapatra [10] study the following problem:
given the required lifetime of the sensor network, the
initial energy of each sensor node, and the area to be cov-
ered, what is the minimum number of nodes needed to
construct such a network and what is the corresponding
placement scheme? They describe a solution for linear
network, using a model with c = 0.
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III. SYSTEM ASSUMPTIONS

A. The sensor model

We assume that individual sensors operate subject to
following fundamental constraints. (1) Once deployed,
the sensors must work unattended as it is either im-
practical or infeasible to devote attention to individual
sensors; (2) Sensors are anonymous – they do not have
fabrication-time identities. In particular, point-to-point
routing cannot be based on IDs of neighboring sensors;
(3) Each sensor has a non-renewable energy budget
– when the on-board energy supply is exhausted, the
sensor becomes in-operational; (4) Each sensor has a
maximum transmission range, denoted by tx, assumed
to be much smaller than R, the furthest possible distance
from a sensor to its closest sink.1 This implies that
messages sent by a sensor can reach only the sensors
in its proximity, typically a small fraction of the sensors
deployed; (5) In order to save energy, the sensors can
adjust their transmission range.

B. The sensor network model

Throughout the work we assume a sensor network
endowed with one or more sinks as illustrated in Figure
1. We assume that each sink is equipped with a steady
energy supply and with a powerful radio that can cover
a disk of radius R centered at the sink. In our model,
each sink pushes requests (referred to as tasks) targeted
at a subset of the sensors in its disk of radius R and
collects the sensory data generated.

A B

R R

Fig. 1. A multi-sink sensor network.

The sink organizes the sensors around it into a dy-
namic infrastructure as illustrated in Figure 2. This task
is referred to as training [18], [26] and involves parti-
tioning the disk D of radius R into disjoint concentric

1Of course, tx is a system parameter that depends on the particular
type of sensors deployed. Under present-day technology, tx is about
50m for micro-sensors.

sets termed coronas obtained as follows. Consider k
concentric circles of radii 0 < r1 < r2 < · · · < rk = R
centered at the sink. To handle boundary conditions we
take r0 = 0. Now, for every i, (1 ≤ i ≤ k), corona
Ci is the subarea of D delimited by the circles of radii
ri−1 and ri. The width of each corona is at most tx, the
maximum transmission range of a sensor. For example,
in Figure 2, k = 4 and the area is partitioned into four
coronas C1, C2, C3 and C4.

Importantly, the massive deployment of sensors, com-
bined with the fact that the width of each corona does not
exceed the maximum transmission range tx, guarantees
communication between sensors in adjacent coronas. The
width of corona Ci is ri−ri−1. These widths may differ,
as the sensors are allowed to adjust their transmission
radii. To simplify, we assume that a sensor in corona Ci

uses a transmission radius of ri − ri−1 to reach a sensor
in corona Ci−1.

C
2

C
3

C
4

C
1

Fig. 2. Concentric coronas and routing the result of a task to the
sink.

In the remainder of this work we consider a generic
sink and the disk of radius R around it. For ease of
exposition, we refer to the sensors in this disk as the
sensor network. We adopt a task-based model compatible
with [18], [26] whereby the sensor network is subjected
to a set T of tasks. Each task involves performing local
sensing by a subset of the sensors in a corona followed
by (local) data aggregation and sending the resulting
information (the answer to the query) to the sink. Thus,
we associate each of the T tasks with a sensor-to-sink
path. It follows that there is a one-to-one map between
tasks and paths to the sink.

We define the longevity of the network as the max-
imum number of tasks that can be performed by the
individual sensors [26].
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C. Routing

In the dynamic infrastructure discussed above, routing
is relatively straightforward. As we have already men-
tioned, the sink is pushing queries targeting sensors in
one corona. Having collected and aggregated locally the
sensory data, as discussed in [18], the answer is routed to
the sink. Figure 2 illustrates a possible path along which
the result of the task (i.e. the answer to the corresponding
query) performed by a subset of the sensors in the outer-
most corona is routed to the sink. Notice that each hop
involves sensors from adjacent coronas.

IV. ROUTING-RELATED ENERGY EXPENDITURE

Since our results involve reasoning about the en-
ergy spent by various sensors, it is important to begin
by specifying the energy consumption model assumed
throughout this paper. Specifically, we assume that the
amount of energy expended to transmit a message of unit
length a distance d away from the sender is

Ed = adα + b (1)

where 2 ≤ α ≤ 6 and a and b are positive constants. By
normalizing in the obvious way we obtain the equivalent
form

Ed = dα + c (2)

where c is a technology-dependent positive constant.
While c is a function that depends on a large num-
ber of parameters and whose exact evaluation is quite
challenging [21], under present-day sensor technology
a reasonable approximation of c, valid for values of α
in the range above is about 4500 [5], [6], [10]. With
the exception of Subsection VII-C where a numerical
example is offered, we consider c to be, simply, a positive
constant.

θ

2A

1A

kA

k
r

2
r

1
r

Fig. 3. A wedge W and the associated sectors.

Consider an arbitrary wedge W subtended by an angle
of θ and refer to Figure 3. W is partitioned into k
sectors A1, A2, . . . , Ak by its intersection with k concen-
tric circles, centered at the sink, and of monotonically
increasing radii r1 < r2 < · · · < rk = R. It is
important to recall that rk = R is a system parameter
and, thus, a constant.

For convenience of notation we write r0 = 0 and
interpret A0 as the sink itself.

Let n denote the total number of sensors deployed
in wedge W . We assume a uniform deployment with
density ρ. In particular, with A standing for the area of
wedge W , we can write

n = ρA =
ρθ

2
r2
k (3)

Let n1, n2, n3, . . . , nk stand for the number of nodes
deployed in the sectors A1, A2, A3, . . . , Ak, respectively.
Since the deployment is uniform, it is easy to confirm
that for every i, (1 ≤ i ≤ k),

ni = ρAi = ρ

∫ θ

0

∫ ri

ri−1

x dx dθ =
ρθ

2
(r2

i − r2
i−1). (4)

Let T denote the number of sector-to-sink paths
(henceforth, simply denoted by paths) that the wedge W
sees during the lifetime of the sensor network. By our
previous discussion there is a one-to-one map between
paths and tasks. Thus, T equals the total number of tasks
that the wedge can handle during the lifetime of the
network.

We make the following assumptions motivated by the
uniformity of the deployment:

• each sensor in W is equally likely to be the source
of a path to the sink

• for 2 ≤ i ≤ k, each sensor in sector Ai−1 is
equally likely to serve as the next hop for a path
that involves a node in Ai.

By virtue of the first assumption, the expected number
of paths originating at a node in W is

T

n
. (5)

Consider sector A1. Since the T paths have the sink as
their destination, the nodes in sector A1 must collectively
participate in all the T paths. Since A1 contains n1

nodes, the expected number of transmissions per node
is T

n1
. By (2), the energy expended by a node in A1 per

path served is rα
1 +c. Thus, the total energy E1 consumed

by a node in A1 to fulfill its routing obligations is

E1 =
T

n1
[rα

1 + c]
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which, by (4), can be written as

E1 =
T

n1
[rα

1 + c] =
2T

ρθr2
1

[rα
1 + c] =

2T

ρθ

rα
1 + c

r2
1

. (6)

Let T denote the total number of tasks performed
by the entire wireless sensor network (not just wedge
W ) during its lifetime. Assuming that the T tasks are
uniformly distributed throughout the sensor network, and
recalling the one-to-one map between tasks and sensor-
to-sink paths, we can write

Using
T

2π
=

T

θ
. (7)

By (6) and (7) combined, the total energy needed by
a node in A1 to handle its routing duties is

E1 =
T

ρπ

rα
1 + c

r2
1

. (8)

At this point it is important to note that given α and
c, we can determine r1 in such a way that expression
of E1 in (8) is minimized. Indeed, simple manipulations
(finding the value of r1 for which the derivative of this
function is = 0 for α > 2, and noting that the function
is decreasing for α = 2) show that the optimal values of
r1 (as a function of α and c) are given by

r1 =




(
2c

α−2

) 1
α for α > 2

tx if α = 2
(9)

It follows that

• If α = 2 then

Emin
1 =

T

ρπ

[
1 +

c

t2x

]
;

• If 2 < α ≤ 6 then

Emin
1 =

T

ρπ

αc

α − 2

(
2c

α − 2

)− 2
α

.

Therefore, we showed that for α > 2, all sensors
whose distance to the sink is min{tx, ( 2c

α−2)
1
α } should

report directly to the sink. It is important to note that
(9) implies that the optimal choice for r1 does not
depend on R, the size of the network. That is, the
optimal transmission radius for the sensors in the first
corona (closest to the sink) and the corresponding width
of that corona do not depend on the overall size of
the network. This is a counterintuitive and somewhat
surprising conclusion since one expected that the need
to help other sensors, when R increases, would imply
that the sensors in the first corona should reduce their

transmission radius. This is not the case for the optimal
choice.

We also note that the optimal value for r1 is also
bounded by the maximum transmission radius tx. That is,

the exact formula is r1 = min{tx,
(

2c
α−2

) 1
α }. However,

in this and other formulas that will similarly follow in
this article, we decided to keep expressions simple by
eliminating the tx bound. The bound, however, needs to
be observed and will have its straightforward impact on
derived conclusions.

Further, we note that the conclusions we made did
not depend on the selected angle θ for the wedge that
was taken for convenience only. That is, we could have
considered only one full angle (θ = 2π), and all derived
results remain the same. This means that the conclusions
are not bound to the particular training method in [18],
[26] but to any training that initially divides sensors into
coronas.

V. EVALUATING THE PER-SENSOR ENERGY

EXPENDITURE

In this section we turn to the task of evaluating the
energy expenditure per sensor in an arbitrary sector Ai

with i ≥ 1. Since the case i = 1 was handled in Section
IV we now assume i ≥ 2.
Observe that nodes in a generic sector Ai, (2 ≤ i ≤ k),
are called upon to serve two kinds of paths:

• paths originating in a sector Aj with i < j ≤ k,
and

• paths originating at a node in Ai.

It is easy to confirm that the number of paths involving
nodes in Ai includes all paths except those originating
in one of the sectors A1, A2, . . . , Ai−1. Therefore, by
(5), the total number of paths that the nodes in Ai must
handle is

T − T

n
(n1 + n2 + · · · + ni−1).

By (3) and (4) combined with elementary manipulations,
this expression can be written as

T

[
1 −

∑i−1
j=1(r

2
j − r2

j−1)
r2
k

]
= T

[
1 − r2

i−1

r2
k

]
. (10)

Recall that sector Ai contains ni nodes. This implies that
each node in Ai must participate in

T

ni

[
1 − r2

i−1

r2
k

]
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paths. Using (4), the number of paths handled by each
node in Ai can be written as

2T

ρθ

[
1 − r2

i−1

r2
k

]
1

r2
i − r2

i−1

. (11)

Observe that the width of sector Ai is ri−ri−1. It follows
that the transmission range needed to send information
between Ai and Ai−1 is ri − ri−1. Using (2), the energy
expended by a node in Ai to send information to sensors
in Ai−1 is

(ri − ri−1)α + c.

Let the total amount of energy expended by a node in
Ai be Ei. By (7) and (11), we have

Ei =
T

πρ

[
1 − r2

i−1

r2
k

]
(ri − ri−1)α + c

r2
i − r2

i−1

. (12)

VI. OPTIMIZING THE ENERGY SPENT PER PATH

The main goal of this section is to derive a relation
between the various radii 0 < r1 < r2 < · · · < rk = R
in such a way that total energy spent per routing path
is minimized. For this purpose, let Ei denote the total
amount of energy expended by the sensors along a
generic path transferring data from sector Ai to the sink.
As before, write r0 = 0 and assume that A0 is the sink
itself. Since in transmitting from Aj to Aj−1 (2 ≤ j ≤ i),
the amount of energy spent is (rj−rj−1)α+c, it follows
that

Ei =
i∑

j=1

[(rj − rj−1)α + c] . (13)

Recall the Lagrange identity [4] (page 64)

∑
1≤p<q≤i

(apbq−aqbp)2 =


 i∑

p=1

a2
p





 i∑

p=1

b2
p


−


 i∑

p=1

apbp




2

.

For every j, (1 ≤ j ≤ i), write aj = (rj − rj−1)
α

2 and
bj = 1. Noticing that

i∑
p=1

a2
p = Ei − ic, (14)

and that
i∑

p=1

b2
p = i, (15)

and substituting (14) and (15) in Lagrange’s identity, we
obtain

∑
1≤p<q≤i

(ap − aq)2 = i(Ei − ic) −

 i∑

p=1

ap




2

.

Thus, we can write

i(Ei − ic) =


 i∑

p=1

ap




2

+
∑

1≤p<q≤i

(ap − aq)2. (16)

Clearly, the left-hand side of the above equality is
minimized whenever∑

1≤p<q≤i

(ap − aq)2 = 0

which occurs if and only if

a1 = a2 = a3 = · · · = ai

Thus, for some positive number d we have

for every j, (1 ≤ j ≤ i), rj − rj−1 = d. (17)

It is easy to see that equation (17) implies

ri = id. (18)

and so, substituting in (13) we obtain

Ei = i (dα + c) .

To summarize, we have proved the following result.
Theorem 6.1: In order to minimize the total amount

of energy spent on routing along a path originating at
a sensor in corona Ai and ending at the sink, all the
coronas must have the same width d and the optimal
amount of energy is i times the energy needed to send
the desired information between adjacent coronas.

Observe that the optimal value of d in Theorem 6.1 is
suggested by (9). Thus, we have

d =


 min{tx,

(
2c

α−2

) 1
α } for α > 2

tx if α = 2.

We now argue that the conditions of path optimality
captured by Theorem 6.1 translate into excessive energy
consumption around the sink, leading to the creation of
an energy hole. To see that this is the case, recall that
by (8), (12), (17) and (18), combined, we can write

Ei = E1 × k2 − (i − 1)2

k2
× 1

2i − 1
. (19)

To get an idea of how much imbalance there is between
the sensors in various coronas, consider R = 240m and
α = 3.5. Using the formula above we obtain d = 12m
and, consequently, k = 20. Table I summarizes the
energy ratio Ei

E1
for various values of i between 1 and

20. It is instructive to note that for i = 10 we obtain
E10 = E1 × 319

7600 = E1 × 0.04197... Consequently, the
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energy expended by a sensor in the 10-th corona is only
about 4.197% of the energy spent by a sensor in the first
corona. Worse, yet, by taking i = k = 20, we obtain
E20 = E1 × 1

400 implying that the energy expenditure of
a sensor in the last corona is 400 times smaller than the
expenditure of a sensor in the first corona.

Corona Energy ratio
1 1
2 0.3325 . . .
3 0.1980 . . .
4 0.1396 . . .
5 0.1066 . . .
6 0.0852 . . .
7 0.0700 . . .
8 0.0585 . . .
9 0.0494 . . .
10 0.0419 . . .
11 0.0357 . . .
13 0.0256 . . .
15 0.0157 . . .
17 0.0109 . . .
19 0.0051 . . .
20 0.0025 . . .

TABLE I

Illustrating various energy ratios.

VII. BALANCING THE ENERGY EXPENDITURE

The goal of this section is to tailor the coronas in such
a way that the energy expenditure is balanced across all
the coronas. In other words, we require that

E1 = E2 = · · · = Ek. (20)

In order to achieve this goal, we propose to determine
every ri, 2 ≤ i ≤ k, as a function of r1 and R. This will
be done by setting for all i, 2 ≤ i ≤ k,

∆i = ri − ri−1.

For uniformity of notation we write ∆1 = r1−r0, where
r0 = 0. Observe that for every i, 1 ≤ i ≤ k, ∆i is the
width of the i-th corona. It is intuitively clear that in
order to balance the energy expenditure across the entire
disk of radius R, the widths of the coronas must satisfy
the following inequality.

r1 = ∆1 < ∆2 < · · · < ∆i < · · · < ∆k ≤ tx. (21)

Notice that the inequalities in (21) must be strict for
otherwise, by Theorem 6.1, the energy expenditures
E1, E2, . . . , Ek cannot satisfy equation (20).

A. The iterative process

As it turns out, the ∆is can be determined iteratively
in a natural way. As we shall see shortly, ∆2 is obtained
as a result of writing E2 = E1; ∆3 is obtained from r2

and E3 = E1. More generally, ∆i is obtained from ri−1

together with Ei = E1. Clearly, once ∆i is available, ri

can be determined immediately from ri = ∆i + ri−1.
The iterative process is straightforward; the details are
presented next. To begin, by insisting that E2 = E1, we
obtain

T

πρ

[
1 − r2

1

r2
k

]
(r2 − r1)α + c

r2
2 − r2

1

=
T

πρ

rα
1 + c

r2
1

. (22)

Noticing that

(r2 − r1)α + c

r2
2 − r2

1

=
∆α

2 + c

∆2(∆2 + 2r1)

and replacing in (22) we obtain

∆α
2 + c

∆2(∆2 + 2r1)
=

rα
1 + c

r2
1

× r2
k

r2
k − r2

1

.

Now, writing

a1 =
rα
1 + c

r2
1

× r2
k

r2
k − r2

1

the previous relation becomes

∆α
2 − a1∆2

2 − 2r1a1∆2 + c = 0. (23)

Solving for ∆2 in (23) allows one to determine r2 =
r1 + ∆2 as a function of r1 and rk = R.

Now, assume that we have obtained ∆3, . . . ,∆i−1 in a
form similar to (23) where, for 2 ≤ j ≤ i − 1,

aj−1 =
rα
1 + c

r2
1

× r2
k

r2
k − r2

j−1

.

Having determined ∆3, . . . ,∆i−1 one can determine
r3, r4, . . . , ri−1.
To determine ri we insist that Ei = E1. Proceeding as
above we obtain the equation

∆α
i + c

∆i(∆i + 2ri−1)
=

rα
1 + c

r2
1

× r2
k

r2
k − r2

i−1

which becomes

∆α
i − ai−1∆2

i − 2ri−1ai−1∆i + c = 0 (24)

as soon as we write

ai−1 =
rα
1 + c

r2
1

× r2
k

r2
k − r2

i−1

.
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The above derivation was presented generically and
involved determining r2, r3, . . . rk as a function of r1

and, of course, rk = R. This then also, indirectly,
determines the number of coronas k.

Note that we have derived in [24] optimal corona
sizes by a different iterative method. After determining
the size of the first corona, the optimal size of the
last corona is determined. The obtained equation again
require applying some numerical analysis method, e.g.
bisection method, to be solved, which is the case with
other equations as well. The corona size determination
process then continues from the last ring towards the first
one until the cumulative obtained corona sizes exceed R;
at this point the optimal number of coronas is also found.

Notice that in the above derivations r1 is a parameter.
One would be tempted to chose the optimal value of
r1 suggested by (9). Unfortunately, this is not always
possible. The details of the selection of r1 are discussed
next.

B. Determining r1

Observe that all the equations developed in the pre-
vious subsection contained r1 as a parameter. Ideally,
then, we should set r1 to the value determined in (9)
and determine r2, r3, · · · , rk accordingly. Unfortunately,
things are not that simple. While the optimal value for
r1 derived in (9) does not depend on R, it does depend
implicitly on tx. Thus, if we start with too large a value
for r1 in the iterative process of determining the widths
of the coronas, it may happen that the last inequality in
(21) is violated.

Consequently, we need to choose a value for r1 in
such a way that last inequality in (21) holds. This, in
turn, will specify whether or not the optimal value of r1

in (9) may be used or else a sub-optimal value must be
chosen. We shall obtain the limiting inequality for r1 by
expanding the equality

Ek = E1.

By using (12) with i = k and i = 1 we obtain

Ek =
T

ρπ

[
1 − r2

k−1

r2
k

]
× (rk − rk−1)α + c

r2
k − r2

k−1

=
T

ρπ

rα
1 + c

r2
1

which, after some mechanical manipulations, can be
written as

(rk − rk−1)α + c

r2
k

=
rα
1 + c

r2
1

.

Noticing that rk −rk−1 is precisely ∆k and replacing rk

by R we obtain

∆α
k + c

R2
=

rα
1 + c

r2
1

and, finally,

∆α
k =

R2(rα
1 + c)
r2
1

− c. (25)

Since we must have ∆k ≤ tx, (25) implies the following
limiting inequality

rα
1 − tαx + c

R2
r2
1 + c ≤ 0. (26)

To summarize, the value of r1 is dictated by both (9)
and by inequality (26). In practice, the closest value to
the optimal is selected subject to (26) being satisfied.

C. A numerical example

The goal of this subsection is to illustrate, by a nu-
merical example, the generic computation in Subsections
VII-A and VII-B above.

The assumed system parameters are: R = 225m, c =
4500, tx = 55m, α = 4. Using (9) we obtain the initial
value r1 = 8.19m. In order to check whether this value
can be used, we first write down the limiting inequality
(26) for r1. With the parameters above, this inequality
reads:

r4
1 − 180.842 ∗ r2

1 + 4500 ≤ 0

It is easy to see that the optimal value r1 = 8.19 does
satisfy the limiting inequality and, therefore, we can
proceed.

First Iteration: a1 = 134.16 and the equation that yields
∆2 is

∆4
2 − 134.16∆2

2 − 2200.26∆2 + 4500 = 0.

whose solution is ∆2 = 15.95, and thus r2 = 24.14m.
Second Iteration: a2 = 135.65 and the equation is

∆4
3 − 135.65∆2

3 − 6549.39∆3 + 4500 = 0.

whose solution is ∆3 = 20.95, and so r3 = 45.09m.
Third Iteration: a3 is 139.52 and the equation to solve
is

∆4
4 − 139.52∆2

4 − 12582.49∆4 + 4500 = 0.

whose solution is ∆4 = 25.15, from which we obtain
r4 = 70.24m.
Fourth Iteration: a4 = 147.96 and the equation is

∆4
5 − 147.96∆2

5 − 20785.31∆5 + 4500 = 0.
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whose solution is ∆5 = 29.22 and, further, r5 = 99.46m.
Fifth Iteration: a5 = 165.01 and the equation to solve
is

∆4
6 − 165.01∆2

6 − 32825.46∆6 + 4500 = 0.

whose solution is ∆6 = 34.69. Now, r6 = 134.15m.
Sixth Iteration: a6 = 201.78 and the equation is

∆4
7 − 201.78∆2

7 − 53735.86∆5 + 4500 = 0.

whose solution is ∆7 = 40.50, and thus r7 = 174.65m.
Seventh Iteration: a7 = 307.23 and the equation is

∆4
8 − 307.23∆2

8 − 106102.12∆5 + 4500 = 0.

whose solution is ∆8 = 49.98, and so r8 = 224.63m.

Consequently, the disk around the sink is partitioned into
8 coronas whose width are summarized in Table II below.

Corona Width (m)
1 8.19
2 15.95
3 20.95
4 25.15
5 29.22
6 34.69
7 40.50
8 49.98

TABLE II

Illustrating the width of various coronas.

VIII. A CLOSER LOOK AT THE CASE α = 2

The main goal of this section is to prove the following
negative result.

Theorem 8.1: In α = 2 then E1 = E2 = · · · = Ek

cannot hold, regardless of the value of R, tx and c.

Proof. We propose to show that regardless of the pa-
rameters R, tx and c, it is impossible to have E2 =
E1. Indeed, suppose that E2 = E1 does hold. This is
equivalent to writing

E2 =
T

ρπ

[
1 − r2

1

rk

]
× (r2 − r1)2 + c

r2
2 − r2

1

=
T

ρπ

r2
1 + c

r2
1

= E1

which, after some mechanical manipulations, can be
written as

∆2
2 + c

∆2(∆2 + 2r1)
=

r2
1 + c

r2
1

× R2

R2 − r2
1

.

Now writing

a1 =
r2
1 + c

r2
1

× R2

R2 − r2
1

(27)

and performing simple algebra we obtain the equation

(a1 − 1)∆2
2 + 2a1r1∆2 − c = 0. (28)

Case 1: a1 = 1
In this case, we have

∆2 =
c

2a1r1
=

c(R2 − r2
1)r1

2(r2
1 + c)R2

.

By insisting that r1 = ∆1 < ∆2 as in (21), we obtain

c(R2 − r2
1)

2(r2
1 + c)R2

> 1.

However, this is impossible since R2 − r2
2 < R2 and

c < r2
1 + c.

Thus, Case 1 cannot occur.

Case 2: a1 �= 1
In this case, solving for ∆2 in (28) yields

∆2 =
−a1r1 +

√
a1r1 + c(a1 − 1)
a1 − 1

.

By (21), we insist that r1 = ∆1 < ∆2. Since a1 �= 1,
this amounts to writing

−a1r1 +
√

a1r1 + c(a1 − 1) > (a1 − 1)r1

or, equivalently,√
a1r1 + c(a1 − 1) > (2a1 − 1)r1

After simple algebra we obtain

c(a1 − 1) > (3a1 − 1)(a1 − 1)r2
1

which is equivalent to

c > (3a1 − 1)r2
1.

Now, replacing in this latter inequality the value of a1

from (27) and letting x stand for r2
1 we have

c >
x2 + 2xR2 + 3R2c

R2 − x
which is equivalent to

x2 + (2R2 + c)x + 2R2c < 0

an impossibility. This concludes the proof of the theorem

Theorem 8.1 suggests that for α = 2 there is no way
to balance the energy load and, consequently, sooner
or later an energy hole will appear around the sink,
drastically curtailing the useful lifetime of the networks.
Nonetheless, from an energy consumption standpoint,
the best strategy is to design all the coronas to be of
the same width. In this case (9) implies that the best
value is r1 = tx.
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IX. REASONING ABOUT THE SYSTEM PARAMETERS

Let E denote the total energy budget of a sensor at
deployment time. Since the sensors in A1 must have
sufficient energy to handle their routing duties, by using
(8) we can write

T

ρπ

[
rα−2
1 +

c

r2
1

]
≤ E. (29)

Inequality (29) can be interpreted in several ways,
each expressing a different view of the limiting factors
inherent to the sensors deployed. The goal of this sub-
section is to look at some of possible interpretations of
(29).

Network longevity We interpret T , the number of trans-
actions that the system can sustain during its lifetime as
the network longevity. Thus, (29) allows us to write

T <
ρπEr2

1

rα
1 + c

(30)

which tells us that the longevity of the system is up-
per bounded by the ratio (30). More specifically, the
longevity is directly proportional to the deployment
density and to the reciprocal of rα

1 + c. Consequently,
if we wish to design a wireless sensor network that
must sustain a given number T of transactions, we must
select the deployment density as well as the radius of the
first corona accordingly. We also need to chose sensors
packing an amount of energy compatible with (30).

Maximum transmission range close to the sink First,
assuming a known deployment density2 ρ, (29) shows
that for a given energy budget E, in order to guarantee
a desired network longevity of T tasks, the (maximum)
transmission radius of sensors deployed in close prox-
imity to the sink must satisfy

rα−2
1 +

c

r2
1

<
πρE

T
(31)

with the additional constraint that r1 ≤ tx where, recall,
tx stands for the maximum transmission range of a
sensor.

Deployment density Likewise, for a selected radius
r1, (tx ≥ r1), and for a given energy budget E, in

2It is important to note that given the deployment area, the density
can be engineered beforehand by simply deploying a suitable number
of sensors uniformly at random.

order to guarantee a network longevity of T tasks, the
deployment density ρ must satisfy the inequality

ρ >
T [rα

1 + c]
Eπr2

1

. (32)

This latter equation can also be used (perhaps in con-
junction with (30) to plan future re-deployments as the
existing sensors exhaust their energy budget.

X. CONCLUDING REMARKS

This paper investigated theoretical aspects of the un-
even energy depletion phenomenon recently noticed in
sink-based wireless sensor networks. We assumed an
energy consumption model governed by the relation
E = dα +c where d is the transmission distance and c is
a system-dependent positive constant. First, we showed
that for α = 2, the uneven energy depletion phenomenon
is intrinsic to the system and no routing strategy can
avoid the creation of an energy hole around the sink.
Second, we argued that for larger values of α the uneven
energy depletion phenomenon is an artifact of design-
ing energy-efficient sensor-to-sink routes. This is rather
counter-intuitive. We also showed that for larger values
of α the uneven depletion can be prevented by judicious
system design. In such a system, the energy expenditure
is balanced across the network, but suboptimal.

There are several other ways to counter the uneven
energy depletion problem. Perhaps the most obvious
strategy is to mandate the sinks to move around in such
a way that some load balancing is obtained across the
deployment area [13]. This solution works especially
well in autonomous sensor networks [19]. Yet another
solution involves establishing temporary sinks that act
as ad-hoc aggregation points. Finally, as discussed in
[8], a certain amount of load balancing is obtained by
overlapping the disks around the sinks.

Our study was limited to the case where each sensor
reports to one sink. Extensions to a multi-sink configu-
ration are possible. First, if the sinks are deployed at
random, then each sensor may decide which sink to
report to, and this may not necessarily be the closest one.
Next, the sinks may have limited or unlimited energy
resources. Our results assume that sinks have relatively
unlimited energy compared to individual sensors. The
next step is to extend our results for the case of sinks
with limited energy, and to find optimal design of sensor
networks that balance energy between sensors and sinks.
This extends known results assuming fixed transmission
radius to the case of adjustable transmission radii.
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We have observed that transmission radii of coronas
increase as we move away from the sink. Since they are
limited by the maximum transmission radius tx, there
exist a maximum i such that the width of the i-th corona
is still ri − ri−1 < tx. Beyond this point, all coronas
have radius limited by tx. Considering our results, this
means that energy imbalance is unavoidable among such
coronas. If one can place sinks at strategic locations
rather than at random, it appears that an optimal design
should consider these limitations. That is, the radius R =
ri for each sink should be selected so that the energy of
sensors within this radius can be balanced. However, the
determination of optimal R is not straightforward since
corona sizes depend on R. Fortunately, we can modify
the inequality (26) to read: rα

1 − tα
x+c
R2 r2

1 + c = 0 which
allows optimal R to be determined directly. Therefore we
have shown that the optimal network radius around the
sink, which allows that energy expenditure at all sensors
to be balanced, is also merely a function of α, c and
tx. Assuming that energy at sinks is unlimited, sinks
can then be placed at strategic locations, e.g. vertices
of a regular hexagon of sides approximately R, so that
each sensor is at distance at most R to the nearest sink.
Note that hexagonal size here is approximated rather than
equated with R because of difference between circular
and hexagonal shapes for regions around each sink. This
may require some details to determine precise value for
the size of this hexagon.

In [24] we have studied the case of preserving equal
transmission radii and therefore equal corona sizes, and
balancing energy consumption by applying nonuniform
sensor distribution. Let ρi be the sensor density in i-
th corona. The energy consumption will be balanced if
ρi is proportional to k + 1 − i, where k is the optimal
number of coronas [24]. That is, the densities should be
proportional to k, k − 1, . . . , 1, from the closest corona
to the sink to the furthest one. Details will be also given
in the journal version of this article.
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