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Abstract: This paper focuses on the potential of integration of Multiple Learning Activities in 

Interactive Constructions (MLA -ICs), appropriate to support student  learning of a specific learning 

subject. In fact, these constructions could be transformed using appropriate macros to support a variety 
of learning activities, beginning with real-life activities and gradually moving to more sophisticated 

scientific activities. In addition, these constructions can be transformed in a way that supports student

learning of a variety of related concepts. The idea, the architecture and the interface associated with 

MLA-ICs was the result of a modeling process including field studies and using real students. The

general concept, the design, the architecture and the interface of MLA-ICs is presented through a 
specific example for the learning of a mathematical theorem - Thales’ theorem - within the context of 

tools from the well-known e-learning environment, Cabri-Geometry II (Laborde, 1990). 
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Introduction

Traditional, behavioristic learning theories emphasize the teacher-telling approach, which puts the teacher at the 

center of the teaching (Skinner, 1968). These theories acknowledge a good, sequential presentation of the learning 

subject by the teacher and the passive-listening role of the learner. In the context of these traditional theories, the 

role of a learning activity is to give learners opportunities to implement the rules given by the teacher. These 

activities are usually meaningless for learners and take the form of ‘drill and practice’ activities. In contrast to these 

theories, social and constructivist theories of learning acknowledge the active, subjective and constructive character 

of knowledge construction, while at the same time putting the learner at the center of the learning process (von 

Glasersfeld, 1987; Vygotsky, 1978; Noss and Hoyles, 1996). To this end, the role of learning activities is crucial to 

the motivation of learners being passionately engaged in their learning (Nardi, 1996). In fact, social and

constructivist learning theories acknowledge the role of real-life activities that are familiar for learners. In addition,

investigative and exploratory learning activities are appreciated as playing an essential role in enabling learners to 

construct their knowledge actively rather than simply agreeing/disagreeing with their teachers’ opinions and 

statements. Holistic, real-life activities are also considered to be essential in enabling learners’ higher mental 

functions. Moreover, problem-solving activities are viewed as having a significant role to play in learners’ cognitive 

development. Furthermore, multiple solution activities can be used to help learners to express their inter-individual

and intra-individual differences in terms of the learning subject in focus and also to acquire a broad view of this 

subject (Kordaki & Balomenou, 2006).

Constructivist computer learning environments are ideal for implementing all the types of activity described 

above (Laborde and Laborde, 1995). Dynamic Geometry Systems , such as the well-known educational software 

Cabri-Geometry II (Laborde, 1990), provide learners with a variety of capabilities (Laborde, 1990; Mariotti, 1995; 

Holzl, 2001), namely: a) high level of interaction, b) direct manipulation of the geometrical constructions formed by

using the ‘drag mode’ operation and the tools provided. Learners can exploit this capability to form and verify 

conjectures and hypotheses by directly manipulating the geometrical figures they constructed and reflecting on the 

variety of figures constructed, while at the same time conserving their properties, c) visual feedback on learner

actions. This feedback can help students to self-correct their learning attempts, d) numerical feedback on a variety of 

mathematical entities and mathematical relationships. This kind of feedback can encourage learners while forming 

and verifying mathematical conjectures and generalizations, e) a variety of tools for the digital representation of a 

number of concepts of Euclidean geometry, f) a variety of tools of different cognitive transparency, from which 
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learners can select the most appropriate to express their knowledge and to solve problems in multiple and different 

ways, g) multiple and linked representation systems. Using a variety of representation systems, learners can observe 

how the variation of a variable in one system can affect the variation of this variable in another representation 

system, h) extension through the availability of specific macro construction. In fact, Cabri can be extended by its 

users - teachers, researchers and learners - who are able to add specific macros to its interface.

Designers of e-learning activities have to exploit the advantages of the electronic media that they have decided to 

use to the full, while at the same time taking into account modern theories of learning. Cabri has strong capabilities 

for the design of learning activities that encourage learners to: take an investigative perspective, express their inter-

individual and intra-individual learning differences, make self-corrections, formulate and verify conjectures and 

exploit the advantages to be had from negotiating their knowledge with that of their classmates in cooperative

settings (Straesser, 2001). In addition, authentic meaningful real-life  learning activities can be integrated within the 

context of Cabri to develop strong learner motivation. Six types of interactive constructions, supporting the

realization of equal-in-number learning activities, have been proposed as appropriate to be performed by students 

within the context of Cabri-Geometry II (Laborde, 2001; Kordaki & Balomenou, 2006; Kordaki & Mastrogiannis, 

2006), namely: a) Cognitive transparent interactive constructions. These constructions can help learners to

form/verify conjectures and hypotheses by engaging the learner to focus on the alteration of the form of a geometrical 

construction using the drag-mode operation. For example, when a student draws a triangle and the bisectors of its 

angles, they can conjecture that ‘the bisectors of the angles of a triangle always intersect internally at a single point’. 

In this way, students can also verify this conjecture, somehow formed from their general experience. b) Cognitive

transparent interactive constructions with an emphasis on the display of specific measures. These constructions can 

help learners to form/verify conjectures by focusing on the numerical data automatically collected during the 

alteration of a geometrical construction using the drag-mode operation. c) Cognitive opaque interactive constructions

interlinked with interactive formulae. By interacting with this kind of construction, learners can be helped to verify a 

formula by focusing on the numerical data automatically collected during the alteration of a geometrical construction 

using the drag-mode operation. d) Cognitive opaque interactive constructions. These constructions can support 

students to participate in activities where they have to explore such geometrical constructions with some of their 

properties hidden and which they then have to discover. e) Interactive constructions simulating real-life problems. In 

the context of Cabri, real-life problems can be simulated by constructing specific macros (Kordaki, 2005). Such real-

life problems can help students to develop strong motivation in their learning (von Glasersfeld 1987). f) Multiple,

interactive individual constructions supporting the performance of multiple-solution activities.  As Cabri provides a 

variety of tools and operations, these can be effectively combined to support the performance of multiple -solution

activities. Specific constructions allowing the integration of all the above type of activities have not yet been reported.

In the next part of this paper, the design and the architecture of these types of interactive constructions –the MLA-

ICs- are presented, followed by a typical example of this architecture, constructed for the learning of Thales’ theorem 

within the context of Cabri-tools . The proposed architecture is subsequently discussed and conclusions are drawn.

The Design of Multiple-Learning-Activity Interactive Constructions 

The design of MLA-ICs was based on a process of modeling (Kordaki, 2004) consisting of the design of three 

sub-models, namely: i) the subject-matter model emphasizing the essential parts of the learning subject and the 

student activities necessary for its learning, as have emerged from the literature, ii) the learning model, taking into 

account modern, social and constructivist theories of learning (von Glasersfeld, 1987; Noss & Hoyles, 1996; 

Vygotsky, 1978), and iii) the students’ model for performing essential activities aiming at the learning of the specific 

learning subject in focus. These models were constructed at two levels : a) the educational level, where the models 

were described in educational terms and b) the design level, where these models were interpreted in terms of design 

specifications, taking into account the features of the educational software proposed for use. Taking these

specifications into account, appropriate educational paper and pencil and electronic materials were formed. To 

establish the reliability of both these materials and the implied aforementioned models , a three-phase design was 

implemented (Kordaki, 2004): a) a top-down design phase, where the designers’ knowledge of the three

aforementioned models  was taken into account to form educational materials regarding the learning concepts in 

focus, b) a testing phase for the designed learning materials , using real students  with emphasis on the feedback the

students  gave, and c) a re-design phase where the data emerg ing from the testing phase were exploited for the re-

design of the three aforementioned models and the reformation of the learning materials , including the software-

based constructions dedicated for student interaction. Based on the data, these last models can be viewed as being

more consistent with student learning characteristics, in terms of the learning concepts in focus. With these last 
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models being taken into account, MLA-ICs were formed. The aforementioned design process and the architecture of 

MLA-ICs are presented in some detail in the next section of this paper within the context of a specific example: the

formation of learning materials for Thales’ theorem exploiting the features of Cabri-Geometry II.

The top-down design phase

In designing the subject-matter model, the designer considered it essential to provide learners with opportunities: 

a) to verify the Thales’ theorem formula by their own involvement in experimental situations, b) to recognize 

geometrical problems where the Thales’ theorem will be useful and to apply the associated formulae successfully to

provide solutions to these problems, and c) to acknowledge the significance of Thales’ theorem in solving real-life

problems. On the basis of the above, four learning tasks were designed:

Task1. Using the appropriate Cabri-tools, construct 3 parallel lines e1, e2 and e3 and two other lines e4 and e5 

that intersect lines e1, e2, e3 on points A, B, G and A?, B??a? G?correspondingly. Define the segments ? ? , ? G,

? ???and ??G?. b) Calculate the fractions ? ? /? ???and ? G/? ?G?. Could you form any conjecture; c) Drag e1, e2, e3 

and e4, e5 and automatically tabulate the numerical data. Focus on this data. What do you observe? Could you form 

any generalization? The aim of this task was to encourage students to verify the Thales’ theorem formula by their 

own active experimentation with appropriate interactive geometrical constructions. 

Task2: Using the appropriate Cabri-tools, construct a trapezium ABCD and a parallel line to its bases that 

intersects segments AD and BC on points K, L. Could you use the Thales’ theorem you learned in the previous task?

The aim of this task was to assess student knowledge acquired in the previous task and to give them the opportunity 

to recognize geometrical problems where the Thales’ theorem can come in useful. 

Task3: Using the appropriate Cabri-tools, construct a triangle ABC and a parallel line (e1) to its base BC from 

vertex A. Construct also a parallel line e2 to the base BC that intersects segments AB and AC on points ZK. How 

can you use the Thales theorem you learned in Task 1? The aim of this task was also to assess student knowledge 

acquired in the previous tasks and to give them the opportunity to recognize various geometrical problems where the 

Thales’ theorem can come in useful.

Task4: In the dam presented on this screen (Figure 1), the lengths of segments AB, BG and A’B’ are known. Can

you find the length of segment B’G’? The interactive construction in Figure 1 was given ready for students to interact.

Figure 1. Diagrammatic presentation of the dam profile Figure 2. The general interface of MLA-ICs for the learning of 
Thales’ theorem through a real-life activity

The aforementioned tasks were presented to the students on paper activity sheets. The architecture of these 

activity sheets was in five parts: a) the aim of the activity, b) an analytical description of the keystrokes necessary 

for the design of the geometrical construction for interaction and study, c) instructions on how to use the necessary

Cabri-tools , d) a set of open investigative questions and e) a set of questions focused on specific topics. The aim of 

these questions was to help students to progress should they become stuck. 

The learning-model was constructed so as to exploit Cabri capabilities in shaping a learning context to encourage

students to: a) be actively involved in the construction of their knowledge by exploiting the variety of features

provided, b) make investigations and form/verify conjectures, hypotheses and generalizations by attempting direct 

manipulation of each geometrical construction at hand, c) reflect on both visual and numerical feedback from their 
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actions, leading to self-correction, d) be motivated by being involved in holistic, real-life tasks by providing

appropriately designed simulations of real problems. Construction of the student- model for the learning of the

previously mentioned subject-matter and performing the said tasks within the context of the aforementioned 

learning-model proved impossible at this stage of the experiment, as no relative information was available in the 

literature. Since no extra information from the design of this model was forthcoming, the previous models and, 

subsequently, the aforementioned tasks, were not transformed at this stage.

The testing phase

All the interactive constructions and the activities designed in the previous phase were tested in a genuine

classroom during a teaching experiment (Cobb and Steffe, 1983) with the participation of 25 ninth grade students.

The duration of the experiment was about 2 hours and the data sources were the students’ working sheets and the 

field notes of the researcher. In terms of research methodology, this is a qualitative study (Cohen and Manion, 1989). 

The analysis of the data emerging from this experiment showed that:  a) all students verify the truth of the Thales’ 

theorem formu la after experimentation with the interactive construction they formed following the instructions given. 

Specifically, students dragged the parallel lines e1, e2, e3 and the lines e4 and e5 and automatically tabulated the 

numerical data for the fractions ??/? ?? ?and ? G/??G. However, students were unable to generalize or form Thales’

statement. b) no student was able to use Thales’ theorem in the remaining tasks. In my opinion, this  was due to the 

fact that they did not invent this theorem but simply verified it. c) all students expressed their interest in studying the 

real-life problem - the dam problem - because they found meaning for Thales’ theorem in this problem. However, 

students had difficulties in understanding the similarities of the geometrical constructions implied in all the tasks 

given, and consequently in finding it  reasonable to use Thales’ theorem. Actually, students conceived all the tasks as 

being different. d) all the students became  bored due to the, for them, excessive number of keystrokes needed to

form the constructions mentioned in the tasks. In fact, the key stroking process was, indeed, time -consuming and

detached the students’ focus from the learning aims of each specific construction. e) students were confused shifting

from paper and pencil, where they read about the tasks and answered the relative questions, to Cabri where they 

performed the tasks. As a result , it was decided to transform the paper and pencil materials into Word documents 

and to repeat the whole experiment. Unfortunately, the results were the same; consequently, major changes in the 

design of the activities were deemed necessary, taking into account all the above feedback. These changes are 

presented in the next section of this paper. 

The re-design phase and the generation of the idea of MLA-ICs

Major changes in the design of the whole activity-context were decided upon due to the feedback given by the 

students during the ‘testing phase’ of this experiment. These changes related to: a) providing the students with ready 

interactive constructions to experiment with, aiming to avoid  cognitive load and superfluous keystrokes, b) avoiding

the use of mixed materials , such as paper and pencil, Word documents and Cabri constructions, and integrating all 

the necessary information into the same Cabri screen, including questions, task description, technical instructions

and interactive geometrical constructions, c) avoiding the association of one specific interactive construction per 

task and integrating all the aforementioned interactive constructions into one interactive construction. This

integrated construction could be used to realise all 4 learning tasks. To accomplish this , it was essential to use the

features of Cabri to form specific macros. To implement all these decisions, we came up with the general idea of 

MLA-ICs. To embody this idea, a general architecture of MLA -ICs was created and displayed on a specially-

designed interface (see Figure 2). The aim of MLA -ICs is  to help students study specific learning concepts through a 

variety of tasks. This architecture is in five parts, namely: a) information, b) open questions, c) focused questions, d) 

help and e) a number of Jointed interactive Constructions (JCI, I=1…n), supporting student experimentation with 

different aspects of the learning concept, different activities and different learning contexts such as real-life contexts, 

geometrical contexts etc. MLA -ICs for the learning of Thales’ theorem consisted of the following Jointed

Constructions (JC):

JC1: This is an interactive simulation of the real-life problem, viewed as appropriate for giving meaning to the 

learning concepts in focus. Figure 2 presents the interactive construction, allowing student experimentation with 

Thales’ theorem in the aforementioned real-life problem (Task 4). It is essential to encourage students to start with 

this construction simulating a real-life problem - the dam problem - and then proceed to adapting this construction in 

such a way as to facilitate the student experimentations and investigations necessary to complete the remaining 3 

tasks. The real-life problem was deemed appropriate for motivating students to study Thales’ theorem. This problem 

could be posed in the following way: ‘The measures of segments AG and A’G’ are known from the construction of 

the dam.  The measure of segment AB can be also calculated because there are some specific indicators on the edge 

AB. However, we need to know the height of the water at any time so that we can calculate the amount of the water 



ELEARN 2006 Proceedings - Page 1272

in the dam. This is important for the distribution of this water to the people of the neighboring village according to 

their rights. Is there any way to find this height without swimming or using any electronic tachometric devices?’

Figure 3. The general interface of MLA-ICs for the learning of 
Thales’ theorem in a geometrical sense

Figure 4. The general interface of MLA-ICs for the learning of 
Thales’ theorem in triangles

JC2: This is a basic interactive construction (see Figure 3) that is appropriate for students to study Thales’

theorem in a geometrical sense (Task 1). This can be produced by automatically omitting the water and the cement 

from construction JC1 using specific macros.

JC3: This is an extra interactive construction necessary for the students to study a specific case such as the use of 

Thales’ theorem in triangles (task 3, see Figure 4).  This can be produced by dragging line e4 (illustrated in 

construction JC2) until point A overlaps point A’. 

JC4. This is another interactive construction necessary for students to study the use of Thales’ theorem in 

trapeziums (Task 2). This can be produced by illuminating only part AA’GG’ of JC2 and hiding the rest of the 

construction by using specific macros.

The general interface of MLA-ICs. As is shown in Figures 2, 3 and 4, the interactive construction at hand is in the 

centre of the screen and can be managed through both direct manipulation and a navigation bar. Each of the parts of 

this bar is  dedicated to the management of a specific part of the said construction. Each part of this interactive

construction supports the performance of a specific learning activity. Each part of the navigation bar consists of 

specifically designed buttons (top right sector of the screen). By using some of these buttons, a part of the whole 

construction could be illuminated or hidden. Other buttons could also be used to provide: a) text -based information 

regarding the sub-activity at hand. b) appropriate questions so as to assess student knowledge, and c) instructions to

manage the construction in focus. 

Conclusion

This paper has presented the idea of integrated-interactive constructions that could support the realization of 

multiple learning activities (MLA -ICs). This idea and the specific design of MLA -ICs have emerged from a field 

study using real students. MLA -ICs were designed as a result of the modeling process, including the construction of 

three models: a) the subject-matter model, b) the learning model and c) the learners’ model while performing the 

specific tasks proposed for learning the subject matter within the framework of the learning model. This modeling 

process was realized through three phases: a) a top-down design phase, where the designers’ views on the

aforementioned models was taken into account, b) a testing phase, where the learning materials based on this 

previous design were tested using real students and c) a re-design phas e, where the feedback given by the students 

was taken into account when redesigning the whole learning context. As a resul, the idea of MLA -ICs was 

generated. A specific architecture for the design of MLA -ICs also emerged as well as  an interface-design

appropriate for the interaction of students with these constructions. The proposed architecture for MLA -ICs is in five

parts: a) information, b) open questions, c) focused questions, d) help and e) a number of jointed interactive 
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constructions supporting student experimentation with different aspects of the learning concept, different activities 

and different learning contexts such as real-life contexts, geometrical contexts etc. Each part of the proposed 

architecture is projected on specific parts of the computer screen. Consequently, the interface-design for MLA -ICs is

also in five parts. Specific parts of the MLA-ICs can be illuminated/hidden using specific buttons. For MLA-ICs to

be constructed, it is necessary to have the ability to construct specific macros. To clarify the concept of MLA -ICs,

an example of such constructions has been demonstrated. These constructions were dedicated for the learning of the 

mathematical notion of Thales’ theorem, exploiting the features of Cabri-Geometry II. 
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