
A Multiple Representational Environment
for Learning Programming and C

Konstandina Zikouli1 , Maria Kordaki1,2 and Elias Houstis3

1 Dept. of Computer Engineering & Informatics Univ. of Patras, 26500, Patras, Greece
2 Computer Technology Institute, 26500, Patras, Greece,

3Dept. of Computer Engineering & Telecommunications, Univ.of Thessaly, Volos, Greece
e-mail: zikouli@ceid.upatras.gr, kordaki@cti.gr, enh@inf.uth.gr

Abstract
In this paper we present the design and the basic

features of a computer Learning Environment for
programming and C using Geometrical Objects
(L.E.C.G.O.). The design of this environment was the result
of modeling. Basic aspects of constructivism have also been
taken into account in its design. L.E.C.G.O. provides the
pupils with opportunities to: a) express their problem
solving strategies in multiple representation systems
starting from intuitive representations and moving
gradually to more sophisticated ones, b) solve a variety of
familiar and meaningful problems, and c) overcome the
cognitive load of the syntactical rules of programming in C
by using appropriately designed computer-based authoring
tools. A similar environment has not yet been reported.

Programming is not just a specific topic among others in
the computer science and engineering (CS&E) curriculum
but a ‘mental tool’ of general interest. Programming can be
divided into four steps: a) comprehension of the problem at
hand, b) defining a solution to that problem, initially in any
form such as text-based, math-based, pseudocode, flow-
chart, c) translation of that form into a selected
programming language, and d) testing and debugging of the
resulting program. Pupils have serious difficulties in
performing all steps mentioned above. Good performance
in programming implies the learners’ ability to use different
and new representation systems in order to express their
problem solving strategies. The existing studies indicate
that there is a need for a novice-oriented programming
environment.

The general design of L.E.C.G.O. arose as a
transformation of the theoretical considerations regarding
three models: a) the learning model that reflects the
designers’ interpretations of constructivism and social
views of learning, b) the model of the subject matter that
refers to the basic aspects of programming and C, c) the
learner model that describes the possible learners’ actions
and difficulties in learning programming and C. The
construction of the models above emerged from the
literature. Comparing the design of L.E.C.G.O. to other
learning environments reported in the literature we stress:

a) The existence of multiple representations that facilitate
pupils to smoothly bridge the gap between intuitive and
formal solutions b) Problem solving activities taken from
the familiar and meaningful context of Geometry which
minimizes the cognitive load of the student providing
her/him with motivation, hands-on experience as well as
with essential intrinsic feedback. The multiple
representation systems provided by L.E.C.G.O. are
presented below :
1)Drawing-visual representations using hands-on
experience. Students can use all tools included in Cabri-
Geometry II to express their intuitive knowledge regarding
their solutions to the given geometrical tasks.
2)Free-text based representations. Here, pupils can express
their solution strategies using the familiar symbolic system
of natural language. This step calls pupils to reflect on their
previously acquired hands-on experience.
3)Text based representations using imperative and specific
expressions. Here, pupils have to transform their free-text
based solutions in the imperative.
4)Pseudo-code representations using basic algorithmic
structures. The previously constructed representations can
be transformed in pseudo-code by using a set of buttons
showing specific algorithmic structures.
5)Representations in C. A number of authoring tools
showing the skeletons of basic components of a program in
C are provided to help pupils in writing their programs.
6)Graphical output of the written programs. After the
pupils finish writing the code they in the position to
compile the program and see the visual results of their
programming attempts. This feedback can help them to take
control of their learning.

All representation systems above, except for the last
one, were designed to act as ‘transitional’ representation
systems to fill the gap between the pupils’ concrete
graphical solutions and the symbolic ones written in C.
These ‘transitional’ systems were designed to act as
scaffolding elements for those pupils who couldn’t directly
express their solving strategies in C. Pupils can express
their own thinking by using the first and the second
representation systems above while they can explore the
thinking of others by using the remaining representations.

L.E.C.G.O. was implemented using Microsoft V.B. 6.0.

mailto:zikouli@ceid.upatras.gr

