
1

2

3

4

5
6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
Computers & Education xxx (2007) xxx–xxx

www.elsevier.com/locate/compedu
R
O

O
FA computer environment for beginners’ learning

of sorting algorithms: Design and pilot evaluation

Maria Kordaki a,*, Micael Miatidis b, George Kapsampelis a

a Department of Computer Engineering and Informatics, Patras University, 26500, Rion Patras, Greece
b Lehrstuhl Informatic V, RWTH, Aachen, Germany

Received 17 July 2006; received in revised form 19 July 2007; accepted 22 July 2007
P

R
R

E
C

TE
DAbstract

This paper presents the design, features and pilot evaluation study of a web-based environment -the SORTING envi-
ronment- for the learning of sorting algorithms by secondary level education students. The design of this environment is
based on modeling methodology, taking into account modern constructivist and social theories of learning while at the
same time acknowledging the role of hands-on experience, the significance of students’ expressing their previous knowl-
edge, the importance of interlinked multiple representation systems (MRS) and the role of constructive feedback on stu-
dent learning. Although SORTING supports student learning of typical sorting algorithms such as Bubble-sort, Quick-
sort and Selection-sort, it can also be adapted to integrate more sorting algorithms. The analysis of the data emerging from
the pilot evaluation study of SORTING has shown that students used all the representation systems (RS) provided and
found them attractive and easy to use. On the whole, student interactions within SORTING helped them to become aware
of both the intuitive and the typical sorting procedures used, to conceptualize them, to overcome learning difficulties, to
correct themselves and to make connections between different representations of the sorting algorithms used.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Secondary education; Interactive learning environments; Improving classroom teaching; Sorting
U
N

C
O

1. Introduction

Sorting is a significant universal activity in all cultures; associated with financial and commercial life, it has
strong social currency, due to its basis in comparisons performed on countable entities of interest and value
(Bishop, 1988). Sorting is also an element in science and technology as well as everyday life (Bishop, 1988;
Knuth, 1973; Linderstrom & Vitter, 1985). It is worth noting that 25% of the total active time of computers
is dedicated to sorting procedures, while the time used for account-sorting in large financial institutions is
about 2 hours per day (Knuth, 1973; Linderstrom & Vitter, 1985). The general value of sorting is based on
the fact that sorted entities usually offer opportunities for optimistic solutions to a variety of problems, thus
0360-1315/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compedu.2007.07.006

* Corresponding author. Tel.: +30 2610 993102; fax: +30 2610 997751.
E-mail address: kordaki@cti.gr (M. Kordaki).

Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

mailto:kordaki@cti.gr

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

2 M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

necessitating automation of the sorting process using computers and, subsequently, the invention of fast sort-
ing algorithms such as Bubble-sort, Selection-sort, Quick-sort, etc. (Knuth, 1973; Linderstrom & Vitter, 1985).
Consequently, sorting is a necessary subject in any Computer Science Curriculum at both secondary and ter-
tiary levels of education (ACM, 1991, 2003; Gal-Ezer & Zur, 2004).

However, understanding algorithms, especially computer-based sorting algorithms, is difficult for second-
ary level education students; this involves complex procedures based on different layers of abstraction and,
therefore, understanding them requires students to use their higher mental functions (Matsaggouras, 1997;
Vlachogiannis, Kekatos, Miatides, Kordaki, & Houstis, 2001). In fact, students have difficulties in understand-
ing how a specific sorting algorithm works and also how this algorithm is described using basic algorithmic
structures. Despite this, sorting algorithms are rapidly introduced into the curricula of secondary level educa-
tion, with, students being introduced directly to the Bubble sort algorithm through its representation in
pseudo-code using Pseudo Pascal. As a result, the sorting algorithm in focus becomes a meaningless procedure
which, in most cases, students can only memorize rather than understand.

Understanding of typical sorting algorithms is a process of giving meaning to its various representations,
such as those which are text-based using natural language, those text-based using specific expressions in the
imperative, pseudo-code based representations and finally those in a specific programming language (Vlacho-
giannis et al., 2001). It is also acknowledged that student learning through hands-on experience while sorting
concrete materials is significant for the learning of typical sorting algorithms (Geller & Dios, 1998). In addi-
tion, giving meaning to typical sorting algorithms pre-supposes an understanding of sorting from each indi-
vidual student’s point of view (Vlachogiannis et al., 2001).

The provision of animation materials has been proposed as essential to overcoming student difficulties with
learning sorting algorithms (Kann, Linderman, & Heller, 1997). In fact, a number of animation materials for
the learning of sorting algorithms have been reported, including educational software (ES). Some well-known
examples are: (a) ‘Sorting out Sorting’ (Baecker, 1981), based on video presentations, introducing the idea of
representing data elements in a sort by bars, with the length of the bar corresponding to the sort key value of
the element. These bars are presented in a sort using 9 sorting algorithms, (b) ‘Balsa’ ES (Brown, 1988), also
based on visualization of sorting entities, but a variety of sorting algorithms can be used simultaneously, (c)
Xtango ES (Stasko, 1990), again supporting visualization of sorting entities using a plethora of sorting algo-
rithms. In addition, users can interact with these visualizations (and stop the procedure at any time) as well as
create and run their own sorting algorithms, (d) ‘GAIGS’, web-based ES (Naps, 1990), which supports algo-
rithm visualization as well as text-based information about sorting, and (e) Sort Animator (Dershem & Brum-
mund, 1998), which supports visual presentation of the sort animation demonstrated in relation to its code.
Students are allowed to specify different colors for the sort animation, the number of elements being sorted
and the speed of the animation and its execution. In addition, lines of code are highlighted as they are executed
by the animation. All the aforementioned ES are based on presentations (in visual or textual form) of an algo-
rithm in execution and are mainly dedicated for use in higher education.

As for the learning of sorting algorithms, and despite the above, ES have not yet been reported that take
into account student difficulties and provide them with opportunities to express their own approaches to sort-
ing and to typical sorting algorithms as well as to interpret these approaches in a variety of representation
systems and also to actively perform sorting procedures using hands-on experience while simultaneously
receiving constructive feedback.

Appropriately-designed educational software can act as a catalyst in the learning and teaching of all sub-
jects, providing promising opportunities for the construction of new meanings that can be applied to the whole
learning process (ACM, 1991; Jonassen, 1999; Noss & Hoyles, 1996). In fact, many researchers acknowledge
the essential role played by constructivist educational software provision in student learning, providing them
with opportunities to: (a) obtain hands-on experience, (b) express individual knowledge in Multiple and
Linked Representation Systems (MLRS), including their mistakes, (c) express knowledge in MLRS of differ-
ent cognitive transparency, (d) explore dynamic representations, in terms of interactive animations of essential
procedures regarding the learning subject and (e) receive constructive feedback (Ainsworth, 1999; Borba &
Confrey, 1996; Jonassen, 1999; Kaput, 1994; Kordaki, 2005a).

Taking into account all the above, we constructed a web-based environment - the SORTING environment -
aiming to provide students with opportunities to construct the concept of a sorting algorithm within a
Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx 3

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

constructivist learning context through: (a) their active involvement in sorting entities using hands-on experi-
ence to express both their own intuitive sorting approaches as well as typical sorting algorithms provided by
the literature and expressing these approaches in a variety of RS and (b) their exploration of interactive,
dynamic representations (in the form of animations) of typical sorting algorithms in a number of linked
RS. The features provided by SORTING are not only theoretically documented but have been tested in
the field using actual students to verify their impact on student learning. Such a computer environment for
the learning of sorting algorithms has not yet been reported.

The main research aims motivating this study are:

� to explore ways of designing educational software that effectively supports secondary level education stu-
dents’ learning of sorting and typical sorting algorithms;
� to examine the impact of the proposed software on students’ conceptualization of typical sorting

algorithms.

This paper is organized as follows: 1. The rationale for the design of SORTING. 2. The general architec-
ture, the features of SORTING and a description of the activities that can be performed within this context. 3.
Pilot-formative evaluation of this computer environment. 4. A discussion of the features of SORTING in rela-
tion to their impact on student learning. 5. Conclusions.

2. The rationale for the design of SORTING

A central and essential role in the design of a learning environment is played by the specific answers given -
explicitly or implicitly- by its designers to vital questions such as what the subject of learning is and what basic
concepts have to be learned by the students, and to this end which the essential tasks are that they have to
perform, what the learners’ profile is and how learners can learn this specific subject (Laurillard, 1993).
Answering these questions is not a simple task, since it implies awareness of both learner profiles in their
attempts to learn a specific subject of learning and also epistemological perspectives regarding both knowledge
construction and the nature of the subject of learning in focus. As educational software is not only a techno-
logical artifact but also a learning environment the answers to these questions have to be explicitly addressed
during its design. Of course, these answers and their respective interpretations in terms of design specifications
are not unique but depend upon the designers’ interpretations of the theoretical issues taken into consideration
(Kaput, 1992).

In the case of SORTING, the respective answers to these questions were supplied through the construction
of three models, namely; the student model, the subject-matter model and the learning model. In the context of
the construction of each model, these theoretical answers were also interpreted in terms of software design
specifications. A dominant role in the modeling process was taken by the construction of the student model,
since the design perspective that was adopted emphasized a student-centered design (Land and Hannafin,
2000; Jonassen, 2000a). Computer modeling is used in education to support learning in artificial worlds (Kor-
daki & Potari, 1998; Mellar & Bliss, 1994), providing children with computer tools to enable them to create
their own worlds, to express their own representations of the world and also to explore other people’s repre-
sentations. On the whole, the SORTING environment can be viewed as a synthesis of three models. As regards
the construction of the learning model and of the subject-matter model theoretical considerations, provided by
the literature, were taken into account while for the construction of the student model specific field studies -
using real students- were performed. An early description of these models is presented in Kordaki et al. (2005).
In the following section of this paper, the entire modelling process, including the theoretical considerations
taken into account during the construction of these models, as well as interpretations in terms of operational
specifications of the software, is presented.

2.1. The student model

In terms of student learning of sorting algorithms in secondary level education, there are a limited number
of published works in this area. Consequently, the construction of this model was based on the difficulties
Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

4 M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
TE
D

P
R

O
O

F

(12th grade, 18 year old) secondary level education students faced with regard to the Bubble sort algorithm
that emerged from a field study (Vlachogiannis et al., 2001). In this study, a primary version of the software
for the Bubble sort algorithm was used. Specifically, students seemed to encounter difficulties in understanding
how a specific sorting algorithm works and how this algorithm is described using basic algorithmic structures
such as iteration structures, control structures and assignment statements. Regarding iteration structures, stu-
dents had difficulties in understanding the iteration pattern used in the comparison procedure, how nesting
loops work and the meaning of both the variables and the counters used. In particular, students seemed to
confuse the static meaning of a variable used in a mathematical equation (Khalife, 2006) with the dynamic
meaning implied in a variable used in a computer-based algorithm. In addition, students seemed to lack
the ability to initialize the counters used and usually paid no attention to initializing or terminating the whole
sorting procedure. As for assignment statements, students seemed to ignore their dynamic character and
tended to use them as mathematical equations. Finally, when the use of control structures was necessary, stu-
dents found it difficult to determine the type, value and position of the conditionals needed. In general, it was
acknowledged that, when beginners write programs, they frequently generate the source code without any
organized thought process. They type their solutions seconds after the initial reading of a problem statement
and iteratively proceed by modifying their source code as required until the program generates the correct out-
puts (Suchan, and Smith, as it cited by Khalife, 2006).

In addition, the data emerging from the previously mentioned study indicated that, in order to understand
sorting algorithms, secondary level education students needed to: (a) sort entities using hands-on experience
and receive immediate feedback, (b) reflect on their hands-on experience and try to gradually interpret this in a
variety of representation systems including text using natural language and pseudo-code, (c) explore analytic
animations of the sorting algorithms in focus that were automatically performed, and (c) experience practical
sorting in combination with visual animations of sorting entities, dynamic visual flow-charts and the corre-
sponding dynamic visual pseudo-code. With the above in mind, an attempt has been made to exploit the con-
clusions from the aforesaid study through the formulation of a number of operational specifications for the
design of the SORTING environment. The specifications used for the construction of this environment are
presented in Table 1 below:
U
N

C
O

R
R

E
C

Table 1
The student model of sorting: from theoretical considerations to design principles

The student model in performing essential tasks

The tasks Design specifications: Tools needed to help students to. . .

1. Sorting using student-based sorting procedures Sort elements:
� by using hands-on experience

Interpret their hands-on experience in:
� free-text
� pseudo-code

2. Sorting using typical sorting algorithms Sort elements:
� automatically
� by using hands-on experience

Interpret their hands-on experience in:
� free-text
� pseudo-code

Explore:
� the pattern of iteration used in the comparison procedure
� nested loops
� conditionals in terms of their type, value and position
� variables
� counters and assignment statements
� the initialization and termination of the entire sorting procedure

Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx 5

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

2.2. The subject- matter model

This model has been constructed by taking into account the knowledge necessary for the construction of a
sorting algorithm and, more specifically, the basic sorting algorithms such as Bubble-sort, Selection-sort and
Quick-sort. These sorting algorithms have been selected to give students opportunities to compare the logic
and the speed among them and consequently to develop a broad view of sorting. In addition, these algorithms
are part of the secondary school curricula in Greece. Each specific algorithm in focus consists of the following
basic parts: (a) initialization and termination of the entire sorting procedure, (b) the variables and counters
used, (c) the assignment statements used, (d) the kind of conditionals used, and (e) the iteration pattern used
in the comparison procedure. Here, it is worth noting the importance of students comprehending that,
although the entities to be sorted can be in a variety of forms, such as numbers, files, objects, etc., in each case
all these entities must include measurable information. Understanding that the comparison between the enti-
ties to be sorted and their mutual transference is a fundamental operation implied in the sorting process is also
significant.

Taking into account the results of the modeling performed in the previous section (Section 2.1), and to help
students acquire the appropriate knowledge of all the aforementioned parts, it was decided to provide them
with information in various forms and a variety of computer operations. The different forms of information
are as follows:

� text-based information, explaining how each sorting algorithm in focus works.
� visual information, in the form of an analytic simulation of a sorting procedure where visual objects are

sorted automatically using a typical sorting algorithm.
� pseudo-code, indicating how each typical sorting algorithm can be described in a language compatible with

computers.
� visual information, in the form of a flow-chart indicating how the sorting algorithm in focus runs.
� interlinked information. Linking visual analytic simulation of the algorithm used with the corresponding

flow-chart and pseudo-code.

Students can select to study the type of information they consider appropriate to their knowledge. The vari-
ety of actions provided by the software refers to the aforementioned parts and to the variety of RS provided.
These actions are referred to in greater detail in the next section of this paper (Section 3) as they were produced
by taking into account the students’ model formed in the previous section (Section 2.1).

2.3. The learning model

The learning model was constructed after taking into account basic considerations of modern constructivist
and social theories regarding knowledge construction (Duffy & Cunningham, 1996; Jonassen, 1991, 1999;
Hannafin & Land, 1997; Vygotsky, 1978). Constructivist learning theories emphasize the active, subjective
and constructive character of knowledge, placing students at the centre of the learning process. Rather than
listening to the experiences or findings of others as summarized in texts or by teachers, learners have to
actively carry out domain-related activities. Specifically, constructivist learning is based on students’ active
participation in problem-solving and critical thinking regarding a learning activity, which they found relevant
and engaging (Hofstetter, 1997). Constructivist learning also stresses the need for student experimentation
through acquiring hands-on experience while using primary sources of data (www.ncrel.org/sdrs/areas/
issues/content/cntareas/science/sc500.htm). To this end, students have the opportunity to reflect on their expe-
rience and to articulate what they learnt. In general, by asking students to reflect on their learning they have
opportunities to enhance their understanding regarding with the learning concepts in focus (Jonassen &
Reeves, 1996). It is worth noting that, learners’ experience, reflection, interpretation and meaning making
are interconnected (Jonassen, 1999; Hein, 1999). Constructivist theory also proposes that students learn by
constructing their own knowledge; thus, making mistakes is viewed as a learning opportunity. In the context
of this theory, learning is idiosyncratic and therefore students have to be provided with opportunities to
express their inter-individual learning differences. Rather than providing isolated information, constructivism
Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226 Q2

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

6 M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

emphasizes the role of intrinsic motivation where students are involved in ‘authentic’ real life learning activ-
ities related to their own interests (Bishop, 1988; Jonassen, 2000b; Nardi, 1996). Another value underlying
constructivist learning is that individual beliefs and experiences provide a uniquely personal framework for
new understanding. In fact, background knowledge and experience form the conceptual referent from which
new knowledge is organized and assimilated (Piaget, 1976). Constructivism as a basis for instructional design
pre-supposes student autonomy and minimal guidance in the form of process -or task- relevant information
that is only available if learners choose to use it. Emphasis is also put on the role of different perspectives
offered for the students to approach the learning task at hand (Wilson, 1997).

Social theories of learning stress the importance of psychological tools as mediators for the development of
students’ higher mental functions (Vygotsky, cited in Wertch, 1995). In particular, computer tools and learn-
ing environments can help students to express their own knowledge, to explore the knowledge of others inte-
grated in these environments and also to provide appropriate feedback and to scaffold their thinking and
actions in order to deepen understanding (Bereiter & Scardamalia, 1989; Noss & Hoyles, 1996). Tools can
act as mediators of sociocultural development to help a student enhance their Zone of Proximal Development,
which is essential in the development of their knowledge (Salomon, Globerson, & Guterman, 1989; Vygotsky,
1978). The mediating role of technology is based on the fact that computers can ‘communicate’ with learners
through the variety of representations able to be constructed and displayed on their screens (Noss & Hoyles,
1996).

The role of representation systems in students gaining knowledge is acknowledged as significant by many
researchers (Ainsworth, Wood, & Bibby, 1996a, 1996b; Ainsworth, 1999; Borba & Confrey, 1996; Dyfour-
Janvier, Bednarz, & Belanger, 1987; Kaput, 1987; Kordaki, 2005a). In fact, it is acknowledged that MLRS
can play a crucial role in student development of a broad view of the concepts in focus, as well as realization
of the basic aspects and structure that constitute these concepts, translating and transforming a concept into
the various RS provided and observing how variation in one RS can affect the other (Kaput, 1994; Schwartz,
1995). Students can also actively construct their own knowledge by experimenting with cognitive transparent
RS. In addition, students can explore the knowledge of others by experimenting with ‘cognitive opaque’
dynamic RS. Moreover, the essential role of simulations which can be both automatically run by the system
and manually handled by the students is emphasized (Davidovitch, Parush, & Shtub, 2006). In general, MRS
can be used as supporting representations of students’ mental internal representations related to a specific
learning concept. In some cases, RS can be used as students’ primary references to support their reflection pro-
cesses for the learning of a specific learning concept (Kaput, 1989). MRS can also motivate students to be
actively involved in their learning, especially when related to student interests (Ainsworth, 1999). The under-
standing of a concept can be also viewed as a process of giving meaning to its different representations as well
as making connections between these different meanings. Furthermore, MRS can provide students with
opportunities to make connections between the different kinds of knowledge they possess, such as intuitive,
visual and symbolic knowledge. Finally, it is worth noting that it has been acknowledged that MR-based edu-
cational software plays a significant role in the learning of concepts regarding Computer Science and Engi-
neering (Davidovitch et al., 2006; Kordaki, 2005b; Vlachogiannis et al., 2001; Zikouli, Kordaki, & Houstis,
2003).

Based on the above, an attempt has been made to interpret the aforesaid theoretical issues within the con-
text of the computer, aiming at the formulation of a number of operational specifications necessary for the
design of the SORTING environment. Table 2 provides a compact presentation of the theoretical consider-
ations used (see Column 1) and how they were interpreted in terms of design specifications (Column 2), also
taking into account the specifications addressed in the construction of the student model (Section 2.1). The
resulting specifications are part of those used to construct SORTING. We do not claim that these interpreta-
tions are unique but they do express our own views regarding the aforementioned theoretical issues.

Providing secondary level education students with opportunities to sort measurable entities using hands-on
experience and subsequently to reflect on their sorting actions is essential to organize their thinking and to
their conceptualization of sorting algorithms, as in this way students can become aware of the sorting
approach used (Du Feau, 1999). Encouraging also the students to understand sorting algorithms by expressing
their individual sorting approaches and then gradually progressing to the use of typical sorting algorithms
provided by the literature is also essential. In fact, each individual student sorting approach can play an
Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

maria
Cross-Out

maria
Sticky Note
This reference is ommited

E
D

P
R

O
O

F

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

Table 2
The learning model: from theoretical considerations to design principles

Theoretical considerations Design principles

The ‘learning’ model

Encouraging learners to be active in their learning

by:

� Doing things
� Solving ‘authentic’’ problems

Providing students with the following functions. . .
� Interactivity of the RS used in the environment
� Various tools to sort a number of elements from the students’ world

Encouraging learners to express their inter-indi-

vidual differences by expressing . . .

� Their previous knowledge
� Different kinds of knowledge

Availability of tools to help students:

� Express their own knowledge by selecting the most appropriate RS for
their cognitive development from among a variety of RS

� Sort elements according to their own sorting procedures using MRS
� Sort elements according to their views (including mistakes) about typi-

cal sorting algorithms using MRS

Encouraging learners to construct their knowl-

edge by. . .

� Acquiring hands-on experience
� Experimenting
� Reflecting
� Experimenting with interlinked and

dynamic RS
� Enhancing students’ ZPD

Availability of tools to:

� Sort elements using hands-on experience
� Sort elements using different sorting algorithms
� Provide visual representations of sorting algorithms
� Explore the knowledge of others included in dynamic RS e.g. visual ani-

mations of a sorting algorithm, dynamic flow-chart and dynamic
pseudo-code RS

� Provide appropriate constructive feedback on student sorting actions
for self-correction

� Provide appropriate scaffolding where students face difficulties

M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx 7

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

Tessential back-up role in supporting their construction of typical sorting algorithms. Moreover, the under-
standing of a sorting algorithm is viewed as a process of giving meaning to its representations in a variety
of representation systems, beginning with sorting real life entities and progressing to explaining it in natural
language, forming an appropriate flow-chart and consequently translating the whole procedure into pseudo-
code and, ultimately, into a programming language (Vlachogiannis et al., 2001).

All the software specifications formed during the modeling process aiming the construction of the three
aforementioned models described in this section were taken into account when implementing SORTING,
the structure and features of which are presented in the next section of this paper.

3. Features of the sorting environment

The SORTING environment is organized in HTML pages, its features being presented on its main page
and classified into three parts: (a) information, (b) workplace, and (c) animations. A diagrammatic presenta-
tion of the general structure of SORTING, including the RS provided, is presented in Fig. 1.

(a) Information: General information about sorting as well as specific information on the algorithms in
focus is provided in the form of text.

(b) Workplace. Students are provided with four RS, in the context of which they are given the chance to
express their own: (a) sorting procedures and (b) conceptions regarding typical sorting algorithms in
focus and to receive immediate feedback from the system. The RS provided are:
Plea
Educ
� Simulated real objects (SRO).
� Text-based representation systems (TRS).
� Pseudo-code based representation systems (PCRS).
� Specific expression-based pseudo-code representation systems (SEPCRS).
The above RS are presented on the same page (see Fig. 2) and are described below:Simulated real objects

Students have the opportunity to experiment with a sorting procedure using hands-on experience. In fact, stu-
dents can sort SRO familiar to them (e.g., Euro coins), firstly by using their own intuitive sorting algorithms
se cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
ation (2007), doi:10.1016/j.compedu.2007.07.006

maria
Cross-Out

maria
Inserted Text
SORTING

maria
Inserted Text

maria
Inserted Text
.

U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

282

283

284

285

286

287

288

Simulated real objects (SRO).

Text-based Representation Systems (TRS)

 (a) Information
place Pseudo-Code based Representation

Systems (PCRS)

Specific Expression-based Pseudo-code
Representation Systems (SEPCRS)

The general
structure of
SORTING

(b) Working

place Animation-based RS

Flow-chart based dynamic RS

© Animation
presentations Pseudo-code based dynamic RS

Multiple-Linked Animation RS

Fig. 1. The general structure of the SORTING environment. (a) Information place. (b) Working place � Animation presentations.

Fig. 2. The work place element of the SORTING environment.

8 M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
and, secondly, by using the typical sorting algorithms in focus. In this way, students have the opportunity to
reflect on their sorting actions and to be aware of the sorting algorithms they use. The system can initiate the
coins automatically on clicking the appropriate button. The system also counts the number of swaps, compar-
isons and all incorrect sorting actions performed when a typical sorting algorithm is used. When a student
performs an incorrect sorting action, they receive an automatic response from the system. In addition, the sys-
tem sends a message when the list of coins is sorted.Text based representation systems After experimentation
and reflection on a specific sorting procedure or algorithm used to sort the coins provided, as described in the
Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

maria
Inserted Text

maria
Inserted Text
.

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx 9

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
O
O

F

previous section, students are asked to interpret their experience using a text-based representation system. This
RS has been selected to provide students with the opportunity to reflect on their sorting actions and come up
with an informal description of the sorting algorithm used. By trying to formulate this description, students
have the opportunity to be more conscious about the sorting algorithm they are experimenting with.Pseudo-
code based representation systems Students are asked to translate into pseudo-code the free-text description of
the sorting algorithm they used. By using pseudo-code, students have the opportunity to move from the ‘I’
situation of the procedure, where they describe how they performed a specific sorting procedure, to the
‘You’ situation, where they instruct the computer to perform this procedure using a language compatible with
it. The transfer from ‘I’ to ‘You’ has been deemed necessary as it is difficult for students to implement (Zikouli
et al., 2003).Specific expression-based Pseudo-code representation systems While students encounter difficulties
in formulating a typical sorting algorithm using pseudo-code, the system provides them with the opportunity
to correct their attempts by trying to put a number of appropriate specific expressions provided in the correct
order. If the result is correct, the system automatically sends a message.

(c) Animation. Students are provided with extra RS:
Plea
Educ
P
R� Animation-based RS.

� Flow-chart based dynamic RS.
� Pseudo-code based dynamic RS.
� Multiple-Linked Animation RS.
DAnimation-based RS. Animations visualizing the sorting procedure of elements to be sorted, using the
sorting algorithms in focus, are also provided. These elements are bars whose length corresponds to the sort
key value of the element. By observing the process of sorting, these bars using different sorting algorithms
U
N

C
O

R
R

E
C

TE

Fig. 3. Multiple ad Linked Animation RS, integrated within the SORTING environment.

se cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
ation (2007), doi:10.1016/j.compedu.2007.07.006

maria
Inserted Text

maria
Inserted Text
.

maria
Inserted Text

maria
Inserted Text
.

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334 Q1

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

10 M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
P
R

O
O

F

and students can acquire a primary sense of each of them. Students also can observe the animation for sort-
ing the Euro coins – described in the previous section - using the aforementioned algorithms (see Fig. 2). In
this way, students can reflect on these animations and correct their own individual approaches to these
algorithms.

Multiple-linked animation RS (MLARS). Interactive animations, demonstrating the visual history of sort-
ing the Euro coins step by step and using each of the algorithms in focus, are also provided (see Fig. 3). Stu-
dents can also specify the speed of animation. In addition, these animations are interlinked with the pseudo-

code RS as well as with flow-chart-based RS. As the sorting of coins progresses, the corresponding section of
the flow-chart and the pseudo-code is highlighted. When a coin swap is performed, two pointers indicate the
coins exchanged and a message is also displayed. The number of swaps and comparisons as well as the value of
counters regarding each algorithm execution step is also displayed. Thus, students have the opportunity to
explore the algorithm execution in all these RS, to correct their own individual approaches to these algorithms
and to link different approaches to a sorting algorithm, such as practical sorting of entities, flow-chart and
pseudo-code. Consequently, students have the opportunity to make connections between practical knowledge
using hands-on experience, visual knowledge presented in the visual flowchart and symbolic knowledge pre-
sented through the dynamic pseudo-code. In this way, students are provided with opportunities to acquire a
broad view of sorting algorithms.

Technical information: The environment is implemented using Java applets and Visual C++.
U
N

C
O

R
R

E
C

TE
D4. The formative-evaluation pilot study

The formative-evaluation pilot study was realized taking into account a constructivist approach, stressing
the investigation of student progress during interaction, within the context of the learning environment pro-
vided (Jonassen, Mayers, & McAleese, 1992). In terms of methodology, this is a qualitative research study
(Cohen and Manion, 1989) focusing on: (a) the investigation of students’ intuitive sorting approaches, (b)
how students construct their knowledge of typical sorting algorithms - within the context of SORTING –
and (c) the usability of the tools provided.

The study took place in two typical schools (in Kalamata and Patras, Greece), with the participation of 20
students from the 12th grade (all 18-years-old). Before interacting within the SORTING environment, stu-
dents were asked to express their previous knowledge of sorting and sorting algorithms, a decision taken in
order to investigate the impact of the SORTING environment on student knowledge. All students participat-
ing in this experiment had been taught at school about basic algorithmic structures, assignment statements,
variables, counters and how to form flow-charts. They had also been taught the ‘‘Bubble sort’’ algorithm
and its pseudo-code two months previously. Despite this fact, none of the participants successfully described
this algorithm, either verbally or in pseudo-code. All students mentioned that they knew that sorting in general
is about putting measurable entities in order. Moreover, all students had some knowledge regarding comput-
ers and their operations (5–6 years experience with computers) as the secondary school curricula in Greece
consisted of relevant courses (1 course per year/1–2 h per week).

The experiment was performed in three phases. In the first phase, students’ intuitive sorting approaches
were investigated. In the second and third phase, student approaches to typical sorting algorithms such as
‘‘Bubble sort’’ and ‘‘Selection sort’’ were also explored. In each phase, students were asked to use the appro-
priate RS provided: (a) actively to sort the 7 coins using the sorting algorithm in focus, and (b) to describe the
sorting procedure they performed by using both free text and pseudo-code.

Students worked individually within the context of SORTING. The researchers participated with minimum
intervention in order not to affect student strategies. Any interventions were in the form of unstructured inter-
views (to clarify the meaning of students’ actions and to encourage them to continue their learning attempts)
and are reported in relation to the specific point in the pilot-study where they were performed. The duration of
the experiment was commensurate with student needs; each student took about one hour to complete each
phase of the experiment. The data resources were: the researchers’ field notes, the log files automatically gen-
erated by the system capturing the students’ actions and visual snapshots of student constructions taken dur-
ing the experiment.
Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

maria
Sticky Note
This reference has been added in the 'references' section.

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx 11

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

5. Results

The results, organized according to the data emerging from each phase of the experiment, are presented
below:

5.1. Phase 1: Students’ intuitive sorting approaches

5.1.1. Student sorting attempts using SROs

All students used the same method to sort the 7 coins: they used their visual perception to select the coin
with the greatest value and dragged it to drop in the right position (see Fig. 1). Next, they focused on the
remaining 6 coins and performed the same procedure, dragging the selected coin and dropping it in the last
but one position. This procedure continued until all coins were sorted. It is worth mentioning that this intu-
itive algorithm is similar to the Selection sort algorithm, with the exception that, in this algorithm, the selec-
tion of the entity with the smallest value is emphasized.

5.1.2. Student attempts using TRS

Despite students having envisaged describing their intuitive procedures in their natural language as a trivial
and easy task, this was clearly not the case when they started writing. Nobody wrote a clear text correctly
describing the procedure used on their first attempt. The descriptions were usually vague and incomplete
and sometimes concerned other sorting procedures which were not performed during this phase of the exper-
iment, e.g. ‘‘Bubble sort’’. Although all students succeeded in sorting the coins provided one-in-three did not
realize the exchange of coins during the dropping phase. After specific interventions by the researcher, asking
students to reflect on their text, they returned and actively attempted to sort the coins provided. They tried a
number of times (approximately three) to sort the coins until they realized what they were doing and wrote the
sorting procedure correctly. In the words of one student, ‘‘I compared the coins in order to find the one with the

greatest value and then I exchanged it by drag-and-dropping the coin into the right position; I used this procedure

repeatedly until all coins were sorted’’.

5.1.3. Student attempts at using PCRS

Some students (2 students) skipped the text description of the intuitive sorting approach they used and tried
to write it directly in pseudo-code. They argued that ‘pseudo-code is stricter than natural language’ and conse-
quently easier to use. Nonetheless, the majority of students (18 students) were of the opinion that it is hard to
write the correspondent pseudo-code correctly, while one of them wrote the pseudo-code of ‘‘Bubble sort’’. To
overcome their difficulties, these students went back and actively tried to sort the coins again and again (on
average three times). After this experimentation, one-in-five students (4 students) succeeded, while the remain-
ing students took advantage of the opportunity to put the specific expressions provided (SEPCRS) in correct
order and receive feedback. The majority of these students (13 students) put these expressions in correct
sequence at the same time, commenting that, ‘these expressions helped me to understand how to write the pro-

cedure I performed in pseudo-code’ and ‘these expressions helped me to organize my thinking’. The one remain-
ing student gave up and moved to ‘‘Bubble sort’’, commenting that he preferred to use this because it is a faster
algorithm than the algorithm he had been using.

5.2. Phase 2: Student approaches to the ‘Bubble sort’ algorithm

5.2.1. Student sorting attempts using SROs

Despite the fact that students had been taught about ‘‘Bubble sort’’ at school two months previously, they
did not succeed in sorting the coins using hands-on experience. To overcome this difficulty, students: (a) read
the associated information in text again and again and (b) observed the automatic execution of sorting the
coins using the Bubble algorithm. Each student tried (a) and (b) about 3 times. At this point, some students
expressed the view that ‘‘I needed to be informed about Bubble sort so I needed to read the text provided and also

observe its automatic execution’. After these attempts, all the students succeeded in sorting the coins using this
algorithm. During this phase, all students also expressed the opinion that this kind of experimentation was
Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

12 M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

very interesting for them and more attractive than traditional school chalk-and- blackboard or paper-and-
pencil practices, exclusively focusing on pseudo-code representations.

5.2.2. Student attempts using TRS
Despite the fact that all students managed to sort the coins using the Bubble sort procedure and all of them

had read the text describing it only a few minutes previously, a mere 6 of them formulated a correct descrip-
tion of this algorithm using natural language. In our view, this was mainly due to the following factors: stu-
dents did not devote time to reflection on their sorting actions, they paid little attention to the text they read
and their writing skills were limited. The remaining students returned to sort the Euro coins using hands-on
experience. After trying on average three times they seemed to understand what they did and correctly man-
aged to write the sorting procedure at hand.

5.2.3. Student attempts using PCRS

All students encountered difficulties in their attempts to describe Bubble sort in pseudo-code. As it
emerged from students’ logfiles, their most common mistakes were: (a) failure to acknowledge the neces-
sity of nested loops. Instead, students used a simple loop. In fact, these students focused exclusively on the
procedure consisting of the first search of coins and their respective exchanges. Consequently, students did
not have full control over the iteration of this procedure; (b) double pointers being used inappropriately;
students confused the ending values of I and J pointers, (c) failure to terminate the whole procedure. To
surmount these difficulties, students returned to sort the 7 coins using hands-on experience. They also
observed the animation on sorting the coins, using the multiple and linked RS (MLARS) provided. Each
student tried these MLARS about 3 times. In particular, students paid attention to the animation of sort-
ing the coins and at the same time they expressed that they observed the swaps performed, the changes in
the values of the counters, as well as the changes in the parts of the flowchart and in pseudo-code high-
lighted and the unfolding of the nested loops use. After this experimentation, the majority of the students
(15 students) succeeded in describing Bubble sort using pseudo-code. The remaining students (5 students)
helped to correct their attempts by trying to put the specific pseudo-code expressions provided (SEPCRS)

in correct sequence and exploiting the feedback given by the system. It is worth noting that each student
tried the above activity on average three times before being able to write the Bubble sort pseudo-code
correctly.

On the whole, it should be noted that the active sorting of coins using hands-on experience seemed to sig-
nificantly help the students to successfully manage the process of sorting using the Bubble sort algorithm. In
addition, the interactive animations demonstrating the visual history of sorting the Euro coins step by step
using the Bubble algorithm in combination with the dynamic flow-chart and the dynamic pseudo-code
appeared to play a crucial role in students’successful interpretations of the Bubble algorithm in relation to
its pseudo-code. Finally, the possibility of receiving feedback by putting in order the specific expressions pro-
vided helped students to correct their sorting approaches using pseudo-code.

5.3. Phase 3: Student approaches to the ‘Selection sort’ algorithm

5.3.1. Student sorting attempts using SROs

As the sorting procedure that students used during the first phase of this experiment was similar to the
Selection sort procedure, they did not encounter difficulties in actively sorting the 7 coins. In particular, each
student read the text information provided on average 3 times and also observed the automatic sorting of
coins on average 3 times before they could actively manage to sort them.

5.3.2. Student attempts using TRS

When students tried to express their approaches to Selection sort in natural language, they also encountered
similar difficulties to those they faced using the previous algorithm. However, all these students realized that
Selection sort is similar to their own sorting procedures used in the first phase. Consequently, they exploited
their experience with the result that all of them correctly accomplished this task.
Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx 13

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

5.3.3. Student attempts at using PCRS

To avoid failure in formulating the Selection sort pseudo-code, each student practiced about 4 times with
the MLARS provided. During this experimentation, students expressed that they also paid attention to the
comparisons of coins performed and the relative changes realized, including swaps of coins, counters, parts
of the flowchart and pseudo-code. After this experimentation, all students tried writing in PCRS, with the
majority of them succeeding. Only five of these students failed, their most common mistakes being the same
as those that came to light in performing Bubble sort. The rest of the students managed this task by experi-
menting, putting the specific expressions provided (SEPCRS) in correct order and receiving feedback.

5.3.4. Usability issues

All students experimented on their own with the operations provided by the SORTING environment and
found them familiar and easy to use. The possibility of ‘drag and drop’ was not obvious as this was not dis-
played on the interface of the environment. At this point, researchers explained how to use ‘‘drag and drop’’ to
put both the coins and the SEPCRS provided in correct order.

6. Discussion

In this paper, the design, specific features and the formative-evaluation pilot study of a multi-representa-
tional computer environment for the learning of sorting algorithms by secondary level education students
has been presented. It should be noted that the area of sorting algorithms is an under-researched one in terms
of students’ learning and design of appropriate computer environments in secondary level education.

The design of this environment is based on a modeling process consisting of the construction of three mod-
els: (a) the learning model, based on modern constructivist and social views of learning, (b) the subject matter
model, based on the information provided by the literature on sorting algorithms and (c) the student model,
based on a field study of student needs and difficulties encountered while performing sorting procedures in
order to grasp concepts related to sorting algorithms. In the construction of the aforementioned models, an
attempt has been made to integrate theoretical principles into the design specifications. An attempt has also
been made to exploit the advantages of computer technology in terms of the use of computational objects,
immediate feedback, interactive animations and multiple and linked representation systems. In the context
of SORTING, students can study three sorting algorithms: Bubble sort, Quick-sort and Selection sort. How-
ever, the system can be adapted to integrate more sorting algorithms than those previously mentioned.

The SORTING environment was tested in the field with actual students, in order to determine both its
teaching ability and its usability. Despite the limitations of this field study, due to the small number of students
participating, its findings provide some insights into student learning about sorting algorithms. The data anal-
ysis reveals that students used all representation systems provided in order to express their own intuitive sort-
ing methods as well as their own approaches to the typical sorting algorithms in focus. More specifically, the
possibility of sorting SRO using hands-on experience mostly helped students to express their own sorting
methods and their approaches to typical sorting algorithms in focus in a way that was practical. In addition,
students reflected on the hands-on experience they acquired from this kind of activity and interpreted their
sorting approaches in both natural language and pseudo-code. Consequently, we can say that students’
hands-on experience with SROs played the role of primary reference in students’ learning about sorting algo-
rithms. In addition, the text-based information provided, in combination with the step by step visual execution
of sorting the SRO provided and the feedback given by the system for each student’s sorting actions, played a
significant scaffolding role for each student in each practical sorting activity.

Despite the fact that students managed to perform practical sorting using hands-on experience, they faced
difficulties in interpreting their practical sorting approaches in the form of free-text. However, the demand to
interpret these sorting approaches in free-text played a significant role in students’ thinking, since through this
activity they were encouraged to reflect on their hands-on experience and to be aware of the sorting procedure
at hand. It is worth noting that, at this level of sorting description, students needed some kind of scaffolding
through performing practical sorting using hands-on experience.

In the level of expression of sorting algorithms in pseudo-code RS, students presented many difficulties.
To overcome these, students used all the RS provided. Students actually succeed in writing the appropriate
Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

14 M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

pseudo-code having experienced practical sorting using hands-on experience in combination with explora-
tion of the co-present representations and the visualization of their explicit relations as well as using the
facility for sequencing the specific expressions in pseudo-code and receiving immediate feedback. In partic-
ular, the exploration of interactive, interlinked RS seemed to help students to construct bridges between
their practical sorting experience and the visual knowledge provided by the dynamic visual flowchart as
well as the symbolic knowledge provided in the form of pseudo-code by the dynamic pseudo-code repre-
sentation system. Moreover, these interlinked systems appeared mostly to help students to manage the spe-
cific sorting algorithms in terms of nested loops, counters, assignment statements, initialization and
termination of the procedure. The possibility of sequencing the specific expressions in pseudo-code and
receiving immediate feedback helped not only the students to correct their attempts at writing pseudo-code
but also the students who could not manage to form the appropriate pseudo-code by themselves to accom-
plish the task at hand.

As regards the aforesaid typical sorting algorithms, translation between practical sorting representations,
text and pseudo-code representations was difficult and time consuming for the students because the languages
and the operations related to these representations were different. On the whole, in the context of SORTING,
students can be encouraged to establish ‘spontaneous’ notions about sorting and then proceed to scaffold a
‘scientific’ synthesis using the variety of features of the environment.

Overall, student learning of typical sorting algorithms seemed to be a difficult task. In terms of factors sig-
nificant in students’ learning, the findings of our study supported the role of: (a) sorting entities using hands-
on experience and receive immediate feedback, (b) exploring analytic animations of the sorting algorithms in
focus, automatically performed in a variety of representation systems, (c) expressing their own intuitive sorting
approaches as well as their approaches to typical sorting algorithms, (d) experiencing practical sorting in com-
bination with visual animations of sorting entities, dynamic visual flow-charts and the corresponding dynamic
visual pseudo-code, and (e) sequencing the specific expressions in pseudo-code and receiving immediate
feedback.

Finally, the findings emerging from this study revealed that the operations provided by the SORTING envi-
ronment are friendly and easy to use.

7. Conclusions

This paper addresses the potential of a modelling, student-centred methodology for the design of a con-
structivist computer environment – the SORTING environment- for the learning of sorting algorithms, within
a context consisting of interactive, multiple and linked representation systems. Concretely speaking, this meth-
odology exploited the results of a field study regarding with students’ learning of sorting algorithms. Students’
experimentation within SORTING provided us with opportunities to clearly address that the learning of typ-
ical sorting algorithms by secondary level education students is a complex and difficult task. In fact, during
this experimentation, students needed to be involved in practical sorting to express their sorting approaches
and also their own approaches to typical sorting algorithms as well as to be engaged in the translation of this
practical experience in various representation systems such as: text based RS, flow-chart RS and pseudo-code
based RS. To be effectively involved in this translation process students needed to be provided with opportu-
nities to reflect on appropriate feedback. In addition, students needed to make a coherent and integrated
framework about sorting, so they needed to be supported to explore how a step by step practical sorting pro-
cedure – using a specific algorithm – could be expressed in all the previously mentioned RS. It is worth noting
that, SORTING provides students with all the opportunities mentioned above as well as step by step scaffold-
ing-feedback in the form of appropriate messages and also in the form of dynamic interlinked animations of
the sorting algorithm at hand.

As a final point, it is worth noting that, despite the limitations of this study, due to the fact that the
number of students participating in the pilot-formative evaluation of SORTING was limited, these results
can be exploited for the teaching and learning of typical sorting algorithms in secondary level education.
Our future plans include the introduction of SORTING into a variety of real classroom settings and using
the findings of this study as a basis for the investigation of student learning while interacting in this com-
puter environment.
Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

551

552 Q3

553

554

555

556

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx 15

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

8. Uncited references

Thompson (1992).

Acknowledgement

Many thanks to V. Kekatos, M. Misedakis, E. Houstis and G. Sipsa, who contributed to the construction
of the early version of the software and to the collection of field data.

References

ACM. (1991). Curricula Recommendations, Volume 1: Computing Curricula. Report of the ACM/IEEE-CS Joint Curriculum Task Force.
[www document] URL http://www.acm.org/education/curr91/homepage.html.

ACM. (2003). A Model Curriculum for K-12 Computer Science: Final Report of the ACM K-12 Task Force Curriculum Committee.
Retrieved March 12, 2006 from http://www1.acm.org/education/k12/k1final1022.pdf.

Ainsworth, S. E., Wood, D. J., & Bibby, P. A. (1996a). Co-ordinating multiple representations in computer-based learning environments.
In P. Brna, A. Paiva, & J. Self (Eds.), Proceedings of the European conference of artificial intelligence in education (pp. 336–342). Lisbon:
Edicoes Colibri.

Ainsworth, S. E., Wood, D. J., & Bibby, P. A. (1996b). Analysing the costs and benefits of multi-representational learning environments.
In H. P. A. Boshuizen, M. van Someren, P. Reimann, & T. de Jong (Eds.), Learning with multiple representations (pp. 120–134).
Oxford: Elsevier Science.

Ainsworth, S. E. (1999). The functions of multiple representations. Computers and Education, 33(2–3), 131–152.
Baecker, R. M. (1981). Sorting out Sorting. Film, SF, CA, USA: University of Toronto. M. Kaufmann, Publishers.
Bereiter, C., & Scardamalia, M. (1989). Intentional learning as a goal of instruction. In L. B. Resnick’s (Ed.). Knowing, learning and

Instruction (pp. 361–391). Hillsdale, NJ: Lawrence Erlbaum Associates.
Bishop, A. J. (1988). Mathematical Enculturation. Dordrecht: Kluwer Academic Publishers.
Borba, M., & Confrey, G. (1996). A student’s construction of transformations of functions in a multi-representational environment.

Educational Studies in Mathematics, 31, 319–337.
Brown, M. H. (1988). Exploring algorithms using BALSA-II. IEEE Computer, 21(5), 14–36.
Davidovitch, L., Parush, A., & Shtub, A. (2006). Simulation-based learning in engineering education: Performance and transfer in learning

project management. Journal of Engineering Education, 95(4), 289–300.
Dershem, H. L., & Brummund, P. (1998). Tools for Web-based Sorting Animation. ACM Special Interest Group for Computer Science

Education Bulletin Inroads, 30(1), 222–226.
Du Feau, C. (1999). A Sort for Statistics Lesson. Teaching Statistics, 21(1), 8–10.
Duffy, T., & Cunningham, D. (1996). Constructivism: Implications for the design and delivery of instruction. Handbook of Research for

Educational Communications and Technology, 170–198.
Dyfour-Janvier, B., Bednarz, N., & Belanger, M. (1987). Pedagogical considerations concerning the problem of representation. In C.

Janvier (Ed.), Problems of Representation in Teaching and Learning of Mathematics (pp. 109–122). London: Lawrence Erlbaum
Associates.

Gal-Ezer, J., & Zur, E. (2004). The efficiency of algorithms – misconceptions. Computers & Education, 42, 215–226.
Geller, J., & Dios, R. (1998). A low-tech, hands-on approach to teaching sorting algorithms to working students. Computers & Education,

31, 89–103.
Hofstetter, F. T. (1997). Multimedia Literacy (2nd ed.). Boston: Irwin/McGraw-Hill.
Jonassen, D. H. (1991). Objectivism versus constructivism: Do we need a new philosophical paradigm?. Educational Technology Research

and Development 39(3), 5–14.
Jonassen, D. H., Mayers, T., & McAleese, R. (1992). A Manifesto for a constructivist approach to technology in higher education. In T.

Duffy, D. Jonassen, & J. Lowyck (Eds.), Designing Constructivist Learning Environments. Heidelberg, FRG: Springer-Verlag.
Jonassen, D. H., & Reeves, T. C. (1996). Learning with technology: Using computers as Cognitive Tools. In D. H. Jonassen (Ed.),

Handbook of Research on Educational Communications and Technology. New York: Sholastic Press with the Association for
Educational Communications and Technology.

Jonassen, D. H. (1999). Designing constructivist learning environments. Instructional design theories and models, 2, 215–239.
Jonassen, D. H. (2000a). Mindtools for Schools: Engaging Critical Thinking with Technology (2nd ed.). Colombus, OH: Merrill/Prentice-Hall.
Jonassen, D. H. (2000b). Revisiting activity theory as a framework for designing student-centered learning environments. In D. H.

Jonassen & S. M. Land (Eds.), Theoretical Foundations of Learning Environments (pp. 89–121). London: Lawrence Erlbaum
Associates.

Hannafin, M. J., & Land, S. (1997). The foundations and assumptions of technology-enhanced, student-centered learning environments.
Instructional Science, 25, 167–202.

Hein, G. E. (1999). Is meaning making constructivism? Is constructivism meaning making? The Exhibitionist, 18(2), 15–18.
Kann, C., Linderman, R. W., & Heller, R. (1997). Integrating algorithm animation into a learning environment. Computers & Education,

4, 223–228.
Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

http://www.acm.org/education/curr91/homepage.html
http://www1.acm.org/education/k12/k1final1022.pdf
maria
Inserted Text
Cohen, L., & Manion, L. (1989). Research Methods in Education. London: Routledge.

maria
Sticky Note
This reference is ommited

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

660

16 M. Kordaki et al. / Computers & Education xxx (2007) xxx–xxx

CAE 1114 No. of Pages 16, Model 3+

23 August 2007; Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

Kaput, J. J. (1989). Linking representations in the symbol systems of algebra. In S. Wagner & C. Kieran (Eds.), Research issues in the

learning and teaching of algebra (pp. 167–194). New Jersey: Erlbaum, Hillsdale.
Kaput, J. J. (1992). Technology and Mathematics Education. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and

Learning (pp. 515–556). New York: Macmillan.
Kaput, J. J. (1994). The Representational Roles of Technology in Connecting Mathematics with Authentic Experience. In R. Biehler, R.

W. Scholz, R. Strasser, & B. Winkelman (Eds.), Didactics of Mathematics as a Scientific Discipline: The state of the art (pp. 379–397).
Dordrecht: Kluwer Academic Publishers.

Khalife, J. T. (2006). Threshold for the Introduction of Programming: Providing Learners with a Simple Computer Model. 18th
Workshop of the Psychology of Programming Interest Group, University of Sussex, September 2006. Retrieved on 15/03/07 from 18th
Workshop of the Psychology of Programming Interest Group, University of Sussex, September 2006.

Knuth, D. E. (1973). The Art of Computer Programming. Sorting and Search (Vol. 3). Mass: Addison-Wesley.
Kordaki, M., & Potari, D. (1998). A learning environment for the conservation of area and its measurement: A computer microworld.

Computers and Education, 31, 405–422.
Kordaki, M. (2005a). The role of multiple representation systems in the enhancement of the student model. Proceedings of 3rd

International Conference on Multimedia and Information and Communication Technologies in Education. Caceres, Spain, pp. 253–258.
Kordaki, M. (2005b). A special purpose e-learning environment: Background, design and evaluation. In Zongmin Ma (Ed.). Web-Based

Intelligent e-Learning Systems: Technologies and Applications (pp. 348–375). Idea Group Publishing.
Kordaki, M. Miatidis, M., & Kapsampelis, G. (2005). Multi representation systems in the design of a environment for the learning of

sorting algorithms. In Proceedings of IADIS international conference cognition and exploratory learning in digital age (CELDA 2005)

(pp. 363–366). Porto, Portugal, 14–16 December 2005.
Land, S. M. & Hannafin. Student-Centered Learning Environments. In D. H. Jonassen, & S. M. Land (Eds.), Theoretical foundations of

learning environments (pp. 1–23). New Jersey: Lawrence Erlbaum Associates.
Laurillard, D. (1993). Rethinking University Teaching, a Framework for the Effective Use of Educational Technology. London: Routledge.
Linderstrom, E. E., & Vitter, J. S. (1985). The design and analysis of bucket sort for bubble memory secondary storage. IEEE Transactions

on Computers, C-34, 218–233.
Matsaggouras, E. (1997). Teaching Strategies. Athens: Gutenberg.
Mellar, H., & Bliss, J. (1994). Modelling and Education. In H. Mellar, J. Bliss, R. Booham, J. Ogborn, & C. Tompsett (Eds.), Learning

with Artificial Words: Computer Based Modelling in the Curriculum. London: The Falmer Press.
Naps, T. L. (1990). Algorithm visualization in Computer Science Laboratories. Proceedings of 21st SIGSE Technical Symposium on

Computer Science Education. Special Interest Group for Computer Science Education Bulletin Inroads, 22(1), 105–110.
Nardi, B. A. (1996). Studying context: A comparison of activity theory, situated action models, and distributed cognition. In B. A. Nardi

(Ed.), Context and consciousness: Activity theory and human-computer interaction. Cambridge, MA: MIT Press.
Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning Cultures and Computers. Dordrecht: Kluwer Academic

Publishers.
Piaget, J. (1976). The grasp of consciousness. Cambridge, MA: Harvard University Press.
Salomon, G., Globerson, T., & Guterman, E. (1989). The computer as a zone of proximal development: Internalizing reading-related

metacognitions from a reading partner. Journal of Educational Psychology, 81(4), 620–627.
Stasko, J. T. (1990). Tango: A framework and system for algorithm animation. IEEE Computer, 23(9), 39–44.
Schwartz, D. L. (1995). The emergence of abstract representations in dyad problem-solving. Journal of the Learning Sciences, 4(3),

321–354.
Thompson, P. W. (1992). Notations, conventions and constraints: Contributions to effective users of concrete materials in elementary

mathematics. Journal of Research in Mathematics Education, 23(2), 123–147.
Vlachogiannis, G., Kekatos, V., Miatides, M., Kordaki, M., & Houstis, E. (2001). A multi-representational environment for the learning

of Bubble sort. In Proceedings of Panhellenic Conference with International Participation ‘New Technologies in Education and in

Distance Learning’ (pp. 481–495). Greece: Rethymnon.
Vygotsky, L. (1978). Mind in Society. Cambridge: Harvard University Press.
www.ncrel.org/sdrs/areas/issues/content/cntareas/science/sc500.htm. Critical Issue: Providing Hands - On, Minds-On and Authentic

Learning Experiences in Science.
Wertch, J. V. (1995). Introduction. In J. V. Wertsch (Ed.). Culture, Communication, and Cognition: Vygotskian Perspectives (pp. 1–20).

Cambridge: Cambridge University Press.
Wilson, B. (1997). Thought on theory in educational technology. In B. Seels (Ed.), Educational Technology, Special Issue on Theory, Jan/

Feb. 22–27.
Zikouli, K., Kordaki, M. & Houstis, E. (2003). A Multi-representational Environment for the Learning of Programming and C.

Proceedings of 3rd international conference on advanced learning technologies 2003. Athens, Greece, p. 459.
Please cite this article in press as: Kordaki, M. et al., A computer environment for beginners’ learning ..., Computers &
Education (2007), doi:10.1016/j.compedu.2007.07.006

http://www.ncrel.org/sdrs/areas/issues/content/cntareas/science/sc500.htm
maria
Cross-Out

	A computer environment for beginners " learning of sorting algorithms: Design and pilot evaluation
	Introduction
	The rationale for the design of SORTING
	The student model
	The subject- matter model
	The learning model

	Features of the sorting environment
	The formative-evaluation pilot study
	Results
	Phase 1: Students ' intuitive sorting approaches
	Student sorting attempts using SROs
	Student attempts using TRS
	Student attempts at using PCRS

	Phase 2: Student approaches to the ' Bubble sort ' algorithm
	Student sorting attempts using SROs
	Student attempts using TRS
	Student attempts using PCRS

	Phase 3: Student approaches to the ' Selection sort ' algorithm
	Student sorting attempts using SROs
	Student attempts using TRS
	Student attempts at using PCRS
	Usability issues

	Discussion
	Conclusions
	Uncited references
	Acknowledgement
	References

