
Student task modeling in design and evaluation

of open problem-solving environments

N.K. Tselios1, N.M. Avouris1*, M. Kordaki2

1University of Patras, ECE Department, HCI Group, GR-26500 Rio Patras, Greece

2 University of Patras, CEI Department, GR-26500 Rio Patras, Greece

nitse@ee.upatras.gr, N.Avouris@ee.upatras.gr, Kordaki@cti.gr

Corresponding author: Nikolaos Avouris

University of Patras, ECE Department,

HCI Group, GR-26500 Rio Patras, Greece

tel +30-61-997349 fax (30) 61-997316

N.Avouris@ee.upatras.gr

2

Student task modeling in design and evaluation

of open problem-solving environments

Abstract

Design and evaluation of computer-based open problem solving environments is a

non-trivial task. Definition of a design framework, which involves a strong field-evaluation

phase, has been the subject of the research described in this paper. This framework is based

on the concept of student task modeling. Tools to support design and evaluation have been

built and used in the frame of this study. The framework and the developed tools have

produced promising results during the evaluation of an open problem-solving educational

environment.

Keywords Student task model, Task Analysis, User interface design, Usability

evaluation, Open problem solving educational environments.

1.Introduction

One class of computer-based learning environments that has drawn the attention

of the research community lately is that of open problem- solving educational

environments. These are typically interactive systems that support solving of classes of

problems by the users with emphasis in the active, subjective and constructive character

of learning (von Glasersfeld, 1987). In these environments the student’s activity is not

reduced to a sequence of pre-defined tasks combined with an evaluation system of the

correct answers, as in many traditional learning environments. Instead a set of tools is

provided, through the use of which the user can construct solutions to an open set of

3

problems. These environments provide a context to let users actively explore certain

abstract concepts. Typically such environments are characterized as microworlds (Papert,

1980, Balacheff & Kaput, 1996). Open problem-solving educational environments

provide immediate intrinsic feedback to the user’s actions in a very simple, direct, visual

way (Laborde & Strasser, 1990), providing opportunities for exploration of different, new

and linked representations of the same concept (Kaput, 1987).

Design of such environments is not an easy task. While there seems to be wider

acceptance of the importance of these environments in learning and problem solving, at

the same time there is a growing concern relating to the lack of methodologies and tools

supporting their design and evaluation (Kordaki and Avouris, 2001). Some first

observations on user interaction with these systems recognize the exploratory nature of

the process, through which the user can advance the knowledge of the system and the

tools concerned. The design may also involve study of possible alternative user strategies,

facing typical tasks and alternative ways in which the users could interact with the

provided tools. However this user behavior is not fully anticipated. Students can approach

problems in different ways and can make mistakes in the process. From the constructivist

perspective, it is exactly these mistakes that can be treated as opportunities to learn.

A frequently observed design approach incorporates interaction design techniques

inspired by the Human Computer Interaction (HCI)* area of research, which primarily

concerns users engaged in typical workplace environments (Inkpen, 1997). However the

design according to this approach, often needs enrichment with observational data

generated during field studies, thus necessitating an iterative, user-centered development

process.

* For a list of abbreviations look at the end of the paper

4

One issue worth investigation is the applicability of well-established task

modelling techniques in this context. Task and goal modelling have been extensively used

in HCI research and practice in order to build representations of users understanding,

knowledge, goals and task execution. The proposed models, based on cognitive science

theoretical and experimental work, have already been applied both during design and

requirements capturing as well as during user interface evaluation, as discussed in

section 3 of the paper. However, typically these techniques attempt to model execution of

routine tasks by ideal users, offering a mechanistic view of interaction especially for

prediction purposes, instead of analyzing actual users’ behavior.

The main objectives of this study are: first, to define and apply a new design and

evaluation framework for open problem-solving educational environments, based on task

modeling techniques and second, to present appropriate tools which have been developed

to support the design and evaluation process.

The proposed framework involves incremental application of task modeling

techniques, starting from an expected ideal students’ task model defined during design,

subsequently comparing the observed student behavior to this original model during field

evaluation. The first findings of this proposed methodology and tools, as derived from the

evaluation of an open problem-solving environment, are very promising.

This paper is organized in the following way: an overview of issues related with

the design and evaluation of educational environments is presented in section 2, followed

by a review of existing task design and evaluation techniques. In section 3, the proposed

design and evaluation framework is presented. In section 4, a description of the tools that

have been developed in order to support this framework is provided: the Usability

Analyzer Tool (UATool) that supports the field evaluation phase and the Cognitive

Modeling Tool (CMTool), that facilitates the task modeling and evaluation phase. In

5

section 5 a case study of application of the proposed framework in the design and

evaluation of a learning environment regarding geometrical concepts is reported. In

section 6, a comparison of the findings of the study to an existing evaluation technique

applied to this environment is included. Some conclusions on the advantages of the

proposed technique and its applicability in evaluation of open problem-solving

educational systems are also included at the end of the paper.

2. On usability evaluation of educational software
Currently, various evaluation methods are used to assess usability of educational

software. These methods have been inspired by research in the Human-Computer

Interaction field and can be classified into three main categories:

i) Testing methods, like the thinking aloud protocol, Co-discovery and performance

measurement, (ii) Inspection methods, like heuristic evaluation based on usability

principles - the heuristics, Cognitive walkthrough, Guideline checklists used often as a

basis for comparative evaluation and (iii) Inquiry methods, like interviews of the students

or evaluation questionnaires. For a discussion and a comparative presentation of use of

many of these methods, see Avouris et al, (2001) and Tselios et al. (2001b).

The effectiveness of the above methods on various kinds of educational software

has been however questioned. Squires and Preece (1999), doubt about the applicability of

traditional predictive evaluation techniques, especially checklists because these do not

encompass a consideration of learning issues. They also mention that most forms of

walkthroughs are strongly cognitively oriented and require detailed knowledge, so they

are not suitable for educational systems, which encourage creativity and can be used in

different ways by different students.

6

Squires and Preece (1999), also argue in favor of a convergence of methods of

research of educational software and human computer interaction. In particular they

propose an extension of heuristic evaluation by taking into account the socio-

constructivist learning perspective. In addition, Mayes and Fowler (1999) argue that

educational software design should be focused on design of effective tasks rather than

interfaces, since learning cannot be approached as a conventional task. Therefore, they

stress the importance of evaluating suitability of tasks for their educational purpose.

Sedig et al. (2001) also suggest that educational software is effective when knowledge is

implicitly embedded in the task. So, task modeling methods seem to be appropriate to be

used in evaluation of environments of such characteristics.

An alternative approach to the traditional usability evaluation methods, has

emerged as a need from the above discussion. One alternative is the “Model-based

evaluation” approach, proposed during the last years in the HCI field. According to this

approach, the evaluation can be based on observation of typical users during task

execution and subsequently modeling of their behaviour. The study of interaction

between the user and the provided tools in the microworld is performed in the frame of

goal-oriented activity during typical task execution and is related to the expected task

patterns as anticipated by the system designer. This has been the approach proposed in

this paper. This approach is complementary to other usability evaluation methods and can

be proved suitable to open educational software evaluation, as it can relate problem

solving strategies to interaction and tool design. Before we proceed with the proposed

model-based evaluation framework, in section 3, we provide a brief survey of existing

task modelling techniques in the next section.

7

2.1 Task analysis design and evaluation techniques

The proposed framework is based on a Task modeling and Task Analysis (TA)

approach. The objective of TA from the HCI perspective is to facilitate understanding the

user’s tasks and goals by explicitly describing what the user’s tasks involve (Kieras,

1996). There is already some evidence that task analysis may substantially contribute

towards the successful design and evaluation of user interfaces (Lansdale and Ormerod

(1994), Richardson et al. (1998)). A number of successful case studies have been reported

in a variety of design projects (Olson and Olson (1990), Gong and Kieras (1994), John

and Wayne (1994), Haunold and Kuhn (1994), Ainsworth and Pendlebury (1995),

Umbers and Reiersen (1995), Paterno and Mancini (2000), Patterno’ and Ballardin

(2000)).

 By using a task modeling technique the software design could be described more

formally, analyzed in terms of usability and can be better communicated to people other

than the analysts (Johnson and Johnson (1991), Abowd (1992), Richardson et. al (1998).

Wilson et al. (1993) also propose such models to be used as a core for task-centered

design of user interfaces. As a result, the HCI community has currently focused on

investigation of underlying supporting theories and further development of task analysis

methods and techniques based either on empirical data or on psychological models (Card

et al. 1983). Some of these techniques are: ATOM, (Walsh, 1989), CTA (Barnard, 1987),

HTA (Shepherd, 1989), CLG (Moran, 1981), GOMS (Card et al., 1983), NGOMSL (John

and Kieras, 1996), TKS, (Johnson and Johnson,1991) and TAKD (Diaper,1989).

Task analysis has also received some criticism, relating to its applicability, the

lack of a detailed methodology for applying specific TA methods into the design cycle,

and the large effort required for applying it. Some concerns are also related to the lack of

tools supporting the proposed techniques. John and Kieras (1996a) argue in favor of use

8

of cognitive modeling for usability evaluation, based on the sound theoretical foundations

of the technique and promising results of specific case studies. Additionally, Lim (1996)

describes how task analysis is incorporated explicitly throughout the design cycle in the

MUSE method for usability engineering.

The techniques mentioned here often use different notations, however they share a

common foundation and key assumptions, the most important of which is that they

attempt to model ideal user performance. Additionally, in most cases these techniques are

used when the task structure of the typical system use is well defined, as happens in

command line interfaces. So, in cases where the interaction is not a trivial sequence of

actions, as in open problem solving educational environments, the suitability of these

techniques is questioned. Moreover, there are application areas, like learning

environments, in which flaws in user performance are often the rule and through them the

user builds new knowledge. Designs that do not cope with such “deviations” can present

users with considerable difficulties. In addition, traditional task modeling approaches,

have been mostly used to determine usability of a goal oriented process in terms of

execution time, frequency of errors, efficiency and effectiveness. These approaches need

however to be redefined and extended to educational systems, as they are not always

suitable. Despite these concerns, the wide acceptability of these techniques led us

investigate applicability of Task analysis (TA) in the design and evaluation of open

problem solving environments.

3. The proposed framework for evaluation and design

In this section a methodological framework for the design and evaluation of open

problem solving environments is described. According to this framework, software

prototypes of the educational environment are developed, based on design specifications

and assumptions on expected typical problem solving strategies. These prototypes are

9

subsequently revised and adapted following a field evaluation phase. The revision of the

design specifications during the field evaluation study is a model-driven process. The

most important aspect of this framework is the iterative development of a task model by

the designer during the first phase, subsequently modified by taking in consideration user

behavior during field evaluation. In order to develop this model, typical users’ interaction

within the problem-solving environment is closely monitored and observed. The method

of task analysis adopted here is the one of Hierarchical Task Analysis, with some

modifications, as proposed by Shepherd (1989). It should be mentioned that our intention

has been to build a conceptual model, referring to the way the student views the system

and the tasks in accomplishing certain problem solving goals. HTA bears many

similarities to the goal-oriented cognitive modeling techniques such as GOMS (Card et

al. 1993). However, the purpose of our analysis is to reflect on the observable behavior of

users and to identify bottlenecks on the human-system dialogues rather than to understand

the internal cognitive processes as one performs a task. By using this approach, special

attention is paid to specific tasks involving problem solving activity, such as applying

previous knowledge on new tools and objects in order to face novel challenges.

The proposed framework comprises three phases (Figure 1): i) Preliminary

analysis and development of a model of the anticipated task execution by users, called

Designer Task Model (DTM). ii) Field evaluation, observational data acquisition and data

interpretation and analysis. iii) Development of the Student task model (STM), based on

field data. Modification of the DTM, developed in (i), according to the developed STM.

Identification of usability problems, Generation of new design specifications. These three

phases are discussed in more detail in the following.

Figure 1 Outline of the evaluation framework.

10

3.1 Phase (i): Preliminary analysis and original designer’s model (DTM).

During this phase the designer, based on theories of learning, domain knowledge,

requirements analysis, the expected user’s characteristics and the social environment in

which the system will operate, defines the primary designer’s task model (DTM). Part of

this model is the Designer’s View on the typical Student Task Model, which represents

the way the designer expects the student would interact with the problem solving

environment in order to accomplish typical tasks. It is assumed that this model is made

explicit using the Cognitive Modeling Tool (CMTool) discussed in section 4. The tool is

used to manipulate a graphical representation of the model (see Figure 2). This model

contains the expected high level goals of the student, further decomposed into sub-goals.

Generally, in an open problem-solving environment the individual students can approach

a given problem in many ways, thus expressing their individual differences. These may

be reflected in the designer’s task model, which can contain many alternative goal

hierarchies. This model at the lower sub-task level contains tools-related activity. So it

can be used to design these tools effectively in order to support typical expected task

execution. The use of the task model during this design phase is the traditional task

modeling activity as discussed in section 2.1.

3.2 Phase (ii): Field evaluation study.

Prototype field evaluation is the phase of the proposed framework during which

the designer effectively receives feedback from typical users of the software in order to

adapt the original design, supporting the observed typical users needs. The original

hypotheses about the way users are anticipated to interact with the system may be revised

and extended. According to (Orhun, 1995) effective communication between the user and

the designer and the user and the devices require mechanisms that allow adaptation of the

original assumptions. The explicit representation of the designer task model (DTM)

11

created in the previous phase (i) is essential in order to devise and support this adaptation

process. In our case this field evaluation process serves to validate original designer’s

assumptions against actual student typical task execution, through annotation of

discrepancies between DTM and STM.

 This field study may take place in a usability laboratory or in a school

environment. Participants of the experiments must be representative students with same

characteristics as the expected users of the software. The students receive a list of

representative tasks, in terms of system’s proposed functionality, to accomplish. Their

behaviour should be closely observed and log files of interactions and videos can be

useful material for further analysis. By observing the individual student’s interaction at

the keystroke level (e.g. through log files) the users’ models reflecting their conception of

the system is constructed. Students’ views about missing functionality of the systems can

be also detected.

For each student, n=t*s models need to be built, where t=number of high level

tasks undertaken and s is the number of different strategies used to solve a given tasks.

The Usability analyzer tool (UATool) , discussed in section 4, supports the keystroke

level monitoring and analysis process.

3.3 Phase (iii): Student interaction modeling and DTM refinement.

Students' deviations from the expected behavior are monitored at the keystroke level

and are mapped at the task level during this phase. If a usability-related mistake is

detected then the task where this unexpected interaction occurred is specially annotated

with a text description and a grading of the severity of the problem. If an unanticipated

problem solving strategy is observed, this is added incrementally to the original designer

model. Remarks on additional functionality required to support these unforeseen

strategies are also made. Conceptually wrong problem solving strategies can also be

12

included in the student’s interaction model, since they are often useful for educational

purposes or can be used as typical misconceptions to be tackled by the system.

Following this process, a combined Student Task Model (STM) is derived which

contains all the students’ solution strategies detected and analyzed. The purpose of this

process is to unveil new ways of interaction that the original designer model could not

support and determine the gap between the designer and the student models. After this

analysis the original DTM is revised and augmented. A number of requirements

concerning re-design of the microworld, can be derived by this revised DTM.

4. Tools to support the framework

The effort required to construct a task model and to maintain various instances of

it is one of the main reasons discouraging the wider adoption of task modeling (Kieras,

1996). This finding inspired us to develop appropriate tools to support the previous

described design and evaluation framework.

4.1 The Cognitive Modeling Tool

General characteristics of CMTool The Cognitive Modeling Tool (CMTool1) has been

developed to facilitate the task modeling process. It has similarities with other Task

Modeling tools, like Concurtasktrees Tool (Paterno et. al 2000) and Euterpe for

GroupwareTaskAnalysis (Van Welie et al. 1998). As CMTool is specifically designed for

the evaluation of open educational environments it has many innovative features, that

distinguish it from other tools of this kind, as described in this section. Task models are

structured in a hierarchical way, as shown in figure 2. CMTool is expected to be used by

non-HCI experts, so it is based on an intuitive direct manipulation approach for editing

and modifying task hierarchies. Any specific node represents a task relating to a student’s

1 CMTool has been developed for the Windows environment using Visual Basic 6 and Win32 API calls and
is freely available for non-commercial use.

13

goal. The sub-tasks which serve to accomplish this goal are associated to the node. The

defined plans are inserted as text entries and are not processed by the tool for syntactic

correctness, see Appendix for plan annotation symbols. Additional information and

comments on the goal accomplishment can be attached to the node, as shown in task

1.2.2.1 of figure 5 (properties box). Plans representation is different than other tools, like

ConcurTaskTrees, where the task relations are inserted in the task graph and make part of

the task structure. However, in the CMTool case the main concern was the simplicity in

description and inspectability of the tasks structure, which is achieved through the

selected representation.

Moreover, each task node can be associated to specific tools used. By this way

problems associated with specific tools could be analyzed. An student task model can

therefore be annotated with comments relating to task execution. A special notation has

been defined, included in the Appendix, extending the HTA plan notation (Shepherd,

1989), with tokens referring to user deviation from expected task execution, as shown in

plan 1.1 of Figure 4.

The above features of CMTool are not found in other task modeling tools. This is

because the framework that CMTool supports involves field studies, so the possibility is

provided of associating observational comments to task-related description of activities.

This is one of the most powerful and innovative aspects of the CMTool environment.

Fig 2. Cognitive Modeling Tool : The main task model building space. Part of the designer task
model(DTM) of the task discussed in section 4 is shown

Main CMTool functionality

• The original keystroke log files and the corresponding task model can be shown

concurrently in CMTool, as shown in Figure 2. The possibility of dragging an event of

14

the log file to the goal structure, which results in the introduction of a new node, filled

with the action description, facilitates the process of goal structure building.

• A novel and time-saving functionality of the CMTool is its ability to automate

synthesis of existing task structures. Using this feature, various sub-goal structures can

be combined or temporarily hidden away in a task model, according to the degree of

detail required in the context of a particular study.

• The evaluator can select parts of a task structure representing a specific problem

solving strategy, which can be stored for future reference or comparison with other

users' strategies.

• When the analysis is focused on the time required to accomplish a task, time related

information can also be stored on each task node and appropriate calculations

regarding the time required for a task to be accomplished can be carried out

automatically.

• CMTool permits exporting task models in various alternative representations:

graphical-hierarchical tree view, sequential view and structured report view are

produced automatically, all consistent with each other.

Analysis characteristics of CMTool Task models are stored in a database, together with

qualifying information (DTM, STM, user id, etc.). Based on this data base, quantitative

analysis tools are supported to extract useful statistics related to the analyzed tasks, such

as number of keystrokes required to achieve a specific goal or sub-goal, mean time

required and interaction complexity of specific user model compared to primary

designer’s expectations or to revised and adapted model. Additionally the CMTool

supports storage of various users’ characteristics and further analysis is supported,

focused on user characteristics such as age, grades and gender.

15

The possibility of analyzing further the observed system usage according to a

number of dimensions permits evaluation of the software environment both in terms of

usability and learning. The dimensions of analysis are : (i) problem solving strategies, (ii)

individual students, (iii) specific activities to carry out a strategy, (iv) tools used, and (v)

types of problems detected during interaction.

This analysis is supported by a visual query construction environment shown in

Figure 3. The constructed models could be analyzed across any combination of these five

dimensions. Through this environment queries can be built concerning for instance

identification of all encountered problems related to tool X, identification of all usability

problems concerning male students related with problem solving strategy Y, etc. From

quantitative data, like frequency of usage of the provided tools, the evaluator using this

environment can focus on specific errors or tools. This representation of summative value

is missing from the hierarchical task models view. Also educational evaluation of the

environment (e.g. strategies selected, tools used, strategies relation to student

characteristics etc.) can be performed through this analysis facility of the CMTool.

This capability of CMTool distinguishes it from other Task modeling

environments and tools (e.g. Conscurtasktrees), which are not specific to evaluation of

educational software and so they lack this analytical power along the described

dimensions. Additionally, the CMTool is designed with the objective to be used by

educators as a tool for evaluating and analyzing the educational effect of student

interaction with the environment and therefore, as presented in this section, it is based on

intuitive task description techniques and analysis tools, in contrary to other tools that are

mostly used for usability evaluation by HCI experts.

Figure 3.CMTool:. Visual queries construction environment.

16

4.2. The Usability Analyzer Tool (UATool).

 An additional tool developed to support the proposed framework has been the

Usability Analyzer Tool (UATool), shown in Figure 4. UATool supports analysis of the

keystroke log files and is used in phase (ii) of the framework.

Fig4.Usability Analyzer: On the left the log file of the user is shown. In the main window the

corresponding user screenshots can be studied, at the bottom evaluator’s comments are included. The data

shown are related to the task discussed in the case study of section 4.

 It comprises a log file parser, which converts difficult to understand keystroke

sequences, mouse movements and click streams captured during the field study into

human readable information. This is achieved through an association table between the

environment functionality and relevant keystrokes. Additionally, screenshots captured

during the logging process can be shown, thus extending the traceability of observed

interaction. Comments on the interaction activity, made by field observers could also be

associated to log-files and screenshots. Moreover, UATool can execute a massive parsing

against all the collected log files and store extracted information into a database, such as

number of actions, frequencies of specific keystroke sequences, and performance data.

The results can be communicated to the user of the tool (e.g. the evaluator) either in the

form of graph charts or structured text reports.

5. Case study: Design and evaluation of C.AR.ME.

5.1 Context of the study

In this section a case study of use of the presented framework and tools is

included. The objective of the study was to evaluate and redesign the open problem-

solving environment C.AR.ME (Conservation of Area and its Measurement). This is an

17

open problem-solving environment designed to support 12-14 year pupils exploring the

concepts of conservation of area and its measurement (Kordaki & Potari, 1998).

C.AR.ME. offers the opportunity to explore a variety of geometrical representations of

the above concepts, which can be produced in many ways. For instance areas can be

measured by selecting and iterating a variety of units to cover them. In the case of

conservation of area the pupil can split areas in parts and recompose them to produce

equivalent areas while tools are provided for dynamic transformation of a polygon to

different shapes of equivalent areas. To support the users creating these representations,

the environment provides a set of tools. By studying these representations the users of

CARME have the opportunity to experience the conservation of area in shapes, which are

difficult to produce in the paper and pencil environment as well as to discover their

common properties.

Fig 5. Screenshot of the CARME environment.

The original task model (DTM) containing many alternative approaches to solve

the problem of measuring an area of a geometric shape or transforming into an equivalent

one was developed. The evaluation process took place in a school Computer Laboratory.

30 pupils aged 13-14 took part in the experiments. Each one of them interacted

individually with the software. Pupils were given two typical “conservation of area and

its measurement” tasks. The first task involved transformation of a non convex polygon

to another one with equal area and the second task involved comparison of this polygon

to a square non easily comparable by ‘eye’. Pupils had to perform both tasks ‘in any

possible way’. One of the researchers participated as an observer without intervention in

this experiment and recorded the pupils’ solution strategies in field notes. Pupils’

interaction with the environment was recorded in log files and screenshots of their

18

workspaces were also saved for future reference. A typical such screenshot is shown in

figure 5.

114 log files containing various strategies, attempted by the 30 pupils were

obtained. After the experiment, evaluation of interaction and the learning effectiveness of

the environment, took place. According to the analysis framework presented in section

3.2, we chose strategies of five pupils (three male, two female) concerning the task which

involved “transformation of a non convex polygon to another shape with equal area”.

For the second task which involved “comparison of this polygon to a square” the

solutions of seven pupils, (five male and two female), were analysed. The selection of the

solutions to be analysed was based on the richness of the problem solving strategies

involved.

Eight (8) and fifteen (15) different problem-solving strategies where analyzed

respectively, and modeled with the aid of the CMTool. Task models were inferred from

click stream data related to the corresponding screenshots of students working

environments. Strategies recording and relative notes of observers helped us to clarify the

problem-solving process.

5.2 Task-model based Usability Evaluation of CARME

Feedback from task analysis helped us unveil both syntactic deviations, identified

at lower levels of task hierarchy, mostly interpreted as inappropriate usage of tools due to

usability issues, and semantic ones. Semantic issues such as unpredicted goal sequences,

were contributed either to learning misconceptions on the subject or attempts of the users

to set up strategies not foreseen by the original designer model. Next a combined STM

was produced as a result of reflection and discussion between the evaluators and

designers of CARME.

19

 This combined model helped us identify frequency of tool usage as well as tools

with specific problems. For example, a student during interaction with the CARME

environment, transformed a polygon to a square with equal area by dividing it into two

shapes, measuring the area of each shape and then adding them. Finally, the student

attempted to design a square with equal area to the measured polygon’s area. So the

student had to draw a square of side equal to the square root of the measured area of the

polygon. However the line drawing tool of CARME did not support drawing a line of a

given length. So the student used a trial and error approach, involving drawing a line

segment and measuring it, until achieving the desired length. Such an approach, not

anticipated in the original DTM model, helped us identify this limitation of the specific

tool and request accordingly extension of its functionality.

Table 1. Frequency of tool usage in transformation task.

Results from analysis of tool usage are shown in Table 1. Efficient educational

software design is expected to promote usage of tools, which embody important domain

concepts.

One aspect to be examined was if tools, especially those used frequently as

identified from the modeling process, were transparent to the learning task. For instance,

the polygon design task is expected to be carried out by three actions, according to the

DTM. However, our analysis indicated that 3.75 actions were needed on average to carry

out the specific task (Table 1) because of poor usability of the polygon drawing tool. This

is an indication that pupils may have paid unnecessary amount of attention and effort to

routine tasks instead of reflecting upon domain concepts through fluent manipulations of

tools and geometric objects.

20

Another noticeable result is that task actions related to specific tools seems to

follow an exponential distribution with a small amount of specific tools having very high

popularity while others receiving little attention.

5.3. Detailed Interaction Analysis Example.

To illustrate how the framework has been used in detail, an extract of interaction

analysis is presented here. The presented task involves creation of a polygon and

generation of geometric equivalent shapes of the same area, as for example squares,

rectangles and triangles. In CARME this can be achieved using many tools, like gridlines,

measuring units or automatic transformation of a reference shape. In the described

example a pupil has opted for this last approach. A short extract of this pupil’s interaction

with the system is shown in Table 2. The designer model for this task, shown in Figure 2,

contains two sub-goals: (1.1) Design of a reference polygon, (1.2) Generation of an

equivalent shape using relevant commands.

Table 2. Example log file and comments on the interaction behavior.

The workspace of this particular pupil during this process is shown in Figure 3.

The reference shape is polygon (a). Equivalent shapes built subsequently are shown as

(b), (c), (d) in Figure 3. Analysis of task execution by this pupil is discussed in the

following. Three specific cases of observed deviations of the user task execution in

relation to the DTM in Figure 2 are included:

(a) The Reference polygon drawing task (1.2.1) has been originally designed as

follows: The pupil is expected to draw all the sides of the polygon except the last one and

then to select “end draw” to complete the polygon. From user actions [1-7] of the log file

in Table 2, it is deduced that the pupil attempted to complete the polygon by drawing the

last point of the final segment close to the starting point, subsequently selecting the

21

appropriate command “end draw”. This was marked as a low severity syntactic deviation

in the corresponding Student task model. The additional task {1.1.3} was included in the

task execution plan, as shown in Figure 6. A remark was also made that it is desirable that

the C.AR.ME system should interpret drawing the end of a line near to the starting point,

as an attempt to complete the polygon thus providing more support to direct

manipulation.

Figure 6. User task analysis of sub-goal: Polygon drawing.

(b) The second misconception detected was related to the fact that in order to

automatically produce the geometric equivalent shape, the user was requested -through a

relevant message- to measure the area of the original polygon (a). Demanding this

activity in the frame of an automatic transformation task created confusion to the pupil, as

seen in actions 8-10 of the log file (Table 1). Finally the pupil, after measuring the area of

(a), produced some equivalent shapes (see Figure 7, tasks 1.2.1, 1.2.5 and table 1 actions

18,19). A comment was added to sub-task 1.2.2.1 in the STM, shown in Figure 7,

describing the observed user behavior and the relevant annotation mark (!) was assigned

to the task execution.

Figure 7. Extract of User Task Model. sub-goal: polygon automatic transformation.

 (c) Subsequently, when the pupil attempted to create more equivalent shapes the

system prompted her to measure one side of a previously drawn shape, in order to use it

as a base. This does not clearly relate to the task objective. The result was that the user

could not carry out the task and started to try different ways of interaction ending in a

deadlock (actions 20-28,Table 2). Thus, the tasks 1.2.3, 1.2.4, 1.2.6 were marked as

unaccomplished in the STM, as shown in Figure 7.

22

By reviewing the interaction extract we can conclude that due to flaws in system

design, only 10 out of 28 listed actions (35%) were related to expected task execution,

and finally the given task was not fully accomplished.

User observation analysis both of screenshots and log files produced quite large

amount of feedback on usability but the analysis procedure was tedious and time

consuming. An automated strategy classification technique using Bayesian belief

networks (Tselios et al. 2001) has been proposed in order to classify click stream data,

thus facilitating the student goal inferring process. However more research and

experimentation is required in this direction.

Another important finding of this process was that this association of low-level

user actions to task and goal models, as these had been expressed in the form of DTM,

revealed flaws in the original prototype design and easily associated these flaws to

specific tasks and tools. Moreover, the student’s task models of various users were

compared and the syntactic and semantic deviations of user interaction visualized in

reference to the DTM, as shown in Figure 7.

6. Comparison of the model-based approach to heuristic evaluation

The proposed design and evaluation framework and the developed tools are

compared to the widely used heuristic usability evaluation approach in this section. An

independent study was undertaken using the latter approach on the CARME microworld

and a comparison of the findings of the two approaches was made.

Heuristic evaluation (HE) focused on design of the user interface in terms of

layout consistency, appropriate feedback and minimization of errors rather than

evaluation of interaction mechanisms required to carry out specific tasks, related to

learning.

23

In our experiment heuristic evaluation unveiled forty eight (48) usability problems

in the CARME microworld. As expected, the majority of usability issues unveiled

through heuristic evaluation, concerned interface presentation issues, such as

appropriateness of language used in the open file/save dialogs, menu item arrangement,

semantics of buttons and icons used, appropriateness of metaphors used and quality of

feedback in certain dialogue messages. Application of specific heuristics such as degree

of support to user’s control and freedom, could not be evaluated accurately and

exhaustively, especially in such open problem solving environments which are highly

interactive, since we cannot anticipate students’ behavior without involving user testing

techniques in the evaluation method.

The field-based task modeling approach identified thirty-one (31) usability

problems in CARME, from which eighteen (18) where common to those identified

through the HE approach. However, through this approach it was found easier to

understand how a dialogue across student and environment takes place, during task

accomplishment, especially when a novel approach was used. In some cases due to

unforeseen strategies, new requirements for tools functionalities emerged, as discussed in

section 5. Examples were the discovery that CARME was lacking of mechanisms to

facilitate construction of shapes such as squares and circle drawing, the need of which

was identified during the field study.

An essential conclusion of this comparative study was that heuristic evaluation,

can miss important flaws and limitations of the software design, since the unveiled

problems could hardly be related to the effect on learning tasks. Therefore redesign of

educational software based solely on heuristic evaluation may not influence more

effective learning task redesign. However the findings of the two approaches seem to

have complementary elements. As Karat (1988) proposed, it is through combination of

24

heuristic evaluation and user testing that one is expected to address both general usability

issues and domain-specific problems from actual usage observation.

This was proven in our case as both methods unveiled problems of different

nature. In general, heuristic evaluation unveiled problems in the lexical level of expected

interaction relating to the way the environment delivered and received responses during a

student interaction rather than on how actually this dialogue takes place and missed issues

relating with what students may need in order to solve specific tasks. Thus heuristic

evaluation could play a supportive role to unveil interface design limitations, thus

facilitating reasoning and identifying the cause of observed interaction errors.

7. Conclusions

The proposed design and evaluation framework which captures the details of

student interaction with the problem solving environment both at the cognitive level as

well as the keystroke level, supported by the developed tools, is an innovative approach

of design and evaluation of open problem solving educational environments. The

proposed methodological approach provides flexible and expressive notations, systematic

methods to support the specification, analysis and use of task models, support for the

reuse of good design solutions and tools to support the modeling framework.

As demonstrated in the described case study, detailed analysis of students’

problem solving behavior, building of the individual student task models and aggregating

these in a single revised designer task model, can lead to a bottom up re-design phase

following the original top-down design. The observations made during this phase proved

to be very rich, and their capturing and classification under the syntactic and semantic re-

design perspectives, following this approach, define a solid framework for iterative

design of open learning environments.

25

The proposed model-based techniques permit deeper understanding of the nature

of tasks through their explicit representation and annotation during their decomposition

and systematic consistency control across task structures. Additional advantages of this

framework, were introduced by the CMTool used to carry out the modelling process.

These are the possibility of deriving quantitative and qualitative results concerning the

problem solving process at both at the individual student level and at the group level.

Using Visual Query Construction environment, extensive analysis on intra-individual

student differences, in terms of strategy acquisition, usage of strategies and difficulties

found is supported.

Some shortcomings of the proposed approach relate to the difficulty of inferring

the cognitive model of the user from the keystroke behavior. This problem was tackled by

using adequate field evaluation protocols that involve deep interaction of evaluators with

the user during the field study (e.g. think-aloud protocol, interviews etc).

Finally, this approach can be integrated with a constructivist perspective of

learning evaluation process as it supports the study of the development of the individual

pupil strategies. From an educational perspective this approach supports the study of each

individual pupil strategies in relation to the general student model constructed by taking

into account all pupils’ strategies that participated in a particular study. Open problem-

solving educational environments in general suffer from the lack of adequate learning

evaluation mechanisms, since identification of correct solutions is often a tedious process.

By modeling the user interaction and judge it against the original model’s possible

solutions, as provided by educational experts, facilitates validation of the solutions

provided by the problem solvers.

26

Acknowledgements

The reported research has been funded by the GSRT the research project PENED

99ED234 “Intelligent Distance learning Tutoring Systems” and the European Union

project IST2000-25385 Modelingspace. Special thanks are due to two anonymous

reviewers for comments on earlier draft.

References

Abowd, G.D. (1992) Using formal methods for the specification of user interfaces.

Proceedings of the Second Irvine Software Symposium, ISS 92:109-130.

Ainsworth, L. & Pendlebury, G., (1995) Task-based contributions to the design and

assessment of the man-machine interfaces for a pressurized water reactor, Ergonomics

38 (3) : 462-474.

Avouris, N.M. Tselios, N. & Tatakis E.C. (2001) Development and Evaluation of a

Computer-based Laboratory teaching tool, J. Computer Applications in Engineering

Education, vol. 9 (1), pp. 8-19.

Balacheff, N. & Kaput, J. (1996). Computer-based learning environments in mathematics.

In A. J. Bishop, K. Klements, C. Keitel, J. Kilpatric and C. Laborde (Eds),

International Handbook on Mathematics education (pp. 469-501). Dortdrecht: Kluwer.

Barnard, P.J. (1987) Cognitive resources and the learning of human-computer dialogues,

In Carroll, J. M. (eds) Interfacing thought : Cognitive aspects of human computer

interaction; MIT Press.

Card, S. Moran, T. & Newell, A. (1983) The Psychology of Human Computer

Interaction. Lawrence Erlbaum Associates.

Diaper, D. (1989) Task analysis and systems analysis for software development.

Interacting with computers 4(1), pp.124-139.

27

Gong, R. & Kieras, D. (1994) A Validation of the GOMS Model Methodology in the

Development of a Specialized, Commercial Software Application, Proceedings ACM

CHI 1994 (Boston Massachusetts, April 24-28), pp. 351-357.

Haunold, P. & Kuhn, W. (1994) A Keystroke Level of a Graphic Application : Manual

Map Digitizing, Proceedings ACM CHI 1994, pp. 337-343.

Inkpen, K. (1997) Three Important Research Agendas for Educational Multimedia:

Learning, Children, and Gender. AACE World Conference on Educational Multimedia

and Hypermedia 97, Calgary, AB, June 1997, pp 521-526.

John, B. & Kieras, D. (1996) Using GOMS for user interface design and evaluation:

Which technique? , Proc. ACM Transactions on Computer-Human Interaction vol.

3(4), pp. 287-319.

John, B. & Kieras, D. (1996a) The GOMS family of user interface analysis techniques:

Comparison and contrast, ACM Transactions on Computer-Human Interaction, vol.

3(4), pp. 320-351.

John, B. & Vera, A. (1992) A GOMS Analysis of a Graphic Machine Paced, highly

Interactive task. Proceedings ACM CHI 92, pp. 251-258.

John, B. & Wayne, G. (1994) GOMS Analysis for Parallel Activities. Tutorial, Proc.

ACM Transactions on Computer-Human Interaction 1994, pp. 395-396.

Johnson, H. & Johnson, P. (1991) Task knowledge structures: Psychological basis and

integration into system design. Acta Psychologica 78, North Holland, pp. 3-26.

Kaput, J.J. (1987) Representation systems and mathematics. In Problems of

representation in teaching and learning of mathematics ,C. Janvier (Eds) London:

Lawrence Erlbaum associates, pp.19-26.

28

Karat, J. (1988) Software Evaluation Methodologies, Handbook of Human-Computer

Interaction, M. Helander (ed.), Elsevier Science Publishers, B.V. (North-Holland), pp.

891-903.

Kieras, D. (1996) Task analysis and the design of functionality. In CRC Handbook of

Computer Science and Engineering, CRC Press.

Kordaki, M. & Potari, D. (1998). A learning environment for the conservation of area

and its measurement: a computer microworld, Computers and Education, 31, pp. 405-

422.

Kordaki, M. & Avouris, N (2001) Modeling in Design and Evaluation of Open Learning

Environments, Computers and Education (submitted).

Laborde, J.M. & Strasser, R. (1990) Cabri-Geometry: A microworld of geometry for

guided discovery learning. ZDM, 5:171-177.

Lansdale, M.W. & Ormerod, T.C. (1994) , Understanding Interfaces: A Handbook of

Human-Computer Interaction, Academic Press, London.

Lim, K.Y (1996) Structured task analysis: an instantiation of the MUSE method for

usability engineering, Interacting with Computers, vol. 8(1), pp. 31-50.

Mayes J. T.,Fowler C. J.,(1999) Learning Technology and Usability: A Framework for

Understanding Courseware Usability and Educational Software Design.Interacting

with Computers 1999 v.11 n.5 p.485-497

Moran, T. P. (1981) The command language grammar: a representation for the user

interface of interactive computer system, Int. J. of Man-Machine Studies 15, pp. 3-50.

Nielsen J. (1993) Usability Engineering, Academic Press, London.

Olson, J. & Olson, G. (1990) The Growth of Cognitive Modeling in Human-Computer

Interaction Since GOMS, Human Computer Interaction, Vol.5, pp. 221-265.

29

Orhun, E. (1995) Design of Computer-Based Cognitive Tools. In: diSessa, A. A.; Hoyles,

C. & Noss, R. (Eds.) Computers and Exploratory Learning. Berlin: Springer, pp. 305-

320.

Papert, S. (1980) Mindstorms: Pupils, Computers, and Powerful Ideas. New York: Basic

Books.

Paterno’, F. & Ballardin, G. (2000) RemUSINE: a Bridge between Empirical and Model-

based Evaluation when Evaluators and Users are Distant, Interacting with Computers,

Vol.13, N.2, pp. 151-167.

Patterno’ F. & Mancini, C. (2000) Model-based design of Interctive Applications, ACM

Intelligence, winter 2000, pp. 27-37.

Richardson, J. Ormerod, T. & Shepherd A. (1998) The role of task analysis in capturing

requirements for interface design , Interacting with computers vol. 9(2), pp. 367-384.

Sedig, K., Klawe, M., & Westrom, M. (2001) Role of Interface Manipulation Style and

Scaffolding on Cognition and Concept Learning in Learnware. ACM Transactions on

Computer-Human Interaction, 8 (1), March 2001, pp 34–59.

Shepherd, A. (1989); Analysis and training in information technology task. In Diaper,

D.(ed.); Task Analysis for human computer interaction, Ellis Horwood Limited, pp.15-

55.

Tselios, N. Maragoudakis, M. Avouris, N. Fakotakis, N. Kordaki, M. (2001a) Automatic

diagnosis of student problem solving strategies using Bayesian Networks, 5th

Panhellenic Conf. on Didactics of Mathematics and Informatics in Education,

Thessaloniki, 12-14 October 2001.

Tselios N., Avouris N., Dimitracopoulou A, (2001b), Evaluation of Distance-learning

Environments: Impact of Usability on Student Performance, Int. Journal of

Educational Telecommunications, forthcoming.

30

Umbers, I.G., Reirsen, C.S. (1995) Task analysis in support of the design and

development of a nuclear power plant safety system, Ergonomics 38 (3) 443-454.

van Welie M.,van der Veer G.C., Eliens A.(1998) Euterpe - Tool support for analyzing

cooperative environments, Proceedings of the 9th European Conference on Cognitive

Ergonomics , August 24-26, 1998, Limerick, Ireland.

Von Glasersfeld, E. (1987) Learning as a constructive activity. In Janvier, C. (Ed.)

Problems of representation in teaching and learning of mathematics London:

Lawrence Erlbaum, pp. 3-18.

Walsh, P. A. (1989); Analysis for Task Object Modeling (ATOM) towards a method of

integrating task analysis with Jackson System Development for user interface software

design. In Diaper, D.(eds); Task Analysis for human computer interaction, Ellis

Horwood, pp.186-209.

Wilson, S. , Johnson, P., Kelly, C. , Cunningham, J., Markopoulos, P. (1993) Beyond

Hacking: a model based approach to user interface design, in Proc. of HCI’93, J. Alty,

D. Diaper and S. Guest (eds) Cambridge University press, pp 217-231.

Abbreviations used

CMTool : Cognitive Modeling Tool

DTM : Designer Task Model

GOMS: Goals Operators Methods Selection Rules

HCI : Human Computer Interaction

HTA: Hierarchical Task Analysis

STM : Student Task Model

TA : Task Analysis

UATool : Usability Analyzer Tool

31

APPENDIX

CMTool Plans annotation.

Temporal relationships of subtasks are described through plans, shown next to a

task node. The plans contain the following operators:

 AND and OR are used to describe tasks that are executed together or by selecting

one instead of another, respectively. Instead of AND the comma mark (,) can be used to

describe tasks that could be executed in any order.

IF conditional task execution

SEQ or THEN or FOLLOWED BY are used to describe tasks that must be

executed in sequence

PAR is used to indicate tasks that can be carried out in parallel.

*N repeat task N times

Tokens for annotation of deviations in task models

 (!) marks a non-destructive syntactic deviation,

 (x!) marks a not-completed task execution.

{task-id} Introduction of new unforeseen tasks in a plan by a user

<task-id> Tasks that should be supported in a different way in order to meet the

expectations of the user

revised
task model

User observation
(Field study)

Usability
Lab,

Logging
tools

Video

Log
files

Data selection and
analysis

Evaluation

objectives

Task analysis
Co

gn
iti

ve
M

od
el

 T
oo

l
(C

M
T)

Combined
user's

interaction
model user's

interactions
models

Usability evaluation
results, redesign

decisions
Prototype

Cognitive
M

odel Tool
(C

M
T)

Primary
designer
model

Redesigned artefact

Usability
Analyzer

(UA)

Study of
typical
problem
solving

environm
ents

Requirements
specifications

User's observation data

qualitative/quantitative analysis results

Figure 1 Outline of the evaluation framework.

Figure 2. CMTool : The main task model building space. Part of the designer task model(DTM) of the task discussed in section 5 is shown

34

Figure 3. Visual Query Construction environment.

35

Figure 4.Usability Analyzer : On the left the log file of the user is shown. In the main window the corresponding user screenshots can be studied, at the bottom evaluator’s
comments are included. The data shown are related to the task discussed in the case study of section 4.

36

Figure 5. Screen of the CARME environment : using the concepts of conservation and of area measurement in integration

37

Figure 6. User task analysis of sub-goal: Polygon drawing.

38

Figure 7. Extract of User Task Model. sub-goal: polygon automatic transformation.

39

Tool name #

used
Per

strategy
1 Cognitive tasks 61 7,62
2 Polygon 30 3,75
3 Transformations 12 1,5
4 Copy/Paste Tools 11 1,37
5 Units 8 1
6 Measure areas 7 0,87
7 Symmetry tool 7 0,87
8 Draw line 3 0,37
9 Rotation 3 0,37
10 Grid 1 0,12
 Total 143 17,875

Tools utilisation in transformation
task.

0

10

20

30

40

50

60

0 2 4 6 8 10

used

Table 1. Frequency of tool usage in transformation task.

40

Table 2. Example log file and comments on the interaction behavior.

Example Log file Comments
1] StartDraw mnu,41
2] Draw Line 100,120 160,140
3] Draw Line 160,140 45,180
4] Draw Line 45,180 60,30
5] Draw Line 60,30 74,95
6] Draw line 74,95 98,120
7] EndDraw mnu,12
8] Rectangle mnu,29
9] Measuring Areas mnu,3
10] Rectangle mnu,29
11] MoreRectangles mnu,24
12] MoreParallelograms mnu,23
13] Measuring Areas mnu,3
14] MoreRectangles mnu,24
15] SelectAll mnu,36
16] MoreRectangles mnu,24
17] Select mnu,35
18] Square mnu,39
19] Triangle mnu,44
20] Triangle mnu,44
21] MoreTriangles mnu,25
22] Select mnu,35
23] MoreTriangles mnu,25
24] Select mnu,35
25] Triangle mnu,44
26] MoreTriangles mnu,25
27] Select mnu,35
28] MoreTriangles mnu,25

Actions [1-7] : design of the reference polygon (a) of

figure 1. Last segment drawn through action [6].

Actions [8-10] : Selection of menu option automatic

transformation of rectangle. The system responded with
request to measure area of (a) first. The user selected area
measurement [9] and then proceeded with Rectangle
creation [10]. Successful completion of task (1.2.2).

Actions [11-17] : The user attempts unsuccessfully to

build more equivalent shapes, i.e. tasks (1.2.3) and
(1.2.4). In order to pursue these goals, the user needs to
achieve goals (1.2.3.1) and (1.2.4.1) first. This is not clear
by system response.

Action [18] : The user completes successfully task

(1.2.1)

Action [19] : The user completes successfully task

(1.2.5)

Actions [20-28] : Unsuccessful attempt to achieve task

(1.2.6). The system requests first manual measurement of
the base of the triangle. The user abandons the goal.

