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Abstract. In recent years, maintaining the history of graphs has become
more and more imperative due to the emergence of related applications
in a number of fields like health services, social interactions, and map
guidance. Historical graphs focus on being able to store and query the
whole evolution of the graph and not just the latest instance. In this
paper we have two goals: 1) provide a concise survey of the state-of-
art with respect to systems in historical graph management since no
such comprehensive discussion exists and 2) propose an architecture for
a distributed historical graph management system (named MAGMA -
MAssive Graph MAnagement) based on previous research work of the
authors.
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1 Introduction

In recent years there is a rapid increase of time-evolving networks that produce
a considerable amount of data. Networks, such as citation networks, traffic net-
works, and social networks are, naturally represented as graphs and they are
usually dynamic. For example, in a citation network, new nodes and edges are
constantly added due to the publication of new papers. An important challenge
that arises in these time-evolving networks is the efficient management of their
history in order to be able to reason about its whole evolution and not only about
its latest state. This allows us to answer queries such as ”what is the average
connectivity of author X in the citation network between 2010 and 2015”.

There have been quite a lot of systems developed since 2016 for historical
graph management. Most of them are distributed, since evolving large graphs
an extremely demanding with respect to space usage and query/update time.
A rather outdated (since 2016) related survey can be found in [41]. They focus
mainly on the models used for temporal graphs and the techniques available to
query them. Another recent survey is [2] (2021) which analyzes graph streaming
systems, where the differences and similarities between graph streaming systems
and historical graph systems are explicitly given. In general, graph streaming
systems tend to use snapshots as the stable (latest) instance of the graph, since
it may be the case that recent updates have not been registered. However, in
principle these snapshots may be stored and allow for historical queries as well.
Some graph streaming systems explicitly - although it is controversial to what
extent - support historical queries on such (small number) snapshots of their
evolution.

Our contribution in this paper is twofold. First, we provide a concise but
comprehensive discussion on the systems developed up to today after 2016 that
is covered by the survey of [41]. Due to space limitations, we do not discuss
extensively these systems. At the same time, we focus mainly on distributed
systems making a simple reference to non-distributed ones. To the best of our
knowledge, there is no other up-to-date comprehensive reference to such sys-
tems. Our second contribution, which required this state-of-the-art review, is
the proposal of the high-level architecture of a distributed system for managing
time-evolving graphs. The architecture is based on the ideas set by the authors
in previous papers [23, 22, 38] as well as by the most recent developments in the
area of historical graph management, as laid out in our small survey.

The rest of the paper is structured as follows. In Section 2 we provide a
review of historical graph management systems after 2016. In section 3 we discuss
the high-level architecture of the system we intend to implement for managing
historical graphs. Finally, we conclude in Section 4.

2 A Review of Historical Graph Management Systems

Historical graphs have to utilize multiple dimensions resulting in many possi-
ble directions for such a system. Most systems are concerned with the storage
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and query of the evolution of the attributes as time evolves and some try to
utilize the evolution of the topology for better partitioning or for reasons re-
lated to efficiency. In Table 2, we provide, without further discussion, some basic
characteristics of non-distributed historical graph management systems. Some
terminology is in order to understand the following tables:

1. transaction time vs valid time: Transaction time represents the time that
an event takes place (i.e. the moment that a node is stored or deleted from
a network) whereas valid time signifies the time period in which an object
was valid (i.e. the time interval that a node existed in a database). In the
transaction time setting updates can only occur in an append-like manner
(i.e. an update in a field changes the value of the most recently stored value)
whereas in the valid time setting updates can refer to any time point.

2. time as a property vs snapshots: in a rather crude manner, we get basi-
cally two different representations of time-evolving networks: a) snapshots,
which correspond to a copy+log method; that is, the network is stored at
specific time instances and in between a log is kept with the changes and b)
time as a property, which correspond to incorporating the notion of time as
another special property of the objects/properties within a network. There
are many variations of these two basic representations.

3. offline vs online vs streaming: In an offline setting, we get all the history
of the graph beforehand. In an online setting, the graph evolves and with
it the database, while queries can be made at any time. In a streaming
setting, we have an online setting with restrictions as to how much space and
time is allowed for each update. In the literature, streaming is not usually
related to historical information but more to computational restrictions on
the processing of the stream due to its high velocity and massiveness. One
can get as a by-product a rudimentary transaction time temporal graph
processing system.

4. Time-dependent and Time-independent algorithms: If the algorithm
on the temporal graph can be applied without time constraints then it is
time-independent (e.g., pagerank computation at time instance t). If there
are time constraints, then the algorithm is time-dependent (e.g., shortest
path that respects time intervals on nodes/edges and the journey is time-
consistent).

In Table 2 we show all distributed systems for historical graph management
after the year 2016. Since our proposed system falls under this category we are
going to discuss briefly some of these systems, which according to our opinion
are quite important and have nice properties.

HINODE was the first pure vertex-centric system with respect to the storage
model. It was introduced in [23] and supports valid time as well as extensions like
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Summarizing the Characteristics of Non-Distributed Temporal Graph Management Systems

Systems Memory Storage Model Time-related characteristics

InteractionGraph
[10]

Main Memory (old
graph in disk)

Custom Transaction time

STVG [28] Main Memory Neo4j valid time, offline, restricted to
transit networks

ASPEN [7] In-Memory/parallel extends Ligra Streaming

GraphOne [24] in-memory NVMe
SSD

Custom Streaming, can’t get arbitrary his-
toric views if transaction time is as-
sumed

Auxo [12] Main and External
Memory

Custom Transaction time

[3] Main Memory Custom Transaction time, Snapshot-based,
focus on space savings

[1] Main Memory Neo4j Valid time, In addition to entity
evolution it supports schema evolu-
tion

TGraph [15] Main and External
Memory

Neo4j Support ACID Transactions, slow
topological updates but fast prop-
erty updates, Transaction time

VersionTraveller
[18]

Main Memory based on Power-
Graph static graph
management system

Offline Snapshot-based, Focus on
switching between snapshots

NVGraph [27] Non-Volatile Main
Memory and DRAM

Custom Online Snapshot-based, Transac-
tion time

Table 1. Non-distributed systems for historical graph management.
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Summarizing the Characteristics of Distributed Temporal Graph Management Systems

Systems Storage Model Time-related characteristics

Portal [33] Spark Offline, time as a property, Valid time

GDBAlive [29] Cassandra Transaction time

Graphsurge [37] Custom offline snapshots, focus on differential computa-
tion across multiple snapshots

TEGRA [17] Custom Transaction time, based on persistent trees, incre-
mental computation model, window analytics

GraphTau [16] Spark Streaming

Immortalgraph [30] Custom Transaction time, Snapshot-based, Focus on
locality-aware (w.r.t. time and topology by repli-
cation) batch scheduling for computation

HGS [21] Cassandra Transaction Time, Sophisticated Snapshot-based

SystemG-MV [40] IBMs SystemG Relaxed transaction time

Raphtory [39] Custom + Cassandra
for archiving

Transaction time, streaming

Chronograph [5] MongoDB offline, time as a property, Focus on graph traver-
sals

Graphite [9] Apache Giraph offline, Time-dependent and time-independent
algs

Granite [34] Based on Graphite focus on temporal path queries, partition tech-
niques to keep everything in main memory

Tink [26] Apache Flink Online, Valid time

Gradoop - TPGM
[36, 6, 35]

Apache HBase/ Accu-
mulo

Valid and Transaction time (bitemporal), Fully-
fledged system ranging from a graph analytical
language to the storage model

Greycat [14] NoSQL Database +
custom

Valid time, No edge attributes

PAST [8] based on key/value
stores (e.g., Cassan-
dra)

Streaming Spatio-temporal graphs, bipar-
tite graphs, only edges with time-points,
spatiotemporal-specific query workloads

HINODE [23, 22, 38] Custom (other ver-
sions are based on Cas-
sandra and MongoDB)

Online, time as a property, Valid time (allows
more general notions of time), pure vertex-centric
storage model

Table 2. Distributed systems for historical graph management.
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multiple universes. It was implemented within the G∗ system [25] by replacing
its storage subsystem. They showed gains in space usage, which is an immediate
consequence of the pure vertex-centric approach. They supported local queries
(e.g., 2-hop queries) as well as global queries (e.g., clustering coefficient). In
addition, this vertex-centric model was also adapted for NoSQL databases by
creating two models, SingleTable (ST) and MultipleTable (MT). In the former,
all data fit in one table and a row has the data of a Diachronic Node, while in the
latter, data are split in different tables. Two implementations were made, one in
Cassandra [22] and later one in MongoDB [38] for comparison reasons, while in
MongoDB we tried also to take advantage of indexes and iterative computation
to reduce memory usage.

Portal In [33] they discuss about interval-based and point-based models prefer-
ring the interval-based model with sequenced semantics. As a data model, they
talk about TGraph that uses the property graph model while they also discuss
about sequenced semantics in a distributed environment (e.g partitioning, time-
window operations). In PhD Thesis [32] they propose a Temporal Graph Algebra
(TGA) and a temporal graph model (TGraph) supporting TGA In addition, in
[31] they propose a declarative language (Portal) based on the previous model
and built on top of a distributed system (Apache Spark). Portal has SQL-like
syntax following SQL:2011 standard. They also discuss about possible algorithms
on temporal graphs among which are node influence over time, graph central-
ity over time, communities over time, and spread of information. TGraph is a
valid time model that extends the property graph model (each edge and vertex
is associated with a period of validity), while all relations in Graph must meet
5 criteria (uniqueness of vertices/edges, referential integrity, coalesced, required
property, constant edge association). TGA is both snapshot and extended snap-
shot reducible presenting a new primitive (resolve) while containing operators
like trim, map, and aggregation. Portal uses Spark for in-memory representa-
tion and processing while it uses Apache Parquet for on-disk data layout using
node files and edge files (but it doesn’t support an index mechanism). They ex-
perimented with different in-memory representations, SnapshotGraph(SG) that
stores the graph as individual snapshots, MultiGraph(MG) that stores one single
graph by storing one vertex for all periods and one edge for every time period
and OneGraph that stores each edge and vertex only once (also exists MGC and
OGC). It has distributed locality like Immortalgraph, experimenting with differ-
ent partitioning methods (the equi-depth partitioning is more efficient in most
experiments) but stores materialized node/edges instead of deltas and they also
experimented with both structural and temporal locality, concluding that tem-
poral locality is more efficient (among other reasons due to the lack of sufficient
discrimination in the temporal ranges of the datasets).

ImmortalGraph [30] is a parallel in-memory storage and computation system
for multicore machines and distributed settings designed for historical graphs. It
focuses more on locality optimizations, both in saving the data and in the execu-
tion of the queries using locality-aware batch scheduling (LABS). They make a
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clear distinction and a very nice discussion between the time-centric layout and
the structure-centric layout. It supports parallel temporal graph mining using
iterative computations while they prefer those computations to be in memory.
ImmortalGraph supports both global and local queries at a point in time or a
time window. Data are stored in snapshot groups with the use either of edge
files or vertex files, depending on the application. A snapshot group organizes
together snapshots of a time interval by storing the first one and the changes
that happened to the rest. This can be stored either with the use of time locality
by grouping activities associated with a vertex (and a vertex index) or with the
use of structure locality by storing together neighboring vertex (and a time in-
dex). Instead of choosing between the possible trade-off from structure and time
locality, they replicate the needed data and decide which technique to use ac-
cording to the type of query and how far is the starting point from the start of the
snapshot group. LABS favors partition-parallelism from snapshot-parallelism, so
they prefer batch operations of vertex/edges achieving better locality and less
inter-core communication. They also experimented with iterative graph mining
and iterative computations. In the former they reconstruct the needed snapshots
in memory favoring time locality (and they compare both push, pull, and stream
techniques), while in the latter they compute the first snapshot and the later
N − 1 snapshots in batch (achieving better locality). They also implemented
both low-level and high-level query interfaces, the latter used for iterative com-
putations. An earlier implementation of ImmortalGraph is Chronos [13] with
the main difference being that it only focuses on time locality. Finally, they pro-
vide a low-level as well as a high-level programming interface (APIs) that in
fact define their analytics engine. They also experiment on Pagerank, diame-
ter, SSSP, connected components, maximal independent sets, and sparse-matrix
vector multiplication.

Historical Graph Store (HGS) [21] is a cloud parallel node-centric distributed
system for managing and analyzing historical graphs. HGS consists of two ma-
jor components, Temporal Graph Index (TGI) that manages the storage of the
graph in a distributed Cassandra environment, and Temporal Graph Analysis
Framework (TAF) that is a spark-based library for analyzing the graph in a
cluster environment. TGI combines Partitioned Eventlists, which stores atomic
changes, with Derived Partitioned Snapshots, which is a tree structure where
each parent is the intersection of children deltas (used for better structure lo-
cality storing neighborhoods), both of them are partitioned, while they are also
combined with Version Chain to maintain pointers to all references of nodes in
chronological order. TGI divides the graph into time spans (like snapshot groups
of ImmortalGraph) with micro-deltas which are stored as key-value pairs con-
tiguously into horizontal partitions at every time span. In that way, it can execute
in parallel every query to many Query Processors and aggregate the result to
Query Manager or to client. It can work both on hash-based and locality-aware
partitioning by projecting a time range (time-span) of the graph in a static
graph. TAF supports both point in time queries and time-window, some of the
supported queries are subgraph retrieval with filtering, aggregations, pattern
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matching, and queries about the evolution of the graph. An earlier implementa-
tion of TGI is DeltaGraph [20] which focuses on snapshot retrieval

ChronoGraph [5] is a temporal property graph database built by extending Tin-
kerpop and its graph traversal language Gremlin so as to support temporal
queries. It stores the temporal graph in persistent storage (MongoDB), and then
loads the graph in-memory and traverses it. Their innovation is not in the stor-
age model but in how they support traversal queries efficiently on top of it. It
exploits parallelism, the temporal support of Tinkerpop to increase efficiency,
and lazy evaluations to reduce memory footprints of traversals. Its main focus is
on temporal graph traversals but can also return snapshots of the graph. They
distinguish point-based events and period-based events because of their seman-
tics and their architectural needs. They use aggregation to convert point-based
events to period-based events so as not to have two different semantics in or-
der to improve time efficiency in query execution. They achieve this by using a
threshold as the max time interval that might exist between time instants so as
to group them. A graph is composed of a static graph, a time-instant property
graph, and a time-period property graph. They also use event logic, where an
event might be either a vertex or an edge, on a period or a time instant. They
applied temporal implementation of BFS, SSSP, and DFS, while they don’t rec-
ommend DFS on their system because of Gremlins recursive logic. One more
thing they discuss is that when you store the temporal graph in snapshots there
will be some loss of information because a snapshot might contain data of an
hour, day e.t.c according to the needs of the problem, while when you store
them using time interval, you have a more accurate representation of the graph.
An extension of Chronograph by using time-centric computation for traversals
is given in [4].

Tink [26] is an open-source parallel distributed temporal graph analytics library
built on top of the Dataset API of Apache Flink and uses Gelly as a language. It
extends the temporal property graph-model focusing on keeping intervals instead
of time-points by saving nodes as tuples. It depends on Flink to use parallelism,
optimizations, fault tolerance, and lazy-loading and supports iterative process-
ing. It also uses functions from Flink like filtering, mapping, joining, and group-
ing. Most algorithms use Gelly’s Signal/Collect (scatter-gather) model which
executes computations in a vertex-centric way. It also provides temporal ana-
lytics metrics and algorithms. For the latter, they implemented shortest path
earliest arrival time and shortest path fastest path while for temporal metrics
they provide temporal betweenness and temporal closeness.

Gradoop (TPGM) TPGM [36] [6] [35] is an extension of Gradoop’s EPGMmodel
(model for static graph processing, presented in a series of papers from 2015, e.g.,
see [19]) to support temporal analytics on evolving property graphs (or collection
of graphs) that can be used through Java API or with KNIME. Gradoop is an
open-source parallel distributed dataflow framework that runs on shared-nothing
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clusters and uses GRALA as a declarative analytical language and Temporal-
GDL as a query language. Gradoop supports Apache HBase, and Apache Accu-
mulo to provide storage capabilities on top of HDFS, while other databases can
also be used with some extra work. TPGM supports bitemporal time by adding
to vertex, and edges as well as to graph the logical attributes for start and end
time for both valid and transaction time (but it allows to not use some of them).
While TPGM provides an abstraction, Apache Flink is used for handling the
execution process in a lazy way and it provides several libraries. GRALA pro-
vides operators both for single graphs and graph collections, it supports retrieval
of snapshots, transformations of attributes or properties, subgraph extraction,
the difference of two snapshots, time-dependent graph grouping, temporal pat-
tern matching, and others. For some more complex algorithms, it also supports
iterative execution using Apache Flink’s Gelly library.

Lastly, they have implemented a set of operations for their analytics engine
and have implemented them in Flink - by using Flink Gelly. For further inves-
tigation, it should be mentioned that they provide an extensive description of
their architecture while they also provide a Lessons Learned section that contains
valuable information with respect to their design choices.

SystemG-MV In [40] they propose an OLTP-oriented distributed temporal prop-
erty graph database (dynamically evolving temporal graphs). It is built on top
of IBM’s SystemG, which is a distributed graph database using LMDB (B-tree
based key-value store). Data are stored in tables with key/value pairs allowing to
query part of the graph efficiently without retrieving whole snapshots. Different
tables exist for vertices, edges, and properties, while it supports updates only
on present/future timestamps like transaction-time models. Therefore, changing
previous values of the graph is not allowed explicitly, but it is possible to change
past events by using low-level methods. In this model, they save two timestamps
for the creation/deletion of vertices/edges but while they don’t allow edges to be
recreated with the same id, although multiple edges can exist between a pair of
vertices. For vertices, they keep the deleted vertices in a different table, while for
properties they keep it simplified by keeping only one timestamp for the update
as the rest can be calculated. Alongside the historic tables, they keep one table
with the current state of the graph for more efficient queries.

GraphOne [24] is an in-memory data store with a durability guarantee on exter-
nal non-volatile memory NVMe SSD, while it was solely implemented in C++.
Its objective is to be able to perform both real-time analytics or diverse data
access while synchronous updates are applied to the database. To achieve that,
GraphOne uses a hybrid model which is composed of a circular edge log and an
adjacency store. The adjacency store has a multi-versioned degree array and an
adjacency list with chained edges, which is used to permanently store the data
taking regard to snapshots. On the other hand, edge log is used to temporary
store the incoming data as edges so as to later move them in parallel to the
adjacency store and improve the ingestion time. In brief, an epoch in GraphOne
is consisted of 4 stages logging, archiving, durable, and compaction. At logging



10 Alexandros Spitalas and Kostas Tsichlas

phases, records are inserted in the edge log at their arrival order, when the in-
serted edges reach the archiving threshold the multi-threaded archiving phase
starts in parallel with the logging phase. At the start of the archiving phase, it
shards non-archived edges to multiple local buffers so as to keep the data order-
ing intact, then the edges are being archived in parallel to the adjacency store,
while also new degree nodes are allocated. In short, in the durable phase data
are being appended to a file, while in the compaction phase deleted data are
being removed. One thing that needs to be noticed is that GraphOne despite
that is designed to store evolving graphs, it is not designed for getting arbitrary
historic views from the adjacency store.

TEGRA [17] is a distributed system with a compact in-memory representation
(using their own storage model) both for graph and intermediate state. Its main
focus is on time window analytics for historical graphs, but it can also be used
for live analytics as the data are ingested in the database. An interesting feature
is the ICE computational model that takes advantage of the intermediate state
of computations saving it, so as to use it in the same or different queries. Compu-
tations are being made only in subgraphs affected by updates at each iteration.
This has some overhead on finding the correct state and also the extra entities
that should be included in the query when there is large number of updates at
each iteration or while trying to use ICE on different queries. Tegra also uses
TimeLapse, an API for high-level abstraction which also allows what-if questions
that change the graph creating different histories, suited for data analytics pur-
poses. The storage model behind TEGRA is DGSI, which uses persistent data
structures to maintain previous versions of data when modified. It uses persis-
tent adaptive radix trees to store edges and nodes separately with path copying.
It uses simple partitioning strategies to distribute the graph to nodes. Each node
has two pART for nodes and edges respectively. Log files are being used to store
updates between snapshots, which are stored in turn in the two pARTs. The
branch and commit primitives are really interesting as well as the GAS (Gather
- Apply - Scatter) model [11]. It allows also changing any version thus leading
to a branched history (like a tree - full persistence). Lastly, TEGRA also uses
an LRU policy to periodically remove versions that have not been accessed for
a long time.

STVG [28] is a prototype framework that focuses on fast-evolving graphs. It is
built on top of Neo4j and supports both point and time-window queries while
its main use is to analyze evolutionary transit networks. It is based on the
whole-graph model for representing the graph, which is composed of subgraphs
that facilitate the conceptual modeling of the connectivity between entities and
the time-graph of Neo4j that is responsible for keeping track of time evolution.
Subgraphs are connected to the time-graph to keep track of the evolution of
the whole-graph, while nodes belonging to different subgraphs are linked with
complementary connectivity edges. Since this framework is used for evolutionary
transit networks it is demanded that the graph needs to be connected while edges
can’t recur over time. Projected graphs are used to materialize and retrieve
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the graph both at a time-window or a sliding window. They have implemented
also graph metrics used to analyze a transit network, graph density, network
diameter, and average path length having in mind their specific application.
In general, this framework has some good ideas but it is tailored for transit
networks.

Graphite [9] is a distributed system for managing historical graphs (fully evolved
and using valid time) by using an interval-centric computing model (ICM) built
over Apache Giraph. They assume data are given in ascending time order and any
vertex can exist only once for a contiguous time-interval. It also has the ability to
execute both time-independent and time-dependant historical queries (temporal
queries on a time-window), while they tried to create a unifying abstraction
that scales to both and ease algorithm design and detach user logic using ICM
and time-warp operator. ICM uses Bulk Synchronous Parallel (BSP) execution
for every active vertex of a query until it converges. They use two stages of
logic, compute and scatter, where compute does the computations needed for a
vertex, and scatter transfers it with messages to neighbor vertexes as needed.
Time-warp operator happens at the alternating compute scatter steps to help
sharing of calls and messages across intervals. A key aspect of it, is that it groups
input guaranteeing correctness of grouping and no duplication, while it returns
as minimal as possible triples. They also designed and constructed a plethora
of time independent (TI) and time dependent (TD) algorithms for their system.
with a very detailed evaluation

Granite [34] is a distributed engine for storing and analyzing temporal prop-
erty graphs (supports temporal path queries) made on top of and as a sequel to
Graphite focusing on path queries. It is made an assumption for infrequent up-
dates and frequent queries. They extend the previous model by adding a tempo-
ral aggregation operator, indexing, query planning and optimization, while they
prefer to relax ICM so as to work beyond time respecting algorithms. Granite
handles both static temporal graphs and dynamic temporal graphs while it uses
interval-centric features only in the latter. An interesting point is that to op-
timize path queries they split them and execute them concurrently, while they
also keep statistics about the active nodes at each time point so as to optimize
the query planning. While Graphite makes hash partitioning at query execution,
Granite first partitions every entity according to its type and later it performs
a topological partition to its independent group of entities of the same type and
splits them into workers using the round-robin technique. They also use a result
tree so as not to send duplicate paths across the system (some parts of the path
might be the same). Lastly, they propose a query language for path queries.

NVGRAPH A rather interesting system from a hardware perspective. NV-
GRAPH [27] is an in-memory data structure focused on exploiting the different
advantages of NVMM and DRAM, combining them into a C++ library im-
plementation. The major issue they try to tackle in NVMM is providing crash
consistency while they argue that simply using NVMM without considering its
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issues is a sub-optimal solution. They focus on creating an architecture that uses
both DRAM and NVMM to hide the issues of NVMM while they are exploiting
its advantages. NVGraph stores the graph as a series of continuous snapshots
by storing the first snapshot and deltas for the next snapshots. They also im-
plemented 4 algorithms for evaluation Pagerank, BFS, influence maximization,
and rumor source detection.

3 Architecture of MAGMA

Fig. 1. A view of MAGMA with the possible storage directions.

In this section, we describe the general characteristics of the proposed his-
torical graph management and processing system (MAGMA), the possible di-
rections we could take implementing it as well as the possible obstacles we need
to overcome.

An immediate observation from the previous systems is that each one of them
focuses on different aspects of historical graph management, resulting in a differ-
ent appropriate solution for each application. This is because the management
and processing of historical graphs span multiple design dimensions forbidding
the existence of one system to rule them all. Our approach is towards creating
a purely vertex-centric and storage optimal (asymptotically) distributed system
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called MAGMA with the ability to update/query efficiently the history and apply
graph algorithms on arbitrary time periods rather than on specified snapshots.
Following HiNode, MAGMA will be more efficient in local than global queries
due to its vertex-centric structure. However, we also wish to efficiently execute
global queries (e.g., pagerank) by exploiting our vertex-centric architecture and
implementing modern techniques (e.g., thinking like a vertex) for efficient and
effective parallel computation. Another important aspect that needs to be ad-
dressed in a later stage of the development of MAGMA, is the system’s API. In
particular, we need to design the system in a way that guarantees its simplicity
with respect to use, its efficiency, its scalability, its flexibility with respect to its
functionality, and its compatibility with existing libraries (for static or temporal
graphs).

The key part of the system is the efficient and effective vertex-centric storage
of the graph. A diachronic node contains the whole history of a particular node
in the sense that it stores all changes and their time intervals related to this node,
such as a change in an incoming edge or a change in a property of the node. To
this end, we employ three fundamental operations in order to update and query
the diachronic nodes: write, read and delete. All three operations are applied on
diachronic nodes that contain all relevant information (edges, properties, etc.).
More complex updates and query operations can be built on these fundamental
operations that will serve mainly the online management and processing of the
historical graph.

Regarding the storage model, we have narrowed our options into either cre-
ating a custom database for storing the historical graph into servers or by ex-
tending an existing database and applying our model to them. In any case, we
will always stick to the pure vertex-centric approach proposed in HiNode and
adapt it appropriately to fit the design choice of the storage model. In the case of
creating a custom database, we have complete freedom with respect to designing
the storage model to fit HiNode, but on the other hand, it will require consider-
ably more effort for the implementation as well as to ensure compatibility with
existing libraries. On the other hand one could use an existing database, either
a NoSQL database like Cassandra and MongoDB or a Graph database (e.g.,
GraphX and SystemG). In this case, it is easier to build the system and take
advantage of the optimizations and functionality that already exist within this
database (e.g., fault-tolerance and partitioning), but there is less freedom in ap-
plying the storage model of HiNode. Another option, in this case, is to extend an
existing graph database (e.g., GraphX) to support natively the management and
processing of historical graphs based on a pure vertex-centric approach. This is
a harder task, but it has the merit of sharing and using existing libraries within
this particular graph database. In addition, the visibility of such a solution will
be much higher across the community.

Since MAGMA is a distributed system, the partitioning strategy is of paramount
importance for the efficiency of the system. Most systems use either a simple
hash-based partition or a chronological or topological partitioning. In our case,
the topological partitioning is more natural but we also need to take into ac-
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count the temporal evolution of the graph. In topological partitioning, we want
to place in the same machine, nodes that are connected or that are relatively
close to each other. One problem we might encounter with topological partition-
ing is that in different timestamps, the distance between nodes changes, and as a
result, different partitions may be more appropriate in different time instances.
This is problematic in our case since a diachronic node contains all the history
of the node and thus naturally all history is stored in a single machine. Two pos-
sible solutions for this issue are either by using different metrics for partitioning
combining the whole history of the graph or by dividing parts of a node to dif-
ferent machines. Another possible solution, which could also be combined with
the previous one, is the duplication of some nodes across machines. However, in
this case, care should be taken with respect to space usage.

Another critical part of the system is the query engine and the libraries that
will be available. Regarding the libraries, we intend to implement algorithms on
temporal graphs like temporal shortest path (journeys) or community detection
and evolution while also supporting algorithms for static snapshots. This can be
achieved either by using the abstraction provided from the API or by exploiting
the system’s architecture and creating them from scratch. For the former task,
we first want to create a query engine able to handle more demanding tasks that
supports parallelism and provides the user with an easy-to-use API. To do so,
our processing unit needs to apply one of the following approaches: ”thinking like
an edge” (TLAE), ”thinking like a vertex” (TLEV), ”thinking like a neighbor-
hood” (TLAN), ”thinking like a subgraph” (TLAS) or ”thinking like an interval”
(TLAI). We need to further investigate these approaches and decide which one
would be more efficient in our system, although we can deduce straightforwardly
that some of these will probably not fit our vertex-centric architecture. On the
other hand, TLEV techniques seem as the most promising at the moment, in
order to take advantage of Hinode’s vertex-centric structure, while TLAN or
TLAS approaches could also fit our model depending on the partition strategy
used. At a later stage, these approaches will be used for iterative computations.

4 Conclusions

In this paper, we provide a small review of contemporary historical graph man-
agement systems and propose an architecture for such a system based on our
previous research work. We intend to extend the very preliminary results con-
tained in this paper as follows: 1) A survey on systems for historical graph man-
agement. This survey will cover all historical graph management systems and
will provide researchers as well as developers information as to the pros and cons
of these systems in order to help them choose correctly. 2) The development of
a system (called MAGMA) for managing and processing historical graphs. The
high-level architecture of this system and basic options for its implementation
are described in this paper.
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