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Abstract. The problem of anomaly detection on static networks has
been broadly studied in various research domains. Anomaly detection
concerns the identification of objects or connections between objects that
differ substantially from the rest. However, a plethora of real-world net-
works are highly dynamic, in the sense that entities (nodes) as well as
relations between them (edges) constantly change. The time dimension
critically affects the very definition of an anomaly in these cases, and
thus care must be taken to properly incorporate it. Many solutions have
been proposed in dynamic/temporal networks under various assumptions
concerning the modeling of time as well as the detected anomalies. The
problem becomes quite harder when the notion of time is introduced
since various unseen problems arise when compared to the static case.
Our study aims to provide a comprehensive examination of recent devel-
opments in community-based anomaly detection and to discuss prelim-
inary notions related to temporal networks. Furthermore, we introduce
an established algorithm for dynamic local community detection, aimed
at identifying anomalies based on community evolution over time. We
also provide preliminary experimental findings using synthetic datasets
to support our study.

Keywords: Temporal/Dynamic Graphs, Anomaly Detection, Outlier
Detection
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1 Introduction

Anomaly detection (henceforward also referred as AD) is a broad field that
deals with identifying patterns or observations in data that deviate from what
is considered normal. This process is used to identify unusual or unexpected
behavior that can indicate a problem or an opportunity for improvement in
various fields such as computer science, engineering, finance, and security. AD
can be applied to different types of data, including numerical, categorical, time-
series, and network data, and it can take many forms, including unusual patterns
in data, abnormal behavior in systems, or unexpected changes in patterns over
time.

In general, a static network is represented as G = (V, E), where V is the
set of vertices (entities) and E is the set of edges (interactions/relations be-
tween entities). An edge can be directed, such as the connection between two
people where one sends an email to another, or undirected, such as the connec-
tion between two collaborating peers. Lastly, edges among nodes can be associ-
ated with weights (e.g., frequency of interactions) or nodes can be associated to
weights (e.g., specific properties of nodes). In many cases, real-world networks
are dynamic/temporal, in the sense that new edges or nodes appear and ex-
isting edges or nodes disappear. A temporal network can be represented either
as a sequence of static graphs (snapshots) or as a network with time annota-
tions on its nodes/edges that represent its time evolution. The former approach
requires the specification of the size of the time window that defines the time
instances of snapshot construction. The latter representation is related to events,
like edge/node insertion or deletion or its existence interval. The time annota-
tion may have different aspects/interpretations depending on the application.
The following aspects in order of generality can be used:

1. Transaction Time: represents the time that an event takes place (i.e.,
the moment that an edge is inserted or deleted from the graph). In the
transaction time setting, updates can only occur in an append-like manner
(i.e. an update changes the most recent version).

2. Valid Time: it signifies the time period in which an object is valid [314]
(i.e. the time interval that an object existed in the graph). Transaction time
can be emulated in the valid time setting by restricting updates to intervals
that begin on the time moment of the update. Valid time is the time during
which a fact is true in the real world.

As numerous changes such as the appearance or disappearance of edges and
nodes occur in a temporal graph over time, the statuses of strongly connected
sub-graphs or communities undergo transformations with the network’s evolu-
tion. Instances of these changes include the emergence of new communities, the
vanishing of existing ones, and the division of existing communities into multiple
entities. Such alterations in the community structure can signal anomalous be-
havior. Techniques that identify anomalies by monitoring community evolution
are recognized as community-based anomaly detection methods.
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Finally, within the literature, an exploration reveals the categorization of
anomalies into four distinct types, each delineated by its unique nature and
characteristics.

1. Node anomalies: These are anomalies that are associated with a specific
node in the network, such as a node that has a high degree of connectivity
or a node that experiences a change in its behavior with respect to various
metrics.

2. Edge anomalies: Anomalies of this type occur in the connections between
nodes. One example is the sudden appearance and immediate disappearance
of a new edge between two nodes or a sudden change in the weight of an
existing edge.

3. Community or subgraph anomalies: These are anomalies that occur
in the formation or structure of groups of nodes (communities) within the
network; for instance, a shrunken or a split community.

4. Change point and event anomalies: Refers to a sudden change, instan-
taneous (change point) or enduring (event), in the structure or properties
of the network. This can include changes in the number of nodes, edges,
or communities, changes in the properties of individual nodes or edges, or
changes in the overall structure of the network.

In this work, our contribution primarily revolves around integrating an ex-
isting dynamic local community detection algorithm [24] into the framework for
detecting anomalies. We significantly contributed to adapting and enhancing this
algorithm to effectively identify instant and sustained community changes within
temporal networks. Furthermore, we conducted preliminary experimentation on
synthetic datasets to evaluate the performance of the proposed algorithm. In
what follows we provide a short description of the structure of this work. In
Section [2] we discuss briefly the related work in community based anomaly de-
tection. Consequently in Section [3] we present our proposing Local community
based anomaly detection method, and in Section[d we present preliminary results
of our model. Finally, we conclude in Section

2 Related Work on Community-Based Anomaly
Detection Methods

2.1 Community-based Methods

Based on the literature, a typical two-stage approach is used for anomaly de-
tection in dynamic networks. Initially, the network is transformed into a stan-
dard graph representation to extract features. Then, existing outlier detection
methods are applied to determine anomalies in the graph. We identify five
main approaches for generating graph representations and extracting features:
Graph Feature-based, Decomposition and Compression-based, Machine/Deep
Learning-based, Community-based, and Probabilistic Model-based methods. Given
the focus of the current study on community-based methods, we will now high-
light recent works in this area.
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An event detection method based on the evolution of the community struc-
ture in temporal networks, is presented in [I8]. The authors assume that large
events activate information diffusion, which in turn affects community borders.
By applying network aggregation in a certain time period, researchers utilize the
InfoMap algorithm to detect communities. Consequently, intra-community and
inter-community links are calculated in each time interval, and when the dif-
ference between inter-community links and intra-community links is greater or
equal to a threshold (mean and standard deviation), then an event is detected.
Experiments with the Enron and Boston Marathon bombing networks, show
the effectiveness of this method. Similarly, in []], anomalous events in graph
snapshots are detected by utilizing the community boundary nodes.

An improved approach of [18], is discussed in [I]. The authors detect events
by combining two different approaches. First, like [I8], researchers check commu-
nication trends among communities calculating the inter-community and intra-
community links. The second approach (community structure-based) is divided
into two stages: 1) Check the number of extracted communities in consecutive
time steps, examining several buckets in terms of community size and 2) track, in
consecutive time steps, the number of central nodes inspecting the ratio changes.
Moreover, stages 1 and 2 can be combined, since sometimes, the number of com-
munities and central nodes are affected simultaneously from events. Finally, for
the initialization of the method, existing algorithms are used to detect the initial
communities and central nodes. Experiments in real datasets show that commu-
nity structure-based methods are more scalable and faster than others. A rela-
tively recent approach that detects abnormal hosts (nodes with high centrality
degree), is described in [22]. In this method, authors focus on discovering collec-
tive abnormalities by considering community activities. This approach consists
of three steps: First, by utilizing Spark GraphX they create the graph model.
Second, by applying a well-known static algorithm, they detect all the host com-
munities. Third, by matching the communities in consecutive time steps, the
event type for each community (merge, split, appear, ..etc) is identified and four
feature types are estimated. Finally, three different anomaly types are consid-
ered: Change in the distance of feature space utilizing the aforementioned four
feature types, change in the scale of community and change in the life-cycle of
network evolution.

Utilizing co-evolution pattern mining, authors in [I1] detect anomalous (tar-
get) nodes in multi-typed information networks, i.e., heterogeneous bibliographic
information network (HBIN). The proposed algorithm consists of three steps.
First, the co-evolution patterns are extracted using relational and evolutional
constraints on the dataset. Then, an existing multi-typed clustering method is
used in order to cluster the patterns. Finally, by estimating the similarity in-
dex among target (author) and attribute (paper-count, co-author, and venue)
objects, the anomaly score is calculated and the anomalous nodes are identified.

A method that detects anomalous communities based on the community evo-
lution in dynamic graphs, is presented in [5]. To reduce the computational cost,
they introduce the notion of graph representatives and community representa-
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tives. Taking advantage of these representatives, in each timestamp the algorithm
identifies the predecessors and successors for each community, if any. Lastly, ex-
ploiting the decision rules, six different types of community-based anomalies are
proposed i.e. Grown, Shrunken, Merged, Split, Born, and Vanished community.
Experiments in both synthetic and real datasets are conducted exhibiting the ef-
ficiency and effectiveness of the method for detecting anomalies. A method that
detects community-based change points in snapshots, is analyzed in [17]. In this
work, three different network types are considered: 1) static, 2) semi-static and,
3) dynamic. In the first type, nodes are presented in each time slice whereas in
semi-static, nodes can be removed. In both cases, the partition method, indepen-
dently of the community detection algorithm, is constructed using the co-group
network. Regarding the third type, the authors use the first two cases to calculate
the parameters for an anomaly detection-based streaming method. The exper-
imental evaluation shows that this method is more efficient and less sensitive
compared to Generalized Louvain and GraphScope [21].

In [I5], a combination of change point detection and community evolution
events is proposed. First, the network is divided into snapshots and in order to
capture the network change, the change detection range is extended to a time
window instead of looking at only two consecutive snapshots. Then, by utilizing
matching community measures, the authors find the community evolution event
that occurred. Another anomaly detection algorithm, in dynamic attributed net-
works, is proposed in [25]. There, a function that denotes the anomalous score is
utilized. The authors use dynamic graph clustering with a community detection
model by ranking nodes based on 1) how close they are to a dense community
center and 2) the deviation from current and historical behavioral data, in order
to identify anomalies. In [I6], authors utilize the sliding window technique to
generate multivariate subsequences and apply a modified fuzzy clustering algo-
rithm to detect the structure. Then, the multivariate subsequences, the optimal
cluster centers and the partition matrix are reconstructed. By calculating a con-
fidence index, authors quantify a level of anomaly detected in the series and
apply Particle Swarm Optimization for the problem of outlier discovery.

In addition, for the purpose of identifying anomalous events in graph streams,
and by using a novel definition of anomaly score based on the history of the ac-
tions of nodes, a community-based method is presented in [9]. In [26], a network
of snapshots is constructed. The weight of each edge is defined as the similar-
ity score between the corresponding snapshots. Then, by detecting the network
communities, they check whether each community consists of similar snapshots
and whether two consecutive snapshots belong to different clusters. Based on
these checks, a change point anomaly is identified.

A novel method that detects changes in labeled and directed heterogeneous
stream graphs is presented in [I4]. By using the graph substructures and GED
(Graph Edit Distance), they construct the network embedding. Consequently,
cluster construction (using the k-Medoid algorithm) is performed and the in-
coming graphs are compared to the clusters to spot potential anomalies with
respect to communities. One more recent research on the field of community
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and anomaly detection is presented in [I3]. For each snapshot, they use the Lou-
vain algorithm and the LPA to detect communities. Then, to discover anomalies,
they do the following: 1) they utilize a bipartite graph to capture the community
evolution between two consecutive time steps, and then, 2) from the constructed
evolutionary paths, they detect possible community abnormalities. Other papers
with similar results can be found in [19],[23],[7],[12]

3 Preliminaries and Problem Formulation

3.1 Background and Terminology

A dynamic network G = (V, E;) consists of a node set V = 1,...,n and a set
of edges with timestamps FE;. These edges represent interactions between nodes
at particular time points ¢, where ¢ = 1,2,...,n, and are generated by an in-
teraction streaming source (I.5S). The ISS generates stream updates, such as
edge insertions or deletions, among both new and existing nodes in the network.
Consequently, the communities within the network also undergo changes as the
network evolves. This study treats G as an unweighted and undirected network.
The neighbors of a node v are nodes directly connected to v, and the degree of
a node is the count of its neighbors. To uncover anomalies based on community
structure, our primary objective is to detect the community centered around the
seed node. This seed could represent a node of particular importance based on
external information or a node with distinctive topological features. We define
a Local Community (LC) as the community to which the seed node belongs.
Thus, a network G can be partitioned into the LC and the remaining network
U, where G — LC =U.

In a greedy local community detection method, various quality metrics mea-
sure the quality of a local community. In this study, the chosen metric is frone
(henceforth referred to as fitness score), which quantifies the sum of internal
community edges divided by the total sum of internal and external community
edges [10]. An internal edge denotes a connection between two nodes within the
local community, while an external edge signifies a connection between a com-
munity node and a node within its neighborhood. In Equation |1 below, k¢ and

m
kS, represent the internal and external edges of community C, respectively.

2k 41
- 2kC 4 kC

mn out

f'l’fLO’VLC (C) (1)

Below, we delve into a more detailed explanation of the LCD framework.
Given a static network G and an initial seed Uy, our objective at each step is
to incorporate a new member node into C'. Initially, the community comprises
solely the seed, denoted as C(Uy), with a corresponding fitness score of fo = k%
Subsequently, the algorithm scans through all community neighbors to idenﬁfy
the node whose potential inclusion maximizes the community’s fitness score.
Upon identifying such a node, the algorithm evaluates whether its estimated

fitness score surpasses that of the current community state (i.e., without the new
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node). If this condition holds, the new node is integrated into the community.
This process iterates, with each new node addition resulting in an increment in
the fitness score of C, leading to the final fitness scores arranged in ascending
order. For example, consider a scenario where a community C' initially comprises
only the seed Uy. Upon exploring the neighbors of Uy, if U; is identified as offering
the highest fitness score for C' among all neighbors of Uy, and the addition of Uy
to C' enhances its fitness score (i.e., fu, > fu, = fc), then U; is incorporated
into C, resulting in a new community fitness score of fo = fi7,. This iterative
process continues until no new candidate node can further enhance the fitness
score of C.

In this study, we incorporate the dynamic version of the previously described
static algorithm. This dynamic algorithm [24] allows us to identify evolving lo-
cal communities, with the primary objective of detecting anomalies based on
community structures. The static algorithm is now augmented with dynamic
capabilities, enabling continuous adjustments to the local community around a
seed node as the graph evolves. This dynamic approach provides communities
with robust fitness scores and significant overlap with those generated by the
static algorithm, eliminating the need for rerunning the static algorithm when-
ever the graph undergoes modifications.

3.2 Problem Formulation

A Local Community (LC) denotes the community to which the seed node be-
longs. These seed nodes act as the defining nodes for the community under
examination. Given a dynamic network GG and a continuous flow of edges gener-
ated by the 1.55, our aim is to estimate the changes in the status of LC between
successive time steps. In dynamic networks, the potential of a local community
undergoes alterations over time, particularly regarding its size. Specifically, the
number of nodes constituting our community of interest may fluctuate between
consecutive time steps. Using deviations in size as a guide, we define six events
that characterize the evolutionary behavior of the LC. However, before exploring
these events, it is crucial to establish a definition of a consistent community as
time evolves.

Definition 1. Characteristics of a consistent community in a temporal
network: With a parameter d representing a small percentage, the C* community
remains unchanged at the i'" time step if C*~! shares at least (1 — d) of its
members with C* and the absolute difference in their sizes is equal to or less
than d times the size of C*~1.

IC =1 < dIC™ | and [C"' N CTTH > (1= d)|CT (2)

The relation above implies that a community maintaining consistency should
demonstrate minimal change over time. However, to differentiate between un-
stable and consistent communities, we introduce a slight relaxation parameter d,
which permits the addition or removal of peripheral nodes within the community.
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Hence, having established the local community LC' and outlining a consistent

community with Definition[l], we proceed to formally define the six pivotal events
as follows:

1.

Growth - The C* community is labeled as Growth at the i** time step, if
C"~! share at least 1 —d of its members with C?, and its size is less than C*:

|G —|C* Y > 0and |C7Y £ 1and |[C'NCTYH > (1 —ad)|CY  (3)

Contraction - The C* community is labeled as Contraction at the i*" time
step, if C* share at least 1 — d of its members with C*~!, and its size is
greater than C":

|G — O <0 and |CY] # 1 and (1 —d)|C| < [C*NCTY (4)

The above scenarios aim to demonstrate that a local community can either
grow or shrink significantly. Nevertheless, a substantial base of shared nodes
remains stable over time.

New "Expanded" - The C? community is labeled as New "Expanded" at
the ¢*" time step, if C*~! share less than 1—d of its members with C?, its size
is equal to or greater than C*~1, and C*~! contains more than one member:

|G —|C* Y >0and |C7 £ 1and [C'N O < (1 —a)|CY  (5)

New "Shrank" - The C? community is labeled as New "Shrank" at the i*
time step, if C* share less than 1 — d of its members with C?~1, its size is
greater than C*, and C" contains more than one member:

|C*| —|C* | < 0 and |C?] # 1 and (1 —d)|C*| > |C* N C*! (6)

Events 3 and 4 indicate that there are a few identical shared members (> 2)
in local community at consecutive time steps. Consequently, we label them
as "New Shrank" or "New Expanded".

Vanish - The ¢ community that contains only one member, is labeled as
vanish at the i*" time step, if C*~! contains more than one member and
share only one member with C*:

ICY > 1 and |C] = 1 (7)

This event indicates that the new community consists only of the seed node
while the community of the previous time step ¢ — 1 contains more than one
member (seed node).

Birth - The C? community that contains more than one member, is labeled
as birth at the i*" time step, if C*~! contains only one member:

|C* 1 =1 and |CY| > 1 (8)

This event indicates that the community of the previous time step i — 1
consists only of the seed node while the new community contains more than
one member.
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Fig.1: Most common anomaly scenarios in the local community evolution: a)
No anomaly, b) sustained community change and ¢) instant community change.
The black node in each of these communities constitutes the seed node (Figure

from [2]).

Given the definitions mentioned above, we proceed to delineate the types
of anomalies based on the evolution of the community. Specifically, within a
sequence of time steps, we seek to identify: 1) Instant community change and 2)
sustained community change.

Definition 2. Instant community change: This refers to a sudden alteration
in the community size, lasting only for the current time step.

Definition 3. Sustained community change: This denotes a change in the
community size that persists for at least two consecutive time steps.

In this work, time steps are considered as batches of updates. Specifically, fol-
lowing a defined number of edge insertions/deletions around the current commu-
nity, we assess whether our local community (LC') undergoes an instant change, a
sustained change, or remains consistent. In what follows, we provide an overview
of local community evolution over time, illustrating three distinct scenarios, see
Fig[i] In the first scenario, the local community remains consistent, showing min-
imal fluctuations in size over consecutive time steps. This indicates a state of im-
mutability or stability within the community. Moving on to the second scenario,
we observe growth/expansion in the local community between two consecutive
time steps, followed by stability in size in the subsequent time step. This tran-
sition reflects a sustained community change. Finally, the third scenario depicts
fluctuations in community size across all time steps, indicating instant commu-
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nity changes characterized by both contractions/shrink and expansions/growth
in size within single time steps.

4 Experiments

4.1 Datasets

The synthetic datasets employed in our experiments are generated using RDyn
[20], an approach designed to produce dynamic networks that exhibit properties
akin to real-world networks. These datasets include time-dependent ground truth
communities with adjustable quality, allowing for both the merging and splitting
of communities. The RDyn generator operates based on two key user-defined
parameters: the number of nodes in the dynamic network and the number of
iterations. Each iteration comprises a batch of actions involving edge insertion
or deletion, with the number of actions varying between iterations. In this study,
we refrain from utilizing an initial graph as our starting point. Instead, we carry
out experiments in a fully streaming fashion, commencing solely from the seed.
In our preliminary experiment, we used three different datasets generated by the
RDyn generator, and its fundamental characteristics are outlined in Table [T}

Table 1: Synthetic datasets containing information about the number of nodes,
iterations, initial/final edges, and actions performed.

Synthetic Nodes |Iterations|Final # of|Actions
Datasets edges

SD1 1000|1000 3907 52257

[SD2 2000  J1000  [10483 [85025 |
[SD3 [[5000 1000 [22588 [152144 |

4.2 Experimental Results

In assessing our proposed framework, we compare the outcomes of our community-
based anomaly detection approach with the ground truth communities generated
by the synthetic dataset generator. For our evaluation, we focus on precision,
recall, and the F1 score as the appropriate metrics. Precision represents the ra-
tio of correctly identified anomalies to the total number of identified anomalies,
while recall indicates the proportion of relevant anomalies that were successfully
retrieved. The F1 score, being the harmonic mean of precision and recall [6], is
preferred over a simple average as it penalizes extreme values.

In our experimentation, we employ the dynamic algorithm proposed by Za-
krzewska et al. [24] to identify the community surrounding the seed node. The
selection of the seed node is based on its degree. In our experiments, we used
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various high-degree nodes and explore different values for the parameter d. Ulti-
mately, we fix the user-defined parameter d to 0.1. It’s worth noting that multi-
ple experiments have been conducted utilizing diverse ground-truth communities
and seeds. In what follows, we provide representative results for each dataset.

After selecting a seed node based on predefined criteria, our approach em-
ploys the dynamic algorithm to detect the community surrounding this seed
node across various time intervals. Subsequently, we apply the set of six criteria
to identify potential events within these communities, flagging them as event in-
stances. This procedure is executed for both the detected communities and the
ground-truth communities, facilitating a comparative analysis during periods of
abnormal community behavior. In Table [2, we summarize the detected events.

Table 2: Types and quantities of events present in both the detected and ground
truth communities. A = Our method and B = Ground Truth.

Event Types

Datasets | |[Growth [Contraction[New "Expanded"[New "Shrank" [Vanish [Birth
SD1 All2 2 1 1 0 1

B |4 4 0 0 0 1
SD2 Al 1 0 1 0 1

B2 2 0 0 0 1
SD3 A2 2 3 0 0 1

B2 2 1 0 0 1

The table presented above details the individual events that were retrieved
from the detected and the ground-truth community, in all three synthetic datasets.
Regarding the first dataset, we have two Growth, two Contraction, one New "Ex-
panded", one New "Shrank", and one Birth event for the detected community.
On the other hand, for the ground truth community, we get four Growth, four
Contraction, and one Birth event. At the outset of the process, we presume that
both the ground truth and detected communities comprise solely of the seed
node. At the initial time step when we compare both communities, their size ex-
ceeds 1, prompting us to record a Birth event for both the ground truth and the
detected community. Notably, no Vanish events are observed. This observation
is straightforward to interpret as the selected seeds are high-degree nodes, thus
exhibiting cohesion within their periphery. We observe that the events identi-
fied in the detected community closely resemble those in the ground truth. In
particular, we found one Growth/New "Expanded" and one Contraction/New
"Shrank" event less, when compared to the ground truth. This disparity could
be ascribed to the nature of the local community detection algorithm we uti-
lized, wherein an edge update (deletion/insertion) in proximity to the seed may
result in a sudden decrease/increase in community size. Nonetheless, the overall
evolution of the community mirrors that of the ground truth.
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Comparable trends emerge in the remaining synthetic datasets, SD2 and
SD3. To elaborate, SD2 exhibits one less detected event compared to the ground
truth, while SD3 has two more events than the ground truth. In the SD2 dataset,
the variation is highlighted in Growth/New "Expanded" events, while in SD3,
it’s observed in New "Expanded" events. Essentially, these differences are not
significant, as a thorough examination of the dataset reveals that the nature of
the employed local community detection algorithm leads to these minor devi-
ations. As mentioned earlier, certain edge updates within the 1-hop vicinity of
the seed node lead to such size community fluctuations.

Table 3: Evaluation of the detected events. E = Exact matches and A = Ap-
proximate matches.

|SD1 “Fl score [Precision[Recall ‘

E 59% 72% 50%
A 70% 86% 60%

[SD2 [[F1 score [Precision[Recall |[SD3 [[F1 score [Precision[Recall |

E 75% 100% 60% B 62% 50% 80%
A 75% 100% 60% A 62% 50% 80%

Upon evaluating the detected events, we observe that our model achieves
a reasonably high and consistent precision rate across all three datasets. More
precisely, in the SD1 we reach a precision rate of 72% and an overall F1 score of
almost 59%. However, the recall rate is slightly lower 50%, compared to precision,
as there are instances where our detected events do not precisely match those
in the ground truth. As mentioned above, this discrepancy can be attributed to
the local community detection method used. In SD2, we achieve a precision rate
of 100% and an overall F1 score of nearly 75%. On the other hand, the recall
reaches a rate of 60%.

Table 4: The types and quantity of anomalies present in both the detected and
ground truth communities.

Anomaly Types
Hlnstant [Sustained

SD1 Our method 1 6
Ground Truth 1 8

SD2 Our method 0 4
Ground Truth 0 5

SD3 Our method 2 6
Ground Truth 1 5
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Lastly, in SD3, our precision rate reaches 50% with an overall F1 score of
almost 62%. Notably, the recall rate significantly surpasses precision, standing
at 80%, since our detected events nearly align with those in the ground truth.
Moreover, expanding the time window for both detected and ground truth events
leads to a marked improvement in F1 score for SD1. Specifically, if a detected
event, not directly aligned with a ground truth event, can be matched to ground
truth events within a time interval of 2 time steps (rather than 1), the F1 score
experiences a 11% enhancement, reaching 70%.

Since the detected anomalies are contingent on the identified events, we ob-
serve that our model detects quite similar anomalies across all three datasets,
compared to the ground truth. Upon analyzing the results in Table @ we notice
a difference in instant change anomalies in SD3. Conversely, sustained change
anomalies differ across all three datasets. Finally, we see an average of nearly 7
anomalies in both the ground truth and detected communities.

5 Conclusion

Our aim in this study is to conduct a thorough analysis of recent advancements in
community-based anomaly detection and to explore foundational concepts con-
cerning temporal networks. Additionally, we propose a well-established algorithm
designed for dynamic local community detection, with the objective of identify-
ing anomalies through the evolution of communities over time. Moreover, initial
tests are performed using synthetic datasets. Building upon this work, we aim to
expand our findings along the following dimensions: 1. Broadened experimental
assessment encompassing both synthetic and real datasets. 2. Identification of
node anomalies within or surrounding the community. 3. Investigations involving
historical graphs, which introduce a temporal aspect, enabling analysis of the
evolution and fluctuations in connections between entities across various time
spans.
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