Degree Distribution Optimization in Historical
Graphs

Alexandros Spitalas, Charilaos Kapeletiotis, and Kostas Tsichlas

University of Patras, Rion, Patra, Greece.
a.spitalas@upatras.gr,kapeletiotis@ceid.upatras.gr,ktsichlas@ceid.upatras.gr

Abstract. In recent years, maintaining the history of graphs has be-
come increasingly imperative due to the emergence of related applica-
tions in several fields, like health services, social interactions, and map
guidance. Historical graphs focus on being able to store and query the
whole graph evolution and not just the latest instance. Various frame-
works have been used to store these graphs and query them. In this
paper, we look at how an evolving historical graph can be stored in the
distributed SQL database CockroachDB focusing on OLAP queries. In
particular, we study an OLAP query (time-interval degree distribution)
as to how it can be better executed in a distributed environment to
improve its efficiency. To this end, we provide different approaches for
this particular query that have different trade-offs between local compu-
tation and network latency. Finally, we provide experimental evidence
concerning these trade-offs.

Keywords: temporal graphs - graph management systems - query en-
gine - CockroachDB

2 Alexandros Spitalas, Charilaos Kapeletiotis, and Kostas Tsichlas

1 Introduction

In recent years there has been a rapid increase in time-evolving networks, produc-
ing a considerable amount of data. Networks, such as citation networks, traffic
networks, and social networks are, naturally represented as graphs, and they
are usually dynamic. For example, in a citation network, new nodes and edges
are constantly added due to the publication of new papers. An important chal-
lenge that arises in these time-evolving networks is the efficient management of
their history to be able to reason about its whole evolution and not only about
its latest state. This allows us to answer queries such as "What is the average
connectivity of author X in the citation network between 2010 and 20157”.
There have been a lot of systems developed since 2016 for historical graph
management. Most of them are distributed since evolving large graphs are ex-
tremely demanding concerning space usage and query/update time. A rather
outdated related survey can be found in [10]. They focus mainly on the mod-
els used for temporal graphs and the techniques available to query them. An-
other recent survey is [2] (2021) which analyzes graph streaming systems, where
the differences and similarities between graph streaming systems and historical
graph systems are explicitly given. In general, graph streaming systems tend
to use snapshots as the stable (latest) instance of the graph, since it may be
the case that recent updates have not been registered. However, in principle,
these snapshots may be stored and allow for historical queries as well. Some
graph streaming systems explicitly - although it is controversial to what extent
- support historical queries on such (small number) snapshots of their evolution.

1.1 Previous Work

In our previous work [5] we have constructed a vertex-centric storage optimal
model for storing historical graphs, while in [4] and [8], we have created proof-of-
concept prototypes of HiNode storage model. The implementations use as a stor-
age backend Cassandra and MongoDB, both are distributed NoSQL databases,
the first being a wide-column store while the later a document-based database.
In the above works, we used three Snapshot-based datasets to benchmark their
performance in storing and querying Historical Graphs using HiNode model.

o
* &

Time Axis Showing Different Granularities (Hours and Days)

Hour 0:00 Hour 6:00 Hour 12:00 Hour 18:00 Hour 0:00 Hour 6:00 Hour 12:00 Hour 18:00 Hour 0:00

© & & o © 4
~ S 3 > <

& S S S S
< & S & S &

Fig. 1: Observing Different Granularities, in Days, Hours, or groups of 6 Hours

Degree Distribution Optimization in Historical Graphs 3

About historical graph queries, defining what constitutes a historical graph
query has been studied by some researchers and can be categorized into time-
dependent and time-independent algorithms. For certain algorithmic problems,
new directions have emerged by incorporating the dimension of time. For ex-
ample, in [6], algorithms were implemented for historical shortest path, earliest
arrival time, and shortest path fastest path, while for temporal metrics, they
provided temporal betweenness and temporal closeness. Similarly, in [9], the
shortest path problem was divided into the Earliest Arrival path problem, Lat-
est Departure path problem, and Shortest Duration Path problem. Lastly, [3, 7]
discuss granularities in time instances. In our research, we need to define histor-
ical One Hop and degree distribution queries alongside the granularity of time
instances as used in these queries.

1.2 Owur Contribution

In the current work, we have implemented the vertex-centric HiNode model using
the Distributed-SQL database CockroachDB as one more possible storage system
that can be used for HiNode model. The new implementation is both distributed
and supports strongly-consistent ACID transactions. We compare the behavior
and performance of the new storage system in temporal graph tasks, compared
to the MongoDB implementation. Moving one step further, we propose one new
Algorithm to optimize the Historical Degree Distribution query. The proposed
algorithm, manages to be more distributed and have less memory requirements
in the master node. As a result having also better performance in a distributed
environment, especially in in bigger datasets or tasks.

The rest of the paper is structured as follows. In Section 2 we show how we
store the historical graph in CockroachDB. In Section 3 we discuss the different
approaches to answering the query, and in Section 4 we provide our experimental
findings. Finally, we conclude in Section 5.

2 CockroachDB-Distributed SQL implementation

In this implementation, we aim to embed a Distributed SQL database into the
HiNode model. These databases are designed from the ground up, to operate
as a single distributed relational database, which enables the database data
to be replicated to all nodes in the cluster. The utilization of a Distributed
SQL database ensures full support for ACID transactions. Furthermore, non-
relational databases such as MongoDB, offer schema validation. However, the
database itself does not impose referential integrity or strict restrictions on data
types, often leading to data integrity issues. Based on these remarks, a dis-
tributed SQL database such as CockroachDB, appears to be a reasonable option,
particularly in circumstances where the overall reliability of the data across the
system is of vital importance.

As expected, this implementation diverges from previous ones, regarding the
models that were constructed, which were reconfigured to be consistent with

4 Alexandros Spitalas, Charilaos Kapeletiotis, and Kostas Tsichlas

the relational logic of the database. Table 1 shows the structure of the Sin-
gleTable model. One variation on previous implementations of this model that
has emerged is that if we want to store multiple values for an attribute, they
will be stored in nested JSONB format. In addition, since CockroachDB does
not currently support the storage of multiple JSONBs in an array/list, the fol-
lowing modification was considered to be more appropriate: each record in the
table represents one edge of the graph. The above structure resulted in the pri-
mary key of this table, being the row id set by the database. As a result, in
CockroachDB, the SingleTable Model is edge-centric, and one record does not
store the whole history of the node as in [5]. Regarding the MultipleTable model,

Record
id STRING
start STRING
end STRING
label STRING
attributes JSONB
edge JSONB

Table 1: Structure of the SingleTable model

(Table 2), it was deemed more appropriate for each attribute related to a vertex
to be stored in a single table, as opposed to the logic of the previous imple-
mentations, where each attribute was stored in a separate table. Our goal is to
eliminate the obligation for each dataset to adhere to a specific schema.

vertices attributes
vid (pkey) STRING o STRING
vstart (pkey) STRING o
ot STRING alab.el STRING
Mt STRING attribute JSONB

edges
sourceid (pkey) STRING
targetid (pkey) STRING
estart (pkey) STRING

eend STRING
label STRING
weight STRING

Table 2: Structure of the MultipleTable

To meet the performance of the required stab queries, columns concerning
the time instances were indexed. Regarding the SingleTable model generalized

Degree Distribution Optimization in Historical Graphs 5

inverted indexes were utilized, through which the JSONB fields were indexed,
as well as in the MultipleTable model secondary indexes were applied.

3 Historical Query Approaches

In snapshot-based graphs, time instances are finite and well-defined, with each
time instance straightforwardly defined as a snapshot of the graph. In Time-
based graphs, theoretically, we have an infinite number of time instances, re-
sulting in different approaches for storing and querying them. For example, if
object time is measured in milliseconds, we can reduce granularity by storing
seconds instead, thereby reducing detail and losing some information. One issue
with this approach is whether to store an object that is alive for a fraction of
a second; this can be handled in various ways. Some prefer to store it, if it is
alive for even a millisecond, effectively taking the union of every involved time
instance. Others invoke the law of the majority, counting it as alive only if it
is alive for most instances within the hyper-time instance. Another approach
assigns a weight to the hyper-time instance based on the percentage of time the
object is alive. While all methods lose some information, they simplify storing
and querying. Alternatively, one could store values without reducing granularity
and delay this issue until query time. This lazy approach, though potentially
less optimal for storage and querying, preserves all object details and defers the
granularity decision to the query level.

We now proceed with defining historical queries. A general definition could
be queries that involve more than one-time instance, regardless of their han-
dling. Historical queries can be distinguished in at least two ways. Some involve
multiple time instances but request results for each instance independently, such
as querying degree distribution in every instance over a time period. Others also
involve multiple instances but integrate time as part of the query, such as query-
ing changes in degrees across neighborhoods or the causality of these changes
over time. The first type can be handled independently for each period or more
efficiently by leveraging the graph’s structure in the database. The second type
cannot be handled independently; it can be approached as an evolving graph
in a streaming environment or by utilizing the full history stored in historical
graphs for increased accuracy or efficiency. Additionally, we can delay granularity
choices until query time.

For benchmarking, we test the first type of queries, such as querying degree
distribution and one hop over a time period, requesting results for each time
instance within this period. For time instances, we reduce granularity to yearly
and use a union for the aliveness of objects.

3.1 Optimized Degree Distribution for Historical Graphs

Regarding OLAP queries, we have focused on the Historical Degree Distribution
Query, how to optimize it, and how this can be applied in multiple SELECT
queries in a Historical Graph Database. For the Historical Degree Distribution

6 Alexandros Spitalas, Charilaos Kapeletiotis, and Kostas Tsichlas

Query, given a time interval (estart, eend), we outline the process of calculating
the degree distribution at every time instance within this period. This can be
broken down into two problems: determining the query to be executed in the
database and handling the incoming data afterward.

The straightforward way to implement the Degree Distribution Query is to
first retrieve all edges available between the period (estart, eend), then sum
the appropriate edges during the intervals they are alive, and finally interpolate
those results to find the degree distribution at each time instance. This approach
is illustrated in Listing 1.1.

1 SELECT

2 sourceid, estart, eend

; FROM edges

1+ WHERE

5 DATE(eend) >= ts AND DATE(estart) <= te

Listing 1.1: Previous approach

row sourceid estart eend

row 1 -> 1, 2010-12-21, 2011-03-20
row 2 -> 1, 2010-12-21, 2011-04-21
row 3 -> 1, 2010-12-24, 2012-12-31
row 4 -> 1, 2010-02-04, 2010-12-25
row 5 -> 2, 2010-02-04, 2012-12-31

However, using the Listing 1.1, most computational parts of the operation
will be executed on one master node, with only a portion distributed across
other nodes. To improve this, we had to find ways to reduce memory usage on
individual nodes and divide the work among multiple workers. In Listing 1.2, we
implemented a new approach for the query by first grouping the edges based on
the source vertex and the interval they are alive. At a later stage, we count the
different edges a source vertex has during the corresponding intervals. This can
also be implemented using a Thinking Like a Vertex (TLV) technique, where
each node counts its own edges at different time intervals and returns the result.
The issue arising here is overlapping intervals in the results, as these cannot
be handled internally within the select query. The above will be handled in the
master node, although it is a much smaller task than the one from Listing 1.1.

1 SELECT

2 sourceid,

3 COUNT (targetid),

) EXTRACT (YEAR FROM DATE(estart))::int AS start,

5 least (EXTRACT (YEAR FROM DATE(eend))::int, EXTRACT(YEAR FROM
DATE(te))::int)::int AS end

s FROM edges

7 WHERE DATE(eend) >= ts AND DATE(estart) <= te

s GROUP BY

9 sourceid,

0 EXTRACT (YEAR FROM DATE(estart)),

Degree Distribution Optimization in Historical Graphs 7

11 EXTRACT (YEAR FROM DATE(eend))
1> ORDER BY sourceid ASC

Listing 1.2: Present approach

row sourceid count start end
row 1 -> 1, 2, 2010, 2011
row 2 -> 1, 1, 2010, 2012
row 3 -> 1, 1, 2010, 2010
row 4 -> 2 1, 2010, 2012

Algorithm 1 Fetch All: Degree Distribution using query 1.1

1: while rows.hasNext() do > full table scan
2 id, degree, start, end < row.id, row.degree, row.start, row.end

3 for year from start to end do

4: vertexDistribution[id][year]+ + > main difference with Algorithm 2
5 end for

6: end while

7: for each v in vertexDistribution do

8 for year, degree in v do

9: degreeDistribution[year]|[degree]+ +

10 end for

11: end for

Algorithm 2 More Memo: Degree Distribution using query 1.2

1: while rows.hasNext() do > reduced rows
2 id, degree, start, end < row.id, row.degree, row.start, row.end
3 for year from start to end do

4: vertexDistribution[id][year] += degree

5 end for

6: end while

7: for each v in vertexDistribution do

8 for year, degree in v do

9: degreeDistribution[year]|[degree]+ +

10: end for

11: end for

Algorithm 1 (Fetch All) is the only one that utilizes Listing 1.1. The data
returned from the database are stored in a map, which maintains information
about all the nodes of the graph. This map is then traversed to calculate the

8 Alexandros Spitalas, Charilaos Kapeletiotis, and Kostas Tsichlas

Algorithm 3 Less Memo: Optimized Degree Distribution using query 1.2
1: previd < NULL

2: while rows.hasNext() do > reduced rows and memory
3: newid, degree, start, end < row.id, row.degree, row.start, row.end

4 if newid # previd && previd # NULL then

5 for k, v in vertexDistribution do

6: degreeDistr[k][v] + +

T end for

8: vertexDistribution - empty map[int]int

9 end if

10: for year from start to end do

11: vertexDistribution[year] += degree

12: end for

13: previd < newid
14: end while

degree distribution. Likewise, Algorithm 2 (More Memo) is algorithmically no
different from the previous one, the only variation being that Algorithm 2 uses
Listing 1.2 and is therefore adapted to it. However the above approach leads to
excess memory allocation at runtime, hence we implemented Algorithm 3 (Less
Memo) which is optimized with regard to the memory utilization and uses Listing
1.2. The main idea is that the degree distribution can be progressively computed.
In this approach, the map that stores the data returned from the database
maintains information only about the current node. Note that to accomplish
this, the returned data from the database have to be sorted.

4 Experimental Results

We benchmark the new CockroachDB implementation using a historical graph
dataset generated with LDBC [1], adjusted to be event-based, and used in a
streaming environment during dataset insertion. From this, we created three
types of datasets, all featuring Persons as nodes and Person-Knows-Person re-
lationships, with the largest dataset also including Forums and Forum-has-
Member-Person relationships. In these datasets, we aim to test four aspects
of the database: transaction throughput, memory usage, global query efficiency
and distributed performance. To assess transaction throughput, we measure the
time taken to insert each dataset into the database, including insertions, modifi-
cations, and deletions (without actually changing or deleting objects but retain-
ing their history). For global queries, we test the Historical Degree Distribution
by executing it six times, averaging the times while excluding the first execution
to avoid a cold start (so taking the average of five executions). We also test
the distributed capabilities of CockroachDB, while also testing our proposed
Algorithms for Historical Degree Distribution Query. Finally, we compare the

Degree Distribution Optimization in Historical Graphs 9

memory usage of the resulting database for each dataset. Most experiments are
omitted from this section and can be found in A
Dataset Statistics:

— SF3

e Total number of nodes: 25870

e Total number of edges: 668430
— SF10

e Total number of nodes: 60800

e Total number of edges: 2304951
— SF3 Person and Forum

e Total number of nodes: 285499

e Total number of edges: 10499492

4.1 Memory Requirements Experiments

SF3 Person and Forum Dataset - Total Alloc SF3 Person and Forum Dataset - Heap Alloc
T T T 150 —~ T T
1,200 |-| —m— Fetch All B —m— Fetch All
—— More Memo 125 | | —— More Memo .
1,000 |-| —— Less Memo N —6— Less Memo
™ | 100 B
/M aa}
\2/ 800 %
2 L] B
5 600 31
g g
= 400 - =| 50 -
200 - 4 25 -
0 m—% L) i
33% 66% 100% 33% 66% 100%
Completion (%) Completion (%)
(a) Total Alloc (b) Heap Alloc

Fig. 2: SF3 Person and Forum Dataset

Regarding the memory requirements of the previously discussed algorithms,
the MT and ST algorithms yield identical results. Therefore, to reduce complex-
ity, we compare the results of the MT model exclusively in Figures 12, 13 and
2. The figures also distinguish between total memory requirements and heap
memory requirements for each algorithm. Notable observations include:

— Across all three datasets, the Total Alloc Less Memo algorithm proves supe-
rior, offering an 18% to 25% reduction in time compared to the More Memo
algorithm, and a 62.5% to 92.5% reduction in time compared to the Fetch
All algorithm. This equates to up to 13.25 times less memory usage.

10

Alexandros Spitalas, Charilaos Kapeletiotis, and Kostas Tsichlas

— When comparing Heap Alloc results, the More Memo algorithm reduces
memory usage by 14% to 20%, 25% to 36.84%, and 40% to 45.4% in the
SF3, SF10, and SF3 Person and Forum datasets, respectively, compared
to Fetch All. The Less Memo algorithm further improves these reductions,
achieving a 57.14% to 80%, 89.4% to 89.66%, and 97.14% to 98.6% reduction
in memory requirements compared to Fetch All across all three datasets.

The Less Memo algorithm not only reduces heap memory requirements but

also enhances its performance on that matter as the dataset size increases.

The analysis indicates that both More Memo and Less Memo consistently

reduce memory usage compared to Fetch All. Less Memo generally achieves
the highest percentage reduction across all datasets and years, demonstrating

the most significant memory savings.

4.2 Distributed Experiments

SF3 Dataset (Distributed)

2.5

T
—a— MT Fetch All
—4— MT More Memo
[|—e— MT Less Memo

Time (sec)

0

| |
33% 66%

Completion (%)

(a) SF3 Dataset (Distributed)

I
100%

Time (sec)

25

O

SF3 Dataset (Remote)

T
—m— MT Fetch All
—a— MT More Memo

—e— MT Less Memo

33%

| I
66% 1007

Completion (%)

(b) SF3 Dataset (Remote)

Fig. 3: Comparison of Models and Algorithms for SF3 Dataset in distributed and

remote clusters

In Figures 3, 4 and 5, we compare the three algorithms of Degree Distribution
query in a Distributed environment using CockroachDB. The cluster consists
of 4 nodes, all in the same LAN with 10Gbps connection between them and
minimized latency. We try two types of experiments, named Distributed and
Remote Distributed, the basic difference between them is the location of the
user that queries the Cluster. In the first one, the user is in the same LAN
with the cluster, while in the second the user is in a remote location increasing
the impact of I/Os. We reach the following conclusions from the experimental

results:

(4

Degree Distribution Optimization in Historical Graphs 11

SF10 Dataset (Distributed) SF10 Dataset (Remote)
10 T 75 1 T
—a— MT Fetch All —a— MT Fetch All
—4— MT More Memo —4— MT More Memo
81| —o— MT Less Memo B —6— MT Less Memo
\J S
-5 E
4 a =
20 - b
2 * 15 - b
10 | b
5 |- —
ol ! ! oL i !
33% 66% 100% 33% 66% 100%
Completion (%) Completion (%)
(a) SF10 Dataset (Distributed) (b) SF10 Dataset (Remote)

Fig.4: Comparison of Models and Algorithms for SF10 Dataset in distributed
and remote clusters

SF3 Person and Forum (Distributed)

30 1 T T SF3 Person and Forum (Remote)
—a— MT Fetch All 300 — ;
95 || —+— MT More Memo N m— MT Fetch All
—6— MT Less Memo —a— MT More Memo
B —6— MT Less Memo
B _
g h g
E =
QJ
i 1 Z
=
100 b
51 i
50 - b
o I I 230 4
33% 66% 100% %g g : =
Completion (%) 33% 66% 100%
X Completion (%)
(a) SF3 Person and Forum (Dis-
tributed) (b) SF3 Person and Forum (Remote)

Fig. 5: Comparison of Models and Algorithms for SF3 Person and Forum Dataset
in distributed and remote clusters

12 Alexandros Spitalas, Charilaos Kapeletiotis, and Kostas Tsichlas

— Comparing the MT More Memo and the MT Less Memo Algorithms we
can observe the following. From Figures 3a, 4a and 5a, in a Distributed
environment they have similar performance with less than 10% difference.
On the contrary, when they are queried from a Remote location, we can
observe in Figures 3b, 4b and 5b, that MT Less Memo is the best-performing
model reducing the time from 26%, up to 39% depending the dataset and
the percentage used in the query.

— Comparing the Fetch All Algorithm to the other two, we can observe an
immense difference due to the impacts of I/Os. In the Figures 3a, 4a and
5a, depicting the Distributed experiments, we note that the best performing
Algorithm is Fetch All, when used in 66% and 100% of the graph, managing
to have up to 45% less time compared to More Memo and Less Memo Algo-
rithms. Alternatively, in Figures 3b, 4b and 5b with the Remote Distributed
experiments, we observe that the best-performing model is Less Memo, with
a massive reduction of time up to 91% when used in the 100% of the graph.

— The best-performing model overall depends mostly on the impact of I/Os.
In use-cases, that I/Os are valueless and the CPU power of each node in
the cluster is similar to the machine making the query, then Fetch All is the
Algorithm of choice. On the contrary, when I/Os are expensive, or the nodes
of the cluster are significantly better than the machine querying, or when
it’s avoided to run expensive queries locally (e.g., in IoT applications), the
Algorithm of choice is Less Memo.

5 Conclusions

In this paper, we provide a new implementation of the HiNode system using
the Distributed-SQL Database CockroachDB and propose a new algorithm to
query Historical Degree Distribution in a node-centric Historical Graph. For the
first part, the new approach is best suited for applications where data reliabil-
ity is crucial. For the second part, the new approach distributes query tasks
and minimizes communication costs, making it ideal for applications where I/Os
are expensive, CPU-intensive operations shouldn’t run locally, memory specifi-
cations are strict, or distributed machines have significantly more performance
than the local machine. We intend to extend the implementation of HiNode into
a system named t-MAGMA while supporting multiple storage-backend choices
for different applications. We also aim to improve the performance optimization
of queries and generalize them for various types of queries.

Acknowledgments. This research was supported by the Hellenic Foundation for
Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects
to support Faculty Members & Researchers HFRI PhD Fellowship grant”.

Degree Distribution Optimization in Historical Graphs 13
A Appendix A

A.1 System specifications

The following measurements were made on the same machine, the characteristics
of which will be listed below. In addition, the queries for these benchmarks are
performed on a single-node cluster, rather than a distributed one.

CPU AMD Ryzen™ 5 7600 6 Cores 3.8 GHz Base Clock
RAM Kingston Fury Beast 16GB DDR5 6000 MT/s
SSD |Kingston KC3000 PClIe 4.0 NVMe M.2 7,000MB/s Read, 6,000MB/s Write

A.2 Transaction Performance

As shown in Table 3, MongoDB clearly demonstrates significantly better perfor-
mance in importing data. The three datasets used, SF3, SF10, and SF3 Person
and Forum are respectively 75.5 MB, 245.1 MB, and 1.1 GB. For the given
datasets MongoDB, compared to this specific implementation in CockroachDB,
on the SingleTable model demonstrated respectively 91%, 90%, and 82% faster
data insertion. As for the MultipleTable model, the insertion in MongoDB is
91%, 90%, and 91% faster. This happens as CockroachDB has to maintain SQL
and ACID properties also with much replication, while MongoDB is a NoSQL
database more focused on performance.

Database Model SF3 SF10 |SF3 Person and Forum
SingleTable [107 min|{310 min 1773 min
CockroachDB MultipleTable| 23 min | 77 min 258 min
SingleTable | 9 min | 31 min 311 min
MongoDB MultipleTable| 2 min | 7 min 23 min

Table 3: Data insertion

A.3 Comparing Historical Degree Distribution Query in MongoDB
and CockroachDB

To guarantee consistency in the comparison between CockroachDB and Mon-
goDB, the algorithm used for CockroachDB (Algorithm 1) is the same algo-
rithm used in the corresponding implementation with MongoDB. Additionally,
the query that was utilized is as similar as possible, considering the architectural
differences of the databases. In the following, Algorithm 1 which uses Query 1

14 Alexandros Spitalas, Charilaos Kapeletiotis, and Kostas Tsichlas

1.9 -

Time (seconds)

33% 66% 100%

BB CockroachDB MT BB CockroachDB ST B MongoDB MT U0 MongoDB ST

Fig. 6: Degree Distribution - SF3

3.5

2.25

Time (seconds)

1.5

0.5

33% 66% 100%

BB CockroachDB MT Bl CockroachDB ST BB MongoDB MT [T MongoDB ST

Fig. 7: Degree Distribution - SF10

Degree Distribution Optimization in Historical Graphs 15

19 - N

Time (seconds)

33% 66% 100%

BB CockroachDB MT Bl CockroachDB ST B@MongoDB MT [T MongoDB ST

Fig. 8: Degree Distribution - SF3 Person and Forum

is named Fetch All, More Memo is Algorithm 2 which uses Query 2 and Less
Memo is Algorithm 3 which also uses Query 2.

From Figures 6, 7 and 8, we compare MongoDB and CockroachDB for query-
ing Historical Degree Distributions. In general, we can conclude the following;:

— The best-performing MT model in all datasets and for all percentages of
the graph is in CockroachDB, with a percentage difference between 12.5%
- 36.05% in SF3, 26.67% - 34.41% in SF10, and 23.26% - 27.85% in SF3
Person and Forum compared to the corresponding MT model in MongoDB.

— The best-performing ST model in all datasets and for all percentages of the
graph is in MongoDB, with a percentage difference between 47.86% - 62.5%
in SF3, 48.92% - 59.26% in SF10, and 39.69% - 49.21% in SF3 Person and
Forum compared to the corresponding ST model in CockroachDB.

— These differences are due to the varying advantages and performance char-
acteristics of each database’s structure like the different modeling described
in 2. Although, observing solely MongoDB there are conflicting results com-
pared to the [8] or [?] where MT was the best performing model. The reason
is that MongoDB has a predefined allocated space for each record (docu-
ment), which gives advantage an to the ST model compared to MT while
the size of the document is increased, consequently, while there is an increase
in the number of edges or attributes in the nodes as happens in the current
dataset. Consequently, the ST model performs best in MongoDB, while the
MT model performs best in CockroachDB at the currently tested dataset.

— The best-performing model overall depends on the percentage of the graph
used and the dataset. For SF3, CockroachDB is the best-performing model

16 Alexandros Spitalas, Charilaos Kapeletiotis, and Kostas Tsichlas

for 33% and 66% of the graph, with an 8.87% and 9.84% percentage differ-
ence to MongoDB ST, respectively. However, for querying 100% of the graph,
MongoDB ST is the best-performing model, with a 14.29% decrease in time
compared to CockroachDB. For SF10, MongoDB is the best-performing for
33% of the graph, and CockroachDB for 66% of the graph, but the per-
formance increase is less than 10% in each case. Lastly, for SF3 Person and
Forum, results are similar to SF10; MongoDB ST outperforms CockroachDB
MT in 33% and 100% of the graph, while CockroachDB MT is better for
66% of the graph, with performance differences less than 10% in each case.

A.4 Comparing Different Algorithms of Historical Degree

Distribution
SF3 Dataset
3 T T
—m— MT Fetch All
—a— MT More Memo
2.5 | | —e— MT Less Memo
—e— ST Fetch All
2+ . ST More Memo
/g ST Less Memo
17}
o 15} e
; —
= P e —— s
1 | |
4/’.
0.5 -8 =
0L ! 1
33% 66% 100%

Completion (%)

Fig.9: Comparison of Models and Algorithms for SF3 Dataset

In Figures 9, 10 and 11, we compare the running times of the three developed
algorithms for Historical Degree Distribution, both in the ST and MT models,
with all algorithms implemented in CockroachDB. Across all three datasets,
there are minimal changes in the ranking of the algorithms. Notable observations
include:

— The best-performing model is MT Fetch All, with MT More Memo and MT
Less Memo almost overlapping for the 2nd and 3rd positions. For 33% of the
graph, the performance of these three algorithms is nearly identical.

Degree Distribution Optimization in Historical Graphs 17

SF10 Dataset
8 T T

—m— MT Fetch All
—a— MT More Memo
—o— MT Less Memo
6 | | —e— ST Fetch All
ST More Memo

51 / | ST Less Memo

Time (sec)
S
T
|

3l i
20 - .
1h i
0 il | 1
33% 66% 100%

Completion (%)

Fig. 10: Comparison of Models and Algorithms for SF10 Dataset

SF3 Person and Forum
30 T T

—a— MT Fetch All
—a— MT More Memo
25 | | —=e— MT Less Memo
—e— ST Fetch All
f ST More Memo
ST Less Memo

Time (sec)

oLt \ Il
33% 66% 100%

Completion (%)

Fig.11: Comparison of Models and Algorithms for SF3 Person and Forum
Dataset

18 Alexandros Spitalas, Charilaos Kapeletiotis, and Kostas Tsichlas

— The percentage difference between MT Less Memo and MT Fetch All for 66%
and 100% of the graph is as follows: for SF3, it is 12.5% and 81.54%; for
SF10, it is 19.17% and 73.78%; and for SF3 Person and Forum, it is 23.14%
and 65.88%. This indicates a reduction in the percentage-wise difference as
the datasets get larger while querying 100% of the graph.

— The only change in ranking across the three datasets occurs in SF3 Person
and Forum, where ST Fetch All surpasses ST Less Memo at 33% and 66%
of the graph.

— In the ST model, ST Less Memo outperforms the ST More Memo algorithm,
making it the best-performing ST model for 33% and 66% of the graph in
SF3 and SF10.

— It should be noted that these results are from experiments conducted on a
single-node machine, and therefore, the new algorithms do not benefit from
distributed workload capabilities.

SF3 Dataset - Total Alloc SF3 Dataset - Heap Alloc
100 — T 10 — T
—a— Fetch All —m— Fetch All
—a— More Memo —a— More Memo
80 | —e— Less Memo B 81| —e— Less Memo B
))
=) 60 -) 6 b
ol P
: :
5 wr £ 1
= -
20| 12t .
0 L= I 1 0 1 1 1
33% 66% 100% 33% 66% 100%
Completion (%) Completion (%)
(a) Total Alloc (b) Heap Alloc
Fig. 12: SF3 Dataset
Acknowledgment

“This research was supported by the Hellenic Foundation for Research and Inno-
vation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support
Faculty Members & Researchers” (Project Number: 3480). ”

Degree Distribution Optimization in Historical Graphs 19

SF10 Dataset - Total Alloc SF10 Dataset - Heap Alloc
300 — T 30 T
—a— Fetch All —a— Fetch All
250 |-| —~— More Memo | 95| |+ More Memo i
—o— Less Memo —o— Less Memo
g 200 |- ﬁé\ 2 | |
B 150 | T 15t |
e)
g E
S &£
= 100 |- + 10 B
50 |- 1 5f |
0 T I 0 ,g/?///‘i
33% 66% 100% 33% 66% 100%
Completion (%) Completion (%)
(a) Total Alloc (b) Heap Alloc
Fig.13: SF10 Dataset
References

1. Angles, R., Antal, J.B., Averbuch, A., Boncz, P.A., Erling, O., Gubichev, A.,
Haprian, V., Kaufmann, M., Larriba-Pey, J., Martinez-Bazan, N., Marton, J.,
Paradies, M., Pham, M., Prat-Pérez, A., Spasic, M., Steer, B.A., Szarnyas, G.,
Waudby, J.: The LDBC Social Network Benchmark. CoRR abs/2001.02299
(2020), http://arxiv.org/abs/2001.02299

2. Besta, M., Fischer, M., Kalavri, V., Kapralov, M., Hoefler, T.: Practice of streaming
processing of dynamic graphs: Concepts, models, and systems (2021)

3. Debrouvier, A., Parodi, E., Perazzo, M., Soliani, V., Vaisman, A.: A model and
query language for temporal graph databases. The VLDB Journal pp. 1-34 (2021)

4. Kosmatopoulos, A., Gounaris, A., Tsichlas, K.: Hinode: implementing a
vertex-centric modelling approach to maintaining historical graph data. Com-
puting 101(12), 1885-1908 (2019). https://doi.org/10.1007/s00607-019-00715-6,
https://doi.org/10.1007/s00607-019-00715-6

5. Kosmatopoulos, A., Tsichlas, K., Gounaris, A., Sioutas, S., Pitoura, E.:
Hinode: an asymptotically space-optimal storage model for historical
queries on graphs. Distributed Parallel Databases 35(3-4), 249-285 (2017).
https://doi.org/10.1007/s10619-017-7207-z, https://doi.org/10.1007/s10619-017-
7207-z

6. Lightenberg, W., Pei, Y., Fletcher, G., Pechenizkiy, M.: Tink: A temporal graph
analytics library for apache flink. In: Companion Proceedings of the The Web
Conference 2018. pp. 71-72 (2018)

7. Orlando, D., Ormachea, J.: Temporal graph visualizer (2020)

8. Spitalas, A., Gounaris, A., Tsichlas, K., kosmatpoulos, A.: Investiga-
tion of database models for evolving graphs. In: Combi, C., Eder, J.,
Reynolds, M. (eds.) 28th International Symposium on Temporal Repre-
sentation and Reasoning, TIME 2021, September 27-29, 2021, Klagen-
furt, Austria. LIPIcs, vol. 206, pp. 6:1-6:13. Schloss Dagstuhl - Leibniz-

20

9.

10.

Alexandros Spitalas, Charilaos Kapeletiotis, and Kostas Tsichlas

Zentrum fiir Informatik (2021). https://doi.org/10.4230/LIPIcs. TIME.2021.6,
https://doi.org/10.4230/LIPIcs. TIME.2021.6

Wang, Y., Yuan, Y., Ma, Y., Wang, G.: Time-dependent graphs: Definitions, appli-
cations, and algorithms. Data Science and Engineering 4(4), 352-366 (Dec 2019).
https://doi.org/10.1007/s41019-019-00105-0, https://doi.org/10.1007/s41019-019-
00105-0

Zaki, A., Attia, M., Hegazy, D., Amin, S.: Comprehensive survey on dynamic graph
models. International Journal of Advanced Computer Science and Applications
7(2), 573-582 (2016)

