HFRI

Hellenic Foundation for
Research & Innovation

TEMPO

Management and Processing of Temporal Networks

H.F.R.I. Project No. 03480

D1.2: Project Scientific/Technical Plan

Computer Engineering & Informatics Department
University of Patras

Greece
01/04,/2023

Scientific/Technical Plan of TEMPO

Alejandros Spitalas and Kostas Tsichlas
April 01, 2023

Abstract

This document is the technical plan of the project TEMPO. It mainly focus on our plan re-
lated to the development of the temporal graph management system (database + query engine).
To justify our choices and the partial divergence from the initial proposal we make an extensive
survey of temporal graph management systems and try to capture their main characteristics. It
is noteworthy, that most of these databases where developed after 2020, which makes necessary
the changes to our initial plan. We also discuss our plan with respect to community and outlier
detection.

Keywords: Temporal Graphs, Distributed Storage, Parallel Databases, Community Detection,
Outlier Detection

1 Introduction

In recent years there is an increasing focus on time-evolving networks that produce a considerable
amount of data. Networks, such as citation networks, traffic networks, and social networks are,
naturally represented as graphs and they are usually dynamic. For example, in a citation network,
new nodes and edges are constantly added due to the publication of new papers. An important
challenge that arises in these time-evolving networks is the efficient management of their history in
order to be able to reason about its whole evolution and not only about its latest state. This allows
us to answer queries such as ”What is the average connectivity of author X in the citation network
between 2010 and 20157”.

There have been quite a lot of systems developed since 2016 for historical graph management.
Many of them are distributed, since evolving graphs are extremely demanding with respect to
space usage and query/update time. A rather outdated (2016) related survey can be found in [7§].
They focus mainly on the models used for temporal graphs and the techniques available to query
them. Another recent survey is [8] (2021) that analyzes graph streaming systems. In this survey
the differences and similarities between graph streaming systems and historical graph systems are
explicitly discussed. In general, graph streaming systems tend to use snapshots as the stable (latest)
instance of the graph, since it may be the case that recent updates have not been registered. However,
in principle, these snapshots may be stored and allow for historical queries as well, although in most
of these systems this functionality is not considered but holds in principle. Some graph streaming
systems explicitly - although it is controversial to what extent - support historical queries on such a
rather small number of snapshots of their evolution.

The current technical plan has a twofold contribution. First, we provide a concise but compre-
hensive discussion on the systems developed from 2016 up to 2023 (before 2016, systems are covered
by the survey in [78]). We do not discuss extensively these systems but state their key features. At
the same time, we focus mainly on distributed systems making a simple reference to non-distributed
ones. To the best of our knowledge, there is no other up-to-date comprehensive reference to such
systems. Our second contribution, which required this state-of-the-art review, is the proposal of
the high-level architecture of a distributed system for managing time-evolving graphs. The archi-
tecture is based on the ideas set by the authors in previous papers [37, 36l 69] as well as by the
most recent developments in the area of historical graph management, as laid out in this concise but
comprehensive survey.

The rest of the paper is structured as follows. In Section [2] we provide a review of historical
graph management systems after 2016. In Section |3| we discuss the basic characteristics that the

architecture of the system we intend to implement for managing historical graphs must have. In
Sections [4][7] various architectures for the graph management and processing system are discussed
while in Section [§] we briefly discuss the architecture that we decided for MAGMA based on the
previous discussion. Finally, in Section [9] we discuss the analytics queries and in Section we
provide an updated timeplan based on the choices we have made.

2 A Survey on Existing Systems for Historical Graph Man-
agement

Historical graphs have to utilize multiple dimensions resulting in many possible directions for such a
system. Most systems are concerned with the storage and query of the evolution of the attributes as
time evolves and some try to utilize the evolution of the topology for better partitioning or for reasons
related to efficiency. In Table[2] we provide, without further discussion, some basic characteristics of
non-distributed historical graph management systems. Some terminology is in order to understand
the following tables:

1. transaction time vs valid time: Transaction time represents the time that an event takes
place (i.e., the moment that a node is inserted or deleted to/from a network), whereas valid
time signifies the time period in which an object was valid (i.e., the time interval that a node
existed in a database). In the transaction time setting updates can only occur in an append-
like manner (i.e. an update in a field changes the value of the most recently stored value),
whereas in the valid time setting updates can refer to any time point.

2. time as a property vs snapshots: In a rather crude manner, we get basically two different
representations of time-evolving networks: a) snapshots, which correspond to a copy+log
method; that is, the network is stored at specific time instances and in between a log is kept
with the changes and b) time as a property, which corresponds to incorporating the notion of
time as another special property of the objects/annotations within a network. There are many
variations of these two basic representations.

3. offline vs online vs streaming: In an offline setting, we get all the history of the graph
beforehand. In an online setting, the graph evolves and with it the database, while queries
can be made at any time. In a streaming setting, we have an online setting with restrictions
as to how much space and time is allowed for each update. In the literature, streaming is
not usually related to historical information but more to computational restrictions on the
processing of the stream due to its high velocity and massiveness. One can get as a by-product
a rudimentary transaction time temporal graph processing system.

4. time-dependent and time-independent algorithms: If the algorithm on the temporal
graph can be applied without time constraints then it is time-independent (e.g., pagerank
computation at time instance t). If there are time constraints, then the algorithm is time-
dependent (e.g., shortest path that respects time intervals on nodes/edges and the journey is
time-consistent).

In Table [2| we show non-distributed systems without further discussing their characteristics. In
Table [2| we show all distributed systems for historical graph management after the year 2016. Since
our proposed system falls under this category we are going to discuss briefly some of these systems,
which according to our opinion are quite important and have nice properties.

HINODE was the first pure vertex-centric system with respect to the storage model. It was
introduced in [37] and supports valid time as well as extensions like multiple universes. It was
implemented within the G* system [40] by replacing its storage subsystem. They exhibited gains in
space usage, which is an immediate consequence of the pure vertex-centric approach. They supported

Summarizing the Characteristics of Non-Distributed Temporal Graph Management Systems

’ Systems H Memory ‘ Storage Model Time-related characteristics
InteractionGraph || Main Memory (old | Custom Transaction time
[22] graph in disk)
STVG [4g] Main Memory Neodj valid time, offline, restricted to
transit networks
ASPEN [I§] In- extends Ligra Streaming
Memory/parallel
GraphOne [39] in-memory NVMe | Custom Streaming, can’t get arbitrary
SSD historic views if transaction time
is assumed
Auxo [24] Main and External | Custom Transaction time
Memory
[10] Main Memory Custom Transaction time, Snapshot-
based, focus on space savings
[4] Main Memory Neo4j Valid time, In addition to en-
tity evolution it supports schema
evolution
TGraph [28] Main and External | Neo4j Support ACID Transactions,
Memory slow topological updates but fast
property updates, Transaction
time
VersionTraveller Main Memory based on Power- | Offline Snapshot-based, Focus on
[31] Graph static graph | switching between snapshots
management Sys-
tem
NVGraph [44] Non-Volatile Main | Custom Online Snapshot-based, Transac-
Memory and tion time
DRAM

Table 1: Non-distributed systems for historical graph management.

|

Summarizing the Characteristics of Distributed Temporal Graph Management Systems

|

’ Systems H Storage Model Time-related characteristics ‘
Portal [51] Spark Offline, time as a property, Valid time
GDBAlive [47] Cassandra Transaction time
Graphsurge [62] Custom offline snapshots, focus on differential compu-
tation across multiple snapshots

TEGRA [30] Custom Transaction time, based on persistent trees,
incremental computation model, window ana-
lytics

GraphTau [29)] Custom Streaming

Immortalgraph [48] || Custom Transaction time, Snapshot-based, Focus on
locality-aware (w.r.t. time and topology by
replication) batch scheduling for computation

HGS [35] Cassandra Transaction Time, Sophisticated Snapshot-

based

SystemG-MV [72]

IBMs SystemG

Relaxed transaction time

Raphtory [70]

Custom + Cassan-
dra for archiving

Transaction time, streaming

Chronograph [13]

MongoDB

offline, time as a property, Focus on graph
traversals

Graphite [21]

Apache Giraph

offline, Time-dependent and time-independent
algs

Granite [58] Based on Graphite focus on temporal path queries, partition tech-
niques to keep everything in main memory
Tink [43] Apache Flink Online, Valid time

Gradoop - TPGM
[61, 17, [60]

Apache HBase/ Ac-

cumulo

Valid and Transaction time (bitemporal),
Fully-fledged system ranging from a graph an-
alytical language to the storage model

Greycat [20] NoSQL Database + | Valid time, No edge attributes
custom
PAST [19] based on key/value | Streaming Spatio-temporal graphs, bipar-

stores (e.g., Cassan-
dra)

tite graphs, only edges with time-points,
spatiotemporal-specific query workloads

HINODE [37, 136,
69]

Custom (other ver-
sions are based on
Cassandra and Mon-
goDB)

Online, time as a property, Valid time (allows
more general notions of time), pure vertex-
centric storage model

Table 2: Distributed systems for historical graph management.

local queries (e.g., 2-hop queries) as well as global queries (e.g., clustering coefficient). In addition,
this vertex-centric model was also adapted for NoSQL databases by creating two models, SingleTable
(ST) and MultipleTable (MT). In the former, all data fit in one table and a row has the data of a
Diachronic Node, while in the latter, data are split in different tables - thus distancing from the pure
vertex-centric approach. Two implementations were made, one in Cassandra [36] and later one in
MongoDB [69] for comparison reasons. In MongoDB, the authors tried to take advantage of indices
and iterative computation to reduce memory usage.

Portal In [51] they discuss about interval-based and point-based models preferring the interval-
based model with sequenced semantics. As a data model, they use TGraph that uses the property
graph model while they also discuss sequenced semantics in a distributed environment (e.g., par-
titioning, time-window operations). In PhD Thesis [50] they propose a Temporal Graph Algebra
(TGA) and a temporal graph model (TGraph) supporting TGA. In addition, in [49] they propose a
declarative language (Portal) based on the previous model and built on top of a distributed system
(Apache Spark). Portal has SQL-like syntax following SQL:2011 standard. They also discuss possi-
ble algorithms on temporal graphs among which are node influence over time, graph centrality over
time, communities over time, and spread of information. TGraph is a valid time model that extends
the property graph model (each edge and vertex is associated with a period of validity), while all re-
lations in Graph must meet 5 criteria: uniqueness of vertices/edges, referential integrity, coalesced,
required property and constant edge association. TGA is both snapshot and extended snapshot
reducible presenting a new primitive (resolve) while supporting operators like trim, map, and aggre-
gation. Portal uses Spark for in-memory representation and processing while it uses Apache Parquet
for on-disk data layout using node files and edge files (but it doesn’t support an index mechanism).
They experimented with different in-memory representations, SnapshotGraph(SG) that stores the
graph as individual snapshots, MultiGraph(MG) that stores one single graph by storing one vertex
for all periods and one edge for every time period and OneGraph that stores each edge and vertex
only once (they also discuss combinations between these representations like MGC and OGC). It has
distributed locality like Immortalgraph, experimenting with different partitioning methods (the equi-
depth partitioning is more efficient in most experiments) but stores materialized node/edges instead
of deltas and they also experimented with both structural and temporal locality, concluding that
temporal locality is more efficient (among other reasons due to the lack of sufficient discrimination
in the temporal ranges of the datasets).

ImmortalGraph [48] is a parallel in-memory storage and computation system for multicore ma-
chines and distributed settings designed for historical graphs. It focuses more on locality opti-
mizations, both in saving the data and in the execution of the queries using locality-aware batch
scheduling (LABS). They make a clear distinction and a very nice discussion between the time-
centric layout and the structure-centric layout. It supports parallel temporal graph mining using
iterative computations while they prefer those computations to be in memory. ImmortalGraph sup-
ports both global and local queries at a point in time or a time window. Data are stored in snapshot
groups with the use either of edge files or vertex files, depending on the application. A snapshot
group organizes together snapshots of a time interval by storing the first one and the changes that
happened throughout the time interval. This can be stored either with the use of time locality
by grouping activities associated with a vertex (and a vertex index) or with the use of structure
locality by storing together neighboring vertex (and a time index). Instead of choosing between
the possible trade-off from structure and time locality, they replicate the needed data and decide
which technique to use according to the type of query and how far is the starting point from the
start of the snapshot group. LABS favors partition-parallelism from snapshot-parallelism, so they
prefer batch operations of vertex/edges achieving better locality and less inter-core communication.
They also experimented with iterative graph mining and iterative computations. In the former,
they reconstruct the needed snapshots in memory favoring time locality (and they compare both
push, pull, and stream techniques), while in the latter they compute the first snapshot and the later
N — 1 snapshots in batch (achieving better locality). They also implemented both low-level and
high-level query interfaces, the latter used for iterative computations. An earlier implementation of
ImmortalGraph is Chronos [25] with the main difference being that it only focuses on time locality.
Finally, they provide a low-level as well as a high-level programming interface (APIs) that in fact

define their analytics engine. They experimented with algorithms like Pagerank, graph diameter,
SSSP, connected components, maximal independent sets, and sparse-matrix vector multiplication.

Historical Graph Store (HGS) [37] is a cloud parallel node-centric distributed system for man-
aging and analyzing historical graphs. HGS consists of two major components, Temporal Graph
Index (TGI) that manages the storage of the graph in a distributed Cassandra environment, and
Temporal Graph Analysis Framework (TAF) that is a spark-based library for analyzing the graph
in a cluster environment. TGI combines Partitioned Eventlists, which stores atomic changes, with
Derived Partitioned Snapshots, which is a tree structure where each parent is the intersection of
children deltas (used for better structure locality storing neighborhoods). Both of them are par-
titioned, while they are also combined with Version Chain to maintain pointers to all references
of nodes in chronological order. TGI divides the graph into time spans (like snapshot groups of
ImmortalGraph) with micro-deltas which are stored as key-value pairs contiguously into horizontal
partitions at every time span. In this way, it can execute in parallel every query to many Query
Processors and aggregate the result to the Query Manager or to the client. It can work both on
hash-based and locality-aware partitioning by projecting a time range (time-span) of the graph in
a static graph. TAF supports both point in time queries and time-window queries; some of the
supported queries are subgraph retrieval with filtering, aggregations, pattern matching, and queries
about the evolution of the graph. An earlier implementation of TGI is DeltaGraph [34] that focuses
on snapshot retrieval.

ChronoGraph [I3] is a temporal property graph database built by extending Tinkerpop and its
graph traversal language Gremlin so as to support temporal queries. It stores the temporal graph
in persistent storage (MongoDB), and then loads the graph in-memory and traverses it. Their
innovation is not in the storage model but in how they support traversal queries efficiently on
top of it. It exploits parallelism, the temporal support of Tinkerpop to increase efficiency, and lazy
evaluations to reduce memory footprints of traversals. Its main focus is on temporal graph traversals
but can also return snapshots of the graph. They distinguish point-based events and period-based
events because of their semantics and their architectural needs. They use aggregation to convert
point-based events to period-based events so as not to have two different semantics in order to
improve time efficiency in query execution. They achieve this by using a threshold as the maximum
time interval that may exist between time points so as to group them together. A graph is composed
of a static graph, a time-instance property graph, and a time-period property graph. They also use
event logic, where an event might be either a vertex or an edge, on a period or a time instant. They
exeprimented with temporal implementations of BF'S, SSSP, and DF'S, while they don’t recommend
DF'S on their system because of Gremlin’s recursive logic. One more thing they discuss is that when
you store the temporal graph in snapshots, there will be some loss of information because a snapshot
may contain data based on a specific time granularity (e.g., an hour) according to the needs of the
problem, while when you store them using time intervals, one gets a more accurate representation of
the graph. An extension of Chronograph by using time-centric computation for traversals is given
in [I1].

Tink [43] is an open-source parallel distributed temporal graph analytics library built on top of
the Dataset API of Apache Flink and uses Gelly as a language. It extends the temporal property
graph-model focusing on keeping intervals instead of time-points by saving nodes as tuples. It
depends on Flink to use parallelism, optimizations, fault tolerance, and lazy-loading and supports
iterative processing. It also uses functions from Flink like filtering, mapping, joining, and grouping.
Most algorithms use Gelly’s Signal/Collect (scatter-gather) model that executes computations in a
vertex-centric way. It also provides temporal analytic metrics and algorithms. For the latter, they
implemented shortest path earliest arrival time and shortest path fastest path while for temporal
metrics they provide temporal betweenness and temporal closeness.

Gradoop (TPGM) TPGM [61] [I7] [60] is an extension of Gradoop’s EPGM model (model for
static graph processing, presented in a series of papers from 2015, e.g., see [32]) to support temporal
analytics on evolving property graphs (or collection of graphs) that can be used through Java API
or with KNIME. Gradoop is an open-source parallel distributed dataflow framework that runs on

shared-nothing clusters and uses GRALA as a declarative analytical language and TemporalGDL
as a query language. Gradoop supports Apache HBase, and Apache Accumulo to provide storage
capabilities on top of HDF'S, while other databases can also be used with some extra work. TPGM
supports bitemporal time by adding to vertices, edges and the graph as a whole, the logical attributes
for start and end time for both valid and transaction time (some of these logical attributes may not be
used). While TPGM provides an abstraction, Apache Flink is used for handling the execution process
in a lazy way and it provides several libraries. GRALA provides operators both for single graphs
and graph collections, it supports retrieval of snapshots, transformations of attributes or properties,
subgraph extraction, difference of two snapshots, time-dependent graph grouping, temporal pattern
matching, and others. For some more complex algorithms, it also supports iterative execution using
the Apache Flink’s Gelly library. Lastly, they have implemented a set of operations for their analytics
engine and have implemented them in Flink - by using Flink Gelly. For further investigation, it
should be mentioned that they provide an extensive description of their architecture while they also
provide a Lessons Learned section that contains valuable information with respect to their design
choices.

SystemG-MV In [72] they propose an OLTP-oriented distributed temporal property graph database
(dynamically evolving temporal graphs). It is built on top of IBM’s SystemG, which is a distributed
graph database using LMDB (B-tree based key-value store). Data are stored in tables with key /value
pairs allowing to query part of the graph efficiently without retrieving whole snapshots. Different
tables exist for vertices, edges, and properties, while it supports updates only on present/future
timestamps like transaction-time models. Therefore, changing previous values of the graph is not
allowed explicitly, but it is possible to change past events by using low-level methods. In this model,
they save two timestamps for the creation/deletion of vertices/edges but they don’t allow edges to
be recreated with the same id, although multiple edges can exist between a pair of vertices. For
vertices, they keep the deleted vertices in a different table, while for properties they keep it simplified
by keeping only one timestamp for the update as the rest can be calculated. Alongside the historic
tables, they keep one table with the current state of the graph for more efficient queries.

GraphOne [39] is an in-memory data store with a durability guarantee on external non-volatile
memory NVMe SSD, while it was solely implemented in C++. Its objective is to be able to perform
both real-time analytics or diverse data access while synchronous updates are applied to the database.
To achieve that, GraphOne uses a hybrid model which is composed of a circular edge log and an
adjacency store. The adjacency store has a multi-versioned degree array and an adjacency list with
chained edges, which is used to permanently store the data regarding to snapshots. On the other
hand, the edge log is used to temporary store the incoming data as edges so as to later move them
in parallel to the adjacency store and improve the ingestion time. In brief, an epoch in GraphOne
consists of 4 stages: logging, archiving, durable, and compaction. At logging phases, records are
inserted in the edge log at their arrival order, and when the inserted edges reach the archiving
threshold the multi-threaded archiving phase starts in parallel with the logging phase. At the start
of the archiving phase, it shards non-archived edges to multiple local buffers so as to keep the data
ordering intact, and then the edges are being archived in parallel to the adjacency store, while also
new degree nodes are allocated. In short, in the durable phase, data are being appended to a file,
while in the compaction phase deleted data are being removed. We notice that despite the fact that
GraphOne is designed to store evolving graphs, it is not designed to access arbitrary historical views
from the adjacency store.

TEGRA [30] is a distributed system with a compact in-memory representation (using their own
storage model) both for graph and intermediate state. Its main focus is on time window analytics for
historical graphs, but it can also be used for live analytics as the data are ingested in the database.
An interesting feature is the ICE computational model that takes advantage of the intermediate
state of computations saving it, so as to use it in the same or different queries. Computations are
being made only in subgraphs affected by updates at each iteration. This has some overhead on
finding the correct state and also the extra entities that should be included in the query when there
is large number of updates at each iteration or while trying to use ICE on different queries. Tegra
also uses TimeLapse, an API for high-level abstraction which also allows what-if questions that

change the graph creating different histories, suited for data analytics purposes. The storage model
behind TEGRA is DGSI, which uses persistent data structures to maintain previous versions of data
when modified. It uses persistent adaptive radix trees to store edges and nodes separately with path
copying. It uses simple partitioning strategies to distribute the graph to nodes. Each node has two
pART for nodes and edges respectively. Log files are being used to store updates between snapshots,
which are stored in turn in the two pARTs. The branch and commit primitives are really interesting
as well as the GAS (Gather - Apply - Scatter) model [23]. Tt allows also changing any version thus
leading to a branched history (like a tree - full persistence). Lastly, TEGRA also uses an LRU policy
to periodically remove versions that have not been accessed for a long time.

STVG [46] is a prototype framework that focuses on fast-evolving graphs. It is built on top of
Neo4j and supports both point and time-window queries while its main use is to analyze evolutionary
transit networks. It is based on the whole-graph model for representing the graph, which is composed
of subgraphs that facilitate the conceptual modeling of the connectivity between entities and the
time-graph of Neo4j that is responsible for keeping track of time evolution. Subgraphs are connected
to the time-graph to keep track of the evolution of the whole-graph, while nodes belonging to
different subgraphs are linked with complementary connectivity edges. Since this framework is used
for evolutionary transit networks it is assummed that the the graph is always connected while edges
can’t recur over time. Projected graphs are used to materialize and retrieve the graph both at a
time-window or a sliding window. They have implemented also graph metrics used to analyze a
transit network, graph density, network diameter, and average path length having in mind their
specific application. In general, this framework has some good ideas but it is tailored for transit
networks.

Graphite [21] is a distributed system for managing historical graphs (fully evolved and using valid
time) by using an interval-centric computing model (ICM) built over Apache Giraph. They assume
data are given in ascending time order and any vertex can exist only once for a contiguous time-
interval. It also has the ability to execute both time-independent and time-dependent historical
queries (temporal queries on a time-window), while they tried to create a unifying abstraction that
scales to both and at the same time simplifies algorithm design and detach user logic using ICM and
time-warp operator. ICM uses Bulk Synchronous Parallel (BSP) execution for every active vertex of
a query until it converges. They use two stages of logic, compute and scatter, where compute does
the computations needed for a vertex, and scatter transfers it with messages to neighbor vertices
as needed. Time-warp operator is applied at the alternating compute scatter steps to help sharing
of calls and messages across intervals. A key aspect of it, is that it groups input guaranteeing
correctness of grouping and no duplication, while it returns the minimum possible triples. They also
designed and constructed a plethora of time independent (TT) and time dependent (TD) algorithms
for their system with a very detailed experimental evaluation.

Granite [58] is a distributed engine for storing and analyzing temporal property graphs (supports
temporal path queries) made on top of and as a sequel to Graphite focusing on path queries. Its basic
assumption is that the updates are infrequent while queries are frequent. They extend the previous
model by adding a temporal aggregation operator, indexing, query planning and optimization, while
they prefer to relax ICM so as to work beyond time respecting algorithms. Granite handles both
static temporal graphs and dynamic temporal graphs while it uses interval-centric features only in
the latter case. An interesting point is that to optimize path queries they split them and execute
them concurrently, while they also keep statistics about the active nodes at each time point so as to
optimize the query planning. While Graphite makes hash partitioning at query execution, Granite
first partitions every entity according to its type and then it performs a topological partition to its
independent group of entities of the same type and splits them into workers using the round-robin
technique. They also use a result tree so as not to send duplicate paths across the system (some
parts of the path might be the same). Lastly, they propose a query language for path queries.

NVGRAPH This is a rather interesting system from a hardware perspective. NVGRAPH [44] is
an in-memory data structure focused on exploiting the different advantages of NVMM and DRAM,
combining them into a C++ library implementation. The major issue they try to tackle in NVMM is

Libraries (e.g
community
detection,
pagerank) User
Query Engine
Custom_ Basic functions:
NoSQL APl \Write (vertex/edge)
AN Using Read (vertex/edge)
Dk Delete (vertex/edge)
GraphDB ¢ &Xxsting < Storage Model
/// DB /
/'/ /
/ /
ROD Embed in ¥
existing
Graph DB

Figure 1: A view of MAGMA with the possible storage directions.

providing crash consistency while they argue that simply using NVMM without considering its issues
is a sub-optimal solution. They focus on creating an architecture that uses both DRAM and NVMM
to hide the issues of NVMM while they are exploiting its advantages. NVGraph stores the graph
as a series of continuous snapshots by storing the first snapshot and deltas for the next snapshots.
They also implemented 4 algorithms for evaluation: Pagerank, BFS, influence maximization, and
rumor source detection.

3 Different Architectures for Historical Graph Management
Systems

In this section, we describe the general characteristics of the proposed temporal graph management
and processing system (MAGMA), the possible directions we could take implementing it as well as
the possible obstacles we need to overcome.

An immediate observation from the previous systems is that each one of them focuses on different
aspects of historical graph management, resulting in a different appropriate solution for each appli-
cation. This is because the management and processing of historical graphs span multiple design
dimensions forbidding the existence of one system to rule them all. Our approach is towards creat-
ing a purely vertex-centric and storage optimal (asymptotically) distributed system called MAGMA
with the ability to update/query efficiently the history and apply graph algorithms on arbitrary time
periods rather than on specified snapshots. Following HiNode, MAGMA will be more efficient in
local than global queries due to its vertex-centric structure. However, we also wish to efficiently ex-
ecute global queries (e.g., pagerank) by exploiting our vertex-centric architecture and implementing
modern techniques (e.g., thinking like a vertex) for efficient and effective parallel computation. An-
other important aspect that needs to be addressed in a later stage of the development of MAGMA, is
the system’s API. In particular, we need to design the system in a way that guarantees its simplicity
with respect to use, its efficiency, its scalability, its flexibility with respect to its functionality, and
its compatibility with existing libraries (for static or temporal graphs).

The key part of the system is the efficient and effective vertex-centric storage of the graph. From
a design perspective, a diachronic node contains the whole history of a particular node in the sense
that it stores all changes and their time intervals related to this node, such as a change in an incoming
edge or a change in a property of the node. To this end, we employ three fundamental operations
in order to update and query the diachronic nodes: write, read and delete. All three operations
are applied on diachronic nodes that contain all relevant information (edges, properties, etc.). More
complex updates and query operations can be built on these fundamental operations that will serve
mainly the online management and processing of the historical graph.

Regarding the storage model, we have narrowed our options into either creating a custom
database for storing the historical graph into servers or by extending an existing database and
applying our model to them. In any case, we will always stick to the pure vertex-centric approach
proposed in HiNode and adapt it appropriately to fit the design choice of the storage model. In
the case of creating a custom database, we have complete freedom with respect to designing the
storage model to fit HiNode, but on the other hand, it will require considerably more effort for
the implementation as well as to ensure compatibility with existing libraries. On the other hand,
one could use an existing database, either a NoSQL database like Cassandra and MongoDB or a
Graph database (e.g., GraphX or System@G). In this case, it is easier to build the system and take
advantage of the optimizations and functionality that already exist within this database (e.g., fault-
tolerance, partitioning and concurrency), but there is less freedom in applying the storage model of
HiNode. Another option, in this case, is to extend an existing graph database (e.g., GraphX) to
support natively the management and processing of historical graphs based on a pure vertex-centric
approach. This is a harder task, but it has the merit of sharing and using existing libraries within
this particular graph database. In addition, the visibility of such a solution will be much higher
across the community.

Since MAGMA is a distributed system, the partitioning strategy is of paramount importance for
the efficiency of the system. Most systems use either a simple hash-based partition or a chronological
or topological partitioning. In our case, the topological partitioning is more natural but we also need
to take into account the temporal evolution of the graph. In topological partitioning, we want to
place in the same machine, nodes that are connected or that are relatively close to each other.
One problem we might encounter with topological partitioning is that in different timestamps, the
distance between nodes changes, and as a result, different partitions may be more appropriate in
different time instances. This is problematic in our case since a diachronic node contains all the
history of the node and thus naturally all history is stored in a single machine. Two possible solutions
for this issue are either by using different metrics for partitioning combining the whole history of the
graph or by dividing parts of a node to different machines. Another possible solution, which could
also be combined with the previous one, is the duplication of some nodes across machines. However,
in this case, care should be taken with respect to space usage and synchronization.

Another critical part of the system is the query engine and the libraries that will be available.
Regarding the libraries, we intend to implement algorithms on temporal graphs like temporal shortest
path (journeys) and community detection and evolution while also supporting algorithms for static
snapshots. This can be achieved either by using the abstraction provided from the API or by
exploiting the system’s architecture and creating them from scratch. For the former task, we first
want to create a query engine able to handle more demanding tasks that supports parallelism and
provides the user with an easy-to-use API. To do so, our processing unit needs to apply one of the
following approaches: ”thinking like an edge” (TLAE), ”thinking like a vertex” (TLEV), ”thinking
like a neighborhood” (TLAN), ”thinking like a subgraph” (TLAS) or ”thinking like an interval”
(TLAI). We need to further investigate these approaches and decide which one would be more
efficient in our system, although we can deduce straightforwardly that some of these will probably
not fit our vertex-centric architecture. On the other hand, TLEV techniques seem as the most
promising at the moment, in order to take advantage of Hinode’s vertex-centric structure, while
TLAN or TLAS approaches could also fit our model depending on the partition strategy used. At
a later stage, these approaches will be used for iterative computations.

3.1 Different Approaches for MAGMA

Our goal is to develop a storage model and a query engine for storing, managing and processing
historical graphs in a distributed setting. The requirements for MAGMA are the following;:

10

1. A node-centric approach for the storage of the historical graph that will also support efficiently
constant updating.

2. The system must be developed in a distributed system.

3. Support of OLTP queries, which are simple queries that typically involve a few records. The
emphasis is on fast processing, because OLTP databases are read, written, and updated fre-
quently. If a transaction fails, built-in system logic ensures data integrity.

4. Support of OLAP queries, which are complex queries that usually refer to a large part of
the graph. The emphasis here is on efficiency tackling the queries without worrying or even
prohibiting updates of the graph.

In Sections we use existing Database(s) as building block(s). The idea is to use one or more
databases and combine them accordingly so as to create the MAGMA system. In this case, the
databases need to have the appropriate data structures for the efficient implementation of the system
and at the same time need to provide the appropriate functionality for implementing operations (e.g.,
ACID transactions for OLTP). In Section [7} we propose the use of an existing graph database in
order to design and implement MAGMA, either by using time as an additional but special-purpose
feature or by changing the graph database in order to natively support historical queries and updates.

An initial and rudimentary set of operations that we wish to support is the following:

1. (OLTP) Insert/Delete Node/Edge: The system must be able to cope with updates of the
historical graph anywhere in the graph and anytime.

2. (OLTP) Query the Neighborhood of a Node: Given a node v the goal is to return the
neighborhood of v at a specific time instance, an interval, or a combination of intervals (one
may assume propositional logic).

3. (OLAP) Basic graph-wide query operations like Diameter and Pagerank: In this
case we need to support queries that involve a large part of the graph at specific time instances,
time intervals or combinations of time intervals.

4. (OLAP) Community Detection: Find a partition at specific time instances or intervals
or under other time restrictions like the ones used in time-related shortest path queries (if
applicable).

5. (OLAP) Anomaly Detection: Find whether a node has a behavior (the semantics of
”behavior” are defined with respect to the evolution of communuties) that is different to a
large set of nodes (possibly its community).

4 OLTP-focused with Secondary OLAP Functionality

In this case our distributed system natively supports OLTP queries and additional mechanisms are
required to support OLAP queries. In this framework, distributed ACID-compliant transactions
should be supported in an efficient manner. Until recently, the first choice for OLTP database was
an SQL RDBMS-like database. However, more recently, some NoSQL databases started supporting
ACID transactions although issues remain with respect to the scalability of those transactions. To
solve this problem, NewSQL databases were created. Thus, in this case, we have to either choose
an RDBMS database that is also distributed or a NewSQL database.

4.1 RDBMS-like

RDBMS-like databases are more suitable for OLTP queries but on the other hand most of them are
not distributed. It could be an SQL table database or something similar to MariaDB, or PostgreSQL-
BSD that also adopts a multi-master approach, but in any case, it should be a distributed database
and be able to handle OLTP transactions. As for the OLAP queries, we should be able either to
implement them in the primary database (which is not efficient or straightforward, as most OLTP
databases do not provide such functionalities) or when a complex query arrives, we should create

11

an instance in a secondary database that can handle OLAP queries efficiently. This seems to be
inefficient as well, since creating such an instance requires the extraction of a large portion of data,
which is not suitable for RDBM databases.

In any case, for the RDBMS database we can use the SingleTable or the MultipleTable model
created in HiNode [36], 69], respecting our node-centric approach for the storage model.

Known Implementations In [57] they benchmark different storage systems (including Post-
greSQL), having on top a Spark system for querying, while they also test three different schemes.
Their experimental evaluation shows that PostgreSQL doesn’t have the best performance when
OLAP queries are performed, compared to other NoSQL systems.

Applying this Strategy to Historical Graphs In this case, we have many choices between
RDBMS-databases like PostgreSQL or MariaDB (some are distributed others not, but the final
system is distributed). The implementation of the OLAP queries can be carried out in two ways:
either try to implement them in the RDBMS database (which is not only inefficient for the OLAP
query but also halts the OLTP transactions and we need a way to save them in a buffer) or extract
the required instance from the RDBMS and apply the OLAP query on this instance. The latter
approach is called Extract-Transform-Load (ETL).

Advantages - Disadvantages In the following we state succinctly the pros (+) and cons (—) of
this approach.

+ Good support of ACID
— Many design choices can affect the performance of the system.
— Partitioning of the historical graph may be quite restricted.

— SQL is not suitable for volume, velocity, and variety data, rendering it highly inefficient for a
cloud-based application

— Inefficient usage of space (NoSQL or custom, in general can have better storage efficiency
alongside with the fact that if we want multiple labels, some nodes may not have them, thus
in RDBMS some columns may be empty)

— Normal RDBMS scale vertically

4.2 Use NewSQL DB

Newsql can be defined as a class of modern relational DBMSs that seek to provide the same scalable
performance of NoSQL for OLTP workloads and simultaneously guarantee ACID compliance for
transactions as in RDBMS. In other words, these systems want to achieve the scalability of NoSQL
without having to discard the relational model with SQL and transaction support of the legacy
DBMS.

Having said that, NewSQL databases follows all specification requirements needed for our database.
So we could either use one as a storage or "extend” one so as to implement HiNode model for his-
torical graphs and at a later stage, find efficient ways to execute analytical queries directly on them
or with ETL techniques.

We should be cautious as it is relatively new and most reviews are in their favor. Examples
of such databases are CouchBase, CockroachDB, RocksDB, VoltDB and NuoDB. Many NewSQL
databases are built on top of RocksDB key-value store.

An Existing Implementation [52] (which is also based on a master-master architecture) is based
on CouChDB, which is a NewSQL database. The main problem that they tackle is the partition of
the graph in a distributed system so as not to do many I/Os in different partitions. The proposed
solution to this problem is based on aggressive and lazy replication. Additionally, in [20] they created
mechanisms to answer SPARQL queries on top of Couchbase.

12

Applicability to Historical Graphs NewSQL databases are key-value databases or document
distributed store databases that also support ACID transactions. As a result, by adopting them for
our system we get ACID transactions and also analytical queries on top of them. For the analytical
queries, there exist also ways to implement SPARQL queries on top of Couchbase. The only problem
is that if an analytical query is a relatively large one, it is better to extract it and execute it in a
different system as it may halt the execution of transactions for a long period of time. This means
that the system will automatically try to understand when an ETL approach is needed based on the
massiveness of the query.

Advantages - Disadvantages: In the following we state succinctly the pros (+) and cons (—) of
this approach.

+ Easy architecture

+ The implementation of the system can commence pretty fast
+ Horizontal and Vertical scalability
+

Can be implemented without the use of many different components (e.g., different databases,
different buffers)

— NewSQL is relatively new and not as well studied as other solutions.

— In case OLTP transactions are postponed during OLAP executions, the transaction log may
become pretty large while starvation may be an issue in case of many successive and parallel
OLAP ueries.

5 OLAP-focused with Added OLTP Functionality

In this case, MAGMA will be mainly based on an existing OLAP-oriented database, extending it
to support OLTP queries. There are two basic approaches towards attaining this combination that
are based on replication schemes (both of them support synchronous and asynchronous variations):

1. Master—Slave: In this case, the data modification operations are processed only on the master
node, and the updates are synchronously or asynchronously propagated to slave nodes. The
data may be read both from the master node (which always contains the latest data version)
and slave nodes that may contain outdated data if the replication is performed asynchronously.

2. Master—Master or multimaster: In this case, all the nodes can process update operations
and propagate these updates to other nodes. In this method, it is difficult to implement syn-
chronous replication, and delays due to network communications can be significant. If the
updates are performed asynchronously, there is another difficulty related to the fact that con-
flicting data versions may occur, which require techniques for detecting and resolving conflicts
(automatically or on the application level).

As previously mentioned, the system architecture will be suited for OLAP queries, supporting
OLTP queries, either by default or with modifications. In the following, we will discuss in more
detail these two options.

5.1 Master-Slave

In this case we have a system structure similar to the implementation of HiNode [36]. There is
a master node where client sends the queries, and many distributed slave nodes that execute it.
Two basic implications when supporting OLTP queries come up: a) how to guarantee ACID (or
some relaxation) for OLTP queries and b) how to execute OLAP queries without stopping OLTP
transactions. We can overcome the first problem by using a distributed database that also has some
support for ACID queries. However, the latter problem requires either a way to store the OLTP
transactions while the database is busy doing the analytical query, or by instantiating the database
(e.g., copy the related to the OLAP query to a different container) and execute the OLAP query on
it while allowing OLTP transactions. In this case, the second approach is not so much appropriate,
as the DB is more OLAP oriented and mitigating the data to do the OLTP transactions in an OLAP
oriented DB is a waste of resources, and thus we focus on the first approach.

13

An Existing Implementation In [33] they show best practices for implementing transactions in
MongoDB and the results of TPC-C benchmark with small changes so as to adapt to best practices.
They describe the transactions allowed in MongoDB. MongoDB can also benefit from denormalized
schema and reducing roundtrips to DB, even though they are not allowed in the TPC-C benchmark.
From the above paper we can observe the scalability of the system as well as the benefits from
MongoDBs indices and the denormalized schema. On the other hand, MongoDB doesn’t fully
implement ACID transactions and probably also need much more storage for replication. E|

Applicability to Historical Graphs In this case, we have two major choices for the database:
MongoDB or Yugabyteﬂ Both databases are open-source, with the difference that YugaByte DB
supports distributed ACID while MongoDB supports single-shard ACID. An early MongoDB imple-
mentation of HiNode [69] can be used as a basis for setting an APT to support ACID transactions
and allow for OLAP queries simultaneously with OLTP transactions. As previously mentioned, this
can be implemented by postponing the execution of transactions until the OLAP query is completed
or by instantiating part of the database in a different container so that the OLAP query is unaffected
by future transactions.

Advantages - Disadvantages: In the following we state succinctly the pros (+) and cons (—) of
this approach.

+ Easy architecture

+ The implementation of the system can commence pretty fast

+ Good support since this approach is based on known databases
— Reduced efficiency of OLTP transactions

— In case OLTP transactions are postponed during OLAP executions, the transaction log may
become pretty large while starvation may be an issue in case of many successive and parallel
OLAP queries.

— Hard to support OLTP transactions and OLAP queries at the same time
— Distributed transactions have in general poor performance.

— Partitioning of the historical graph among the slaves will be quite restricted

In general, this approach is not so flexible since many design choices have been already determined
by the underlying database.

5.2 Master-Master

There are multiple variations of multimaster but their common characteristic is that at least two
nodes/machines process transactions (there are at least two masters). A variation corresponds to
active/passive mode where the master nodes switch between these modes and only the active can
process a transaction. Another variation is the active/active mode where two or more master nodes
are active simultaneously and can process transactions at the same time. The multimaster scheme
supports easier OLTP transactions on a distributed NoSQL environmentﬂ

By using this architecture, we can either use a multimaster database that supports OLTP transac-
tions and find a way to co-execute OLAP with OLTP and by applying the HiNode data structure, or
we could have a custom made multi-master scheme in the front for the support of ACID transactions
and on the background any distributed database that fits better our proposal. In the second case the
basic problem is that we have to make a system with support and proof of ACID transactions, which
is a more complex application, so in this section we will only focus on using a multi-master database.
The basic problem of this architecture, similarly to [5.1] is how to support OLTP transactions while
a time exhausting OLAP query is being executed.

1Chronograph [I3] uses MongoDB for the system, although they don’t seem to support ACID transactions.

2YugaByte is Redis and Cassandra compatible. We could use YugaByte with Redis, but further investigation of
compatibility and support operations is required.

SMulti-Master can support distributed ACID https://medium.com/yugabyte/
6-signs-you-misunderstand-acid-transactions-in-distributed-databases-43dcaba24485.

14

https://medium.com/yugabyte/6-signs-you-misunderstand-acid-transactions-in-distributed-databases-43dcaba24485
https://medium.com/yugabyte/6-signs-you-misunderstand-acid-transactions-in-distributed-databases-43dcaba24485

Implementation with this Architecture In [52] they built a framework on top of CouchDB
focusing on the management of large dynamic graphs. It is mostly focused on using a hybrid
approach with partitioning techniques while they also use clustering so as to reduce the needed
replication. At brief, they first decided on doing a clustering of the nodes in different machines so
as to keep close the data that interconnect and reduce the I/Os of a query, and then they apply a
lazy replication scheme based on the access patterns of each node, using histograms and prediction
algorithms. This approach helps minimize the communication cost and have a balanced system in
terms of CPU usage. Although this system is based on dynamic graphs the replication cost may
be too much for historical graphs as the size grows considerably fast. It is also harder to find a
generally good clustering technique for historical graphs. Lastly, CouchDB supports the change of
the partition on top level.

Magma [41] is a replacement for couchstore and they use data structures that can be utilized
in our system (like LSM trees), adopting an asynchronous distributed multi-master architecture.
However, they don’t explicitly mention anything about transactions while it is an append-only
structure and thus may not be appropriate for general historical graphs. It is focused at improving
efficiency on write throughput as the system needs to rewrite blocks of data because of its append-
only nature. Although this architecture can be utilized in our case, it needs many modifications and
additional research. [

Looking at Historical Graphs Depending on the partition strategy we decide to adopt, we
could take advantage of a multi master DB. For example, in a chronological partition where we
have prior knowledge of which "master” holds which data, we could just propagate the query to
the appropriate node like the postgres-BDR model. It just needs that every master has access to
a dictionary with the chronological partitioning scheme, otherwise we could use a router that has
knowledge of the partitioning scheme to propagate the data to the appropriate machine like [52]. By
adopting this scheme, OLAP queries could also be supported in a BSP or ”thinking like a vertex”
way, managing good balance in the networks utilization and minimizing I/Os. In addition, with
the cooperation of a good partition over the data (for particular types of queries like queries on
snapshots in a specific time instance) it would drastically reduce the I/Os by adopting a ”thinking
like a vertex” strategy. The basic problem of this approach is the partition and the replication
scheme applied so as to have good utilization of machines and minimization of the cost of queries
and transactions, which becomes even harder in the case of historical graphs. In this approach, we
follow a chronological partition strategy, which may be straightforward for the DB architecture but
is not appropriate or straightforward for our HiNode model. Our model is more compatible with a
topological partitioning approach, meaning that each fat node is fully stored in a machine potentially
using shadow nodes and replication instead of being stored in pieces across many machines.

Still, there is the problem of supporting OLTP transactions at the same time as OLAP queries
are being executed. Like this can be tackled with a log buffer to store OLTP queries and at
a later stage insert them as a batch into the system. In this architecture, we could also apply
preprocessing on the data to know the appropriate machine where each data should be sent and
minimize the I/Os that would happen in the normal insert mode.

Advantages - Disadvantages: In the following we state succinctly the pros (+) and cons (—) of
this approach.

+ More flexible in choosing the distributed database.

4+ More flexible in data structure for the in-memory database part, as we can create it from
scratch.

+ More flexible to architectural optimizations

+ Probably more appropriate for ACID over distributed databases (compared to master-slave

51).

+ Probably better for implementing vertex-centric queries (thinking like a vertex)

4Cassandra also supports master-master and AID (not C).

15

— Needs much work on implementation.
— If we do something from scratch we need proof of ACID and a lot of research.

— All masters should either hold the entire snapshot or depending on the partition we may need
a lot of replication of data, so there will be storage issues.

6 Hybrid

In this case, the system is composed from different storage components that are interconnected and
create an all in one system. One idea is that the OLTP part could follow the streaming databases
saving a log to send to the OLAP part, but keeping at any time the current state (in transaction
time) of the graph for fast read. Another idea is that the OLTP part can be modified based on the
application, e.g., we could have an application for IoT sensors where the OLTP part receives a lot
of data, makes statistical analysis keeping some knowledge as the stream comes, but also instead
of storing all the data, removes a part because sensors are storing too much information with noise
(filtering). In general, the idea of a hybrid system is to have two fully functional system components
that will interact in some way. There are many hybrid options but we are going to discuss only a
few.

6.1 OLTP buffer + Store and OLAP System

We consider two possibilities. One possibility is to have as a first level a fast in-memory storage
system like Redis (also ACID) to make a cache or buffer store for the data before sending them to a
persistent storage like Cassandra, MongoDB or HBase. This way, we can have a threshold for batch
or lazy insert the data when they are needed, while the OLTP transactions will be much more efficient
than previous suggestions. The choice of the threshold constitutes a trade-off w.r.t. transaction and
analytical query efficiency. The basic idea is that there are two interconnected systems with two-way
communication (not only one way) allowing for more efficient choices for the OLTP part (e.g., using
an event log or use compression techniques that have been studied before). One system to handle
the OLTP transactions and one system to handle the OLAP queries, which sometimes will need to
fetch data to be updated from the OLTP part. While we use batch updates to the OLAP part,
we can use that time to make operations on the data and save time later. Incremental partitioning
techniques can be employed while moving data from the OLTP system to the OLAP system and

query operations can be also performed on them during this movement.
A different possibility is to have two mostly independent systems that each one is better at

different tasks and an abstraction layer on top that will redirect the query to the appropriate
database. In this way, we achieve better performance on the cost of replication. For example, this
has been done before (e.g., immortalgraph) where they kept one system with topological partitioning
and one with chronological and pass the query to the best at handling it. In our case, one of the
two systems should also handle the OLTP transactions and thus the OLAP part will probably be

outdated for some time before passing along the new updates.
One more advantage of hybrid systems, is that the one system can be deployed in a different

place than the second one, so for IoT applications, we could have many mini OLTP systems and a
big central general authority for the Distributed OLAP part.

Implementation with this Architecture Sprouter [I] is a dynamic graph processing system
over data streams at scale. It uses Cassandra for OLTP and does OLAP by bulk loading data to

Spark using micro-batches efficiently in bulks. This idea has been used to systems like GraphOne.
A hybrid database approach using graph and relational Database can be found in [73] that

basically follows the second possibility using two heterogeneous databases. They argue that the key
advantage of graph databases is performance:

”In contrast to relational databases, where the query performance on data relations de-
creases as the dataset grows, the performance of graph databases remains relatively con-
stant ... Hybrid database approach or multi database system is defined as integrated data
system composed of collections of two or more autonomous datasets and/or databases.
There are multiple issues that must be addressed like developer needs to learn multiple
technologies, multiple query languages and many more.”

16

Implementation Tailored to Historical Graphs Adopting the first possibility, we
could use an in-memory database for the OLTP part, either Redis or another in-memory
data storage and create either a buffer or in general a temporary storage of data, so as
to achieve fast updates. Periodically, we move all data in batch to the persistent storage.
For the persistent storage, we could try something like HBase or RocksDB or we could
use another persistent Database that will handle all OLAP and most read operations
(most recent events will appear only in the buffer part).

A slightly different version to the above is that instead of using an event buffer in the
OLTP part, we could construct a data structure that could handle efficiently the in-
memory part. Maybe a lightweight or compressed HiNode as we don’t need all of its
abilities. It could even be just a sketch of the graph so as to answer queries about the
structure.

For the second possibility, we need two fully functional databases, that both store the
whole graph (or part of the graph if we decide that it is possible) and an abstraction
layer that will direct appropriately the queries. In general, for this to work we need to
create a new data structure that can handle efficiently the parts that HiNode can’t.

Advantages - Disadvantages In the following we state succinctly the pros (4) and
cons (—) of this approach.

+ Much more flexible, compared to previous approaches.

+ Can become much more efficient, as we don’t prioritize one of the two systems,
although this could have some trade-offs.

+ Can more easily be transformed and changed according to the characteristics of the
workload.

+ Creates the possibility of later improving or replacing a component without changing
the rest.

+ After creating the first prototype, we can create multiple combinations for different
ideas.

— Technically more challenging as it uses more technologies.

— Increase storage if replication is used.

— More time for construction as more times is needed to create a hybrid system.

6.2 Discussing Different Threshold Choices

What we need to discuss for the first system above, is that the use of different threshold
techniques and variations in memory storage, can change the whole structure of the
database. This is because, as the threshold gets larger, data are moving more sparsely
from one storage to the other and as a result, we have the ability to delay a little
the process of batch insert so as to make a better partitioning (sometimes incremental
partitioning is much harder, especially when you have to move previously inserted values).
On the other hand, if we have a smaller threshold, the batch insertion will be much faster
and won’t delay the transactions. In addition, when an analytical query comes, it will
probably have to deal only with data inserted to the persistent storage or with a small
portion of the data in the buffer. However, we need a better incremental partitioning
and a faster connection between the two stores to rapidly send the data to the persistent
storage.

7 Graph Databases

There is a very interesting taxonomy on graph databases in [9] which also explains
the different design choices in the creation of the graph databases, from the storage

17

architecture to the OLTP/ OLAPE| and ACID compliance. Using the taxonomy (which
does not include historical graph databases) our system is closer to a wide-column store
or a document store, but in either way we need indices on the attributes, otherwise we
need to implement a native graph store based on the LPG model. The hybrid model is
like the data hubs from the taxonomy.

7.1 Using an Existing Graph Database

It is possible to use an existing graph database, but it needs to be one that supports
multiple labels both on edges and on nodes, while allowing the creation of indices over
these labels. Other than that, it would help to use existing libraries of the system.

Implementation with this Architecture There are some historical graph systems
that were implemented using Neo4j. One example is STVG [46], although all systems
that use Neo4j have been labelled as non-distributed systemsﬁ

Implementation in Historical Graphs We can use many different databases like
Neodj, JanusGraph or ArangoDB (the last one uses a document store, so it could be
the counterpart of MongoDB). Our requirements for these databases include being dis-
tributed, OLTP compliant (we can compromise on ACID compliance) and OLAP com-
pliant, or we should at least be able to create OLAP compliance on top of it.

Most probably, our main choices are either wide-column stores, document stores or native
graph stores. On wide-column stores, the main problem is in indexing and the way
attributes are stored in the columns, as we need to comply with HiNode. On document
stores, we can easily implement the HiNode model in the same way it was implemented
in MongoDB but we need the store to support indices and OLTP transactions as not all
of them do. Additionally, in the previous two categories, we should check the variants of
LPG model they use (e.g., ArangoDB only allows one label per vertex). Lastly, native
graph stores have the advantage of using the LPG model; the problem lies in their
implementation schemes since we require our implementation on top of them to be as
close as possible to the HiNode model.

Advantages - Disadvantages
+ Many libraries can be reused, thus we can have faster and more robust implemen-
tation.
— More research time is required on every category and DB.

— Its not the best idea to have on top of a store a graph DB and on top of that a
historical graph DB compared to implementing the last on top of a store (probably
this is why this approach has been adopted only a handful of times).

— More difficult to support all our needs as they already have done some compromises.

— Functionality already implemented for graphs is not useful for historical graph man-
agement, thus creating unnecessary overhead.

7.2 Extend an Existing Graph Database

An interesting idea is that historical graphs can be seen as an ”"extension” of graphs
and thus we could take an open-source graph database and extend it so as to support
historical graphs using the HiNode model. Such a system could be easier adopted from
the community (as they are already using the current version of the graph DB), although

5Note that OLTP for graphDB has a slightly different meaning.
6Recently, Neo4j can be deployed as a distributed system although with certain restrictions.

18

we have to follow the community rules and guidelines to do so. It is a rather interesting
idea as we could also at times extract snapshots of the historical graph that could be
directly processed or analyzed using the pre-existing functions of the current system.

Implementation with this Architecture The only known pre-existing work on this
idea is Gradoop - TPGM [61], 17, [60] where they took the previous implementation of
Gradoop EPGM and change it so us to support temporal graphs. Both Gradoop EPGM
and Gradoop TPGM have been developed by the same team.

Application to Historical Graphs In general, there are many design choices as to
extending a graph database including the choice of the database as well as how it will be
extended and which of the initial functionality will be transferred to the historical graph
system. In the following, we discuss possible graph databases for this scheme with some
comments.

Neo4j « is one of the most famous open-source graph databases that is ACID compliant
and also uses the LPG model.

Redisgraph <« is developed by RedisLabs from scratch on top of Redis, with the help
of Redis Modules API with extended commands and capabilities. It stores data in RAM
to achieve memory efficiency as well as fast indexing and querying.

Titan < Distributed on multi-machine clusters. Titan supports ACID and eventual
consistency. For backend, it supports Apache Cassandra, Oracle BerkeleyDB, Apache
HBase. Titan also supports native integration with TinkerPop. The project was stoped
in 2015 but Janusgraph was forked from it.

Other possible choices are: ArangoGraph, GraphDB (also knowledge graph and RDF),
memgraph and nebula.

Advantages - Disadvantages

+ Existing libraries and functionality can be used, thus we can have faster and more
robust implementation.

+

We can use many functions and customize them to fit our needs.
+ We can create a general API for both applications.
— More research time on every category and DB respectively.

— More work to understand previously created code and implement something that
can be accepted by the community (after it exceeds the prototype version).

7.3 Create a new Graph Database

Like the previous described databases, instead of using an existing graph database, we
could take a distributed data storage (it is actually a database, but with less functional-
ities, meaning less overhead) and create on top of it our historical graph database. This
is the closest we could go to create from scratch a database and needs much research and
working time/experience.

Many NewSQL databases are built on top of RocksDB key-value store. We could also
create them in a later stage, if we create a good API to connect individual components
and at a later stage replace them with custom built components specified for historical
graphs. Other choices to be used as stores include Redis, HBase and Accumudo.

19

TinkerGraph is
quite close to this
idea as well.

[Applications]

OLAP OLTP

v v

Gremlin
GraphComputer

Management API TinkerPop API - Gremlin

Internal API Layer

Database Layer (Tx, Data Mgmt, Optimizer)

soBHBIU|
O/l d¥10

Storage and Index Interface Layer

(leuondo)
uuopeld eyeq big

External Index Backends

(optional)

Storage Backends

(at least one is required)

Figure 2: Janusgraph architecture.

8 The MAGMA Approach

Based on the previous extensive discussion, we decided not to start from scratch building
a historical graph database. Although such a choice would allow us great freedom in
the design of the system, it would be impossible to implement something more than
a pilot system with basic functionality (e.g., no concurrency). This is why we chose
to use another approach. The most promising approach, to our opinion, is to extend
an existing graph database. We have already discussed the pros and cons of such an
approach, but what really made us choose this approach was that such a solution would
have high visibility among the users of such graph databases. Among the many graph
databases we looked at, two graph databases were the most appropriate: ArangoDB and
JanusGraph. We finally chose to use Janusgraph, mainly because ArangoDB require a
license in order to use its full functionality.

JanusGraph is an open source, distributed graph database under The Linux Foundation,
which is highly scalable, optimized for storing and querying large graphs with billions of
vertices and edges distributed across a multi-machine cluster. JanusGraph is a transac-
tional database that can support thousands of concurrent users, complex traversals, and
analytic graph queries. The storage layer is pluggable, meaning we can choose between
different backeneds so as to store our data or even create a connection for a store more
appropriate for our application. Having in mind all these advantages of Janusgraph,
especially the adaptability to our needs and the full access to its source code, we de-
cided it was the best possible approach so as to extend an already existing database
and support also historical graphs with our own architecture. Additionally, JanusGrpah
supports Tinkerpop and allows the use of Gremlin as a query language for both OLTP
and OLAP. The architecture of Janusgraph is depicted in Figure [2}

9 Queries on MAGMA

Based on their scope [9] we consider the following types of queries.

1. Local queries that involve the retrieval or update of a single edge, single node or
a property, subject to time restrictions.

2. Neighborhood queries that involve k-hop queries (for small k) around a node or
an edge subject to time restrictions.

20

3. Traversals that explore part of a graph, like shortest paths, subject to time re-
strictions.

4. Global graph analytics that involve the whole graph, like community detection,
subject to time restrictions.

These query types can be used to define various types of workloads that usually try to
capture the queries applied in specific scenarios.

1. Interactive workloads that consist of short read-only queries (local and neighbor-
hood queries), of complex read-only queries (mainly traversals) and of transactional
update queries (local update queries like insert and delete).

2. Business intelligence workloads; these are read-only queries that span relatively
large parts of the graph (subject to time restrictions) and usually make heavy use
of summarization and aggregation operations (e.g., count the number of nodes with
degree larger that k).

3. Graph analytic workloads that usually refer to read-only traversal and global
graph analytics queries (e.g., community detection).

4. Mixed workloads that can be any combination of the above workloads.

All types of queries will be applied to MAGMA, although we will focus on a small subset
of them. In particular, for local queries we will construct transactional workloads in
order to test the efficiency of MAGMA in such scenarios. Small k-hop queries as well as
traversal queries will also be tested, focusing for the latter case on time-restricted shortest
paths (journeys). Finally, global graph analytics will mainly concern global community
detection algorithms that are based on the ”think like a vertex” paradigm.

Apart from such queries, we will also focus on local community detection that can be
seen as an extended neighborhood query as well as on outlier detection. The former,
will be based on the notion of the anchor introduced in [7] and initially will be tackled
in a streaming environment before moving to a distributed setting compatible with the
MAGMA architecture. The latter will be seen more as a by-product of the former, since
one way of defining outliers in graphs is by looking as to how nodes differ with respect
to the community structure. Both community and outlier detection will be designed in
a distributed model exploiting the characteristics of MAGMA.

10 The Scientific/Technical Plan

The research required to finalize this document was concluded by the end of the 1st year
of the project TEMPO (end of April 2023). The main reason, as shown in this document,
was the extensive literature research required to choose the most appropriate architecture
and models for storing and processing historical graphs. Based on the previous discussion
our time-plan starting from the second semester of 2023 is as follows.

07-12/23 During this semester the following is expected to be accomplished:

MAGMA The research team will delve into details concerning the functionality of Janusgraph
and its basic components: Tinkerpop as the main framework to express OLTP
and OLAP queries, Janusgraph as the graph database for static graphs and its
connection to the storage model (e.g., Cassandra).

Queries Design and experimentation on a streaming algorithm for community detection and
outlier detection.

21

01-06/24 During this semester the following is expected to be accomplished:

MAGMA

Queries

Use Gremlin to express time restrictions on simple queries related to historical
graphs and identify the necessary changes that need to be made to Gremlin so that
time intervals can be queried (we could follow the example of Chronograph [13]).
Identify the changes that need to be made so that Janusgraph can support time not
as another property but as a first-class citizen. Finally, identify the best storage
model among the ones already supported and familiarize with the libraries needed
to connect a new storage backend that is not currently supported.

Design and analyze a distributed community detection algorithm based on the
”think like a vertex” paradigm and tailored to the vertex-centric approach of HiN-
ode. Develop transactional historical graph workloads based on the well-known
LDBC benchmark [5].

07-12/24 During this semester the following is expected to be accomplished:

MAGMA

Queries

Change Gremlin appropriately so that it can express efficiently OLTP and OLAP
queries with time restrictions. Make changes to Janusgraph so that time is inherent
in the system and not as a simple property. If the storage backend required is
not supported by Janusgraph, then develop the appropriate connector (e.g., a very
promising storage backend is RocksDB). If needed, lay the grounds for developing
a custom storage backend based on HiNode with minimal functionality.

Complete the distributed community detection algorithm based on the ”think like
a vertex” paradigm. Develop various workloads based on the LDBC Benchmark [5]
and identify real historical networks that can be used to test MAGMA. To generate
historical graph workloads of various types, two prossible apporaches can be taken.
Either to post-process the workloads generated by LDBC to get historical graph
workloads or extend the LDBC generator to have this functionality. Extend the
distributed community detection algorithm to identify outliers.

01-06/25 During this semester the following is expected to be accomplished:

MAGMA

Queries

Polishing of the MAGMA system and extensive experimentation and evaluation.
Report on possible future extensions for the system.

Implementation and experimentation over specific traversal (e.g., journeys) and
graph analytics queries (e.g., pagerank) on MAGMA. Generation of different types
of workloads for experimenting with MAGMA. Implementation and experimentain
of distributed community detection algorithms and outlier detection (to a lesser
extent) on MAGMA.

References

[1]

2]

Tariq Abughofa and Farhana Zulkernine. Sprouter: Dynamic graph processing over
data streams at scale. In International Conference on Database and Ezxpert Systems
Applications, pages 321-328. Springer, 2018.

H L Advaith, S Adarsh, G Akshay, P Sreeram, and G P Sajeev. A proximity based
community detection in temporal graphs. In 2020 IEEE International Conference
on FElectronics, Computing and Communication Technologies (CONECCT), pages
1-6, 2020.

A. Aghasadeghi, V.Z. Moffitt, S. Schelter, and J. Stoyanovich. Zooming out on
an evolving graph. Proceedings of the 23rd International Conference on FExtending
Database Technology (EDBT).

22

[4]

[19]

Landy Andriamampianina, Franck Ravat, Jiefu Song, and Nathalie Valles-
Parlangeau. A generic modelling to capture the temporal evolution in graphs. In 16e
journées EDA : Business Intelligence & Big Data (EDA 2020), volume RNTI-B-16,
pages 19-32, Lyon, France, August 2020.

Renzo Angles, Janos Benjamin Antal, Alex Averbuch, Altan Birler, Peter Boncz,
Marton Bir, Orri Erling, Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, Josep
Lluis Larriba Pey, Norbert Martinez, Jézsef Marton, Marcus Paradies, Minh-Duc
Pham, Arnau Prat-Pérez, David Piiroja, Mirko Spasi¢, Benjamin A. Steer, David
Szakallas, Gabor Szarnyas, Jack Waudby, Mingxi Wu, and Yuchen Zhang. The ldbc
social network benchmark, 2023.

Marcelo Arenas, Pedro Bahamondes, and Julia Stoyanovich. Temporal regular path
queries: Syntax, semantics, and complexity. CoRR, abs/2107.01241, 2021.

Georgia Baltsou, Konstantinos Tsichlas, and Athena Vakali. Local community de-
tection with hints. Appl. Intell., 52(9):9599-9620, 2022.

Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten Hoefler.
Practice of streaming processing of dynamic graphs: Concepts, models, and systems,
2021.

Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer, Michal Pod-
stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. Demystifying graph
databases: Analysis and taxonomy of data organization, system designs, and graph
queries. ACM Comput. Surv., jun 2023. Just Accepted.

Kyoungsoo Bok, Gihoon Kim, Jongtae Lim, and Jaesoo Yoo. Historical graph
management in dynamic environments. Electronics, 9(6), 2020.

Jaewook Byun. Enabling time-centric computation for efficient temporal graph
traversals from multiple sources. IEEFE Transactions on Knowledge and Data Engi-
neering, pages 1-1, 2020.

Jaewook Byun and Daeyoung Kim. Object traceability graph: Applying temporal
graph traversals for efficient object traceability. Expert Systems with Applications,
150:113287, 2020.

Jaewook Byun, Sungpil Woo, and Daeyoung Kim. Chronograph: Enabling tem-
poral graph traversals for efficient information diffusion analysis over time. IEFEFE
Transactions on Knowledge and Data Engineering, 32(3):424-437, 2020.

Diego Caro, M Andrea Rodriguez, Nieves R Brisaboa, and Antonio Farina. Com-
pressed kd-tree for temporal graphs. Knowledge and Information Systems, 2015.

Xiaoshuang Chen, Kai Wang, Xuemin Lin, Wenjie Zhang, Lu Qin, and Ying Zhang.
Efficiently answering reachability and path queries on temporal bipartite graphs.
Proc. VLDB Endow., 14(10):1845-1858, June 2021.

Xiaoying Chen, Chong Zhang, Bin Ge, and Weidong Xiao. Temporal query process-
ing in social network. Journal of Intelligent Information Systems, 49(2):147-166,
2017.

Lukas Christ, Kevin Gomez, Erhard Rahm, and Eric Peukert. Distributed graph
pattern matching on evolving graphs. 2020.

Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Low-latency graph stream-
ing using compressed purely-functional trees. In Proceedings of the J0th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2019, page 918-934, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

Mengsu Ding, Mugiao Yang, and Shimin Chen. Storing and querying large-
scale spatio-temporal graphs with high-throughput edge insertions. arXiv preprint
arXiv:1904.09610, 2019.

23

[20]

[21]

[22]

[23]

[28]

Hakim el Massari, Sajida Mhammedi, Noreddine Gherabi, and Mohammed Nasri.
Virtual OBDA Mechanism Ontop for Answering SPARQL Queries Over Couchbase,
pages 193-205. 01 2022.

Swapnil Gandhi and Yogesh Simmhan. An interval-centric model for distributed
computing over temporal graphs. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE), pages 1129-1140, 2020.

B. Gedik and R. Bordawekar. Disk-based management of interaction graphs. IEFFE
Transactions on Knowledge & Data Engineering, 26(11):2689-2702, nov 2014.

Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
Powergraph: Distributed graph-parallel computation on natural graphs. OSDI'12,
page 17-30. USENIX Association, 2012.

Wentao Han, Kaiwei Li, Shimin Chen, and Wenguang Chen. Auxo: a temporal
graph management system. Big Data Mining and Analytics, 2(1):58-71, 2019.

Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan
Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: A graph engine for
temporal graph analysis. In Proceedings of the Ninth European Conference on Com-
puter Systems, EuroSys "14, New York, NY, USA, 2014. Association for Computing
Machinery.

Thomas Hartmann, Frangois Fouquet, Matthieu Jimenez, Romain Rouvoy, and Yves
Le Traon. Analyzing complex data in motion at scale with temporal graphs. 07 2017.

Jelle Hellings and Yuqing Wu. Stab-Forests: Dynamic Data Structures for Efficient
Temporal Query Processing. In Emilio Mufioz-Velasco, Ana Ozaki, and Martin
Theobald, editors, 27th International Symposium on Temporal Representation and
Reasoning (TIME 2020), volume 178 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 18:1-18:19, Dagstuhl, Germany, 2020. Schloss Dagstuhl—-
Leibniz-Zentrum fiir Informatik.

Haixing Huang, Jinghe Song, Xuelian Lin, Shuai Ma, and Jinpeng Huai. Tgraph:
A temporal graph data management system. In Proceedings of the 25th ACM In-
ternational on Conference on Information and Knowledge Management, CIKM ’16,
page 24692472, New York, NY, USA, 2016. Association for Computing Machinery.

Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. Time-
evolving graph processing at scale. In Proceedings of the fourth international work-
shop on graph data management experiences and systems, pages 1-6, 2016.

Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E. Gonzalez, and Ion
Stoica. TEGRA: Efficient ad-hoc analytics on evolving graphs. In 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 21), pages
337-355. USENIX Association, April 2021.

Xiaoen Ju, Dan Williams, Hani Jamjoom, and Kang G Shin. Version traveler:
Fast and memory-efficient version switching in graph processing systems. In 2016
USENIX Annual Technical Conference (USENIX-ATC 16), pages 523-536, 2016.

Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gémez, and Erhard
Rahm. Analyzing extended property graphs with apache flink. In Proceedings of
the 1st ACM SIGMOD Workshop on Network Data Analytics, NDA ’16, New York,
NY, USA, 2016. Association for Computing Machinery.

Asya Kamsky. Adapting tpc-c benchmark to measure performance of multi-
document transactions in mongodb. Proc. VLDB Endow., 12(12):2254-2262, aug
2019.

Udayan Khurana and Amol Deshpande. Efficient snapshot retrieval over historical
graph data. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 997-1008, 2013.

24

[35]

[48]

[49]

[50]

Udayan Khurana and Amol Deshpande. Storing and analyzing historical graph
data at scale. In Evaggelia Pitoura, Sofian Maabout, Georgia Koutrika, Amélie
Marian, Letizia Tanca, Ioana Manolescu, and Kostas Stefanidis, editors, Proceedings
of the 19th International Conference on Faxtending Database Technology, EDBT
2016, Bordeaux, France, March 15-16, 2016, Bordeaux, France, March 15-16, 2016,
pages 65—76. OpenProceedings.org, 2016.

Andreas Kosmatopoulos, Anastasios Gounaris, and Kostas Tsichlas. Hinode: imple-
menting a vertex-centric modelling approach to maintaining historical graph data.
Computing, 101(12):1885-1908, 2019.

Andreas Kosmatopoulos, Kostas Tsichlas, Anastasios Gounaris, Spyros Sioutas, and
Evaggelia Pitoura. Hinode: an asymptotically space-optimal storage model for his-
torical queries on graphs. Distributed Parallel Databases, 35(3-4):249-285, 2017.

Sudhindra Gopal Krishna, Sridhar Radhakrishnan, Michael Nelson, Amlan Chat-
terjee, and Chandra Shekaran. On compressing time-evolving networks.

Pradeep Kumar and H. Howie Huang. Gjspan class="smallcaps smallercapi-
tal” jraphj/spanjojspan class="smallcaps smallercapital” jnej/span;: A data store
for real-time analytics on evolving graphs. ACM Trans. Storage, 15(4), January
2020.

Alan G. Labouseur, Jeremy Birnbaum, Paul W. Olsen, Sean R. Spillane, Jayadevan
Vijayan, Jeong-Hyon Hwang, and Wook-Shin Han. The g* graph database: effi-
ciently managing large distributed dynamic graphs. Distributed Parallel Databases,
33(4):479-514, 2015.

Sarath Lakshman, Apaar Gupta, Rohan Suri, Scott Lashley, John Liang, Srinath
Duvuru, and Ravi Mayuram. Magma: A high data density storage engine used in
couchbase. Proc. VLDB Endow., 15(12):3496-3508, aug 2022.

Mo Li, Junchang Xin, Zhiqiong Wang, and Huilin Liu. Accelerating minimum
temporal paths query based on dynamic programming. In International Conference
on Advanced Data Mining and Applications, pages 48—-62. Springer, 2019.

Wouter Lightenberg, Yulong Pei, George Fletcher, and Mykola Pechenizkiy. Tink:
A temporal graph analytics library for apache flink. In Companion Proceedings of
the The Web Conference 2018, pages 71-72, 2018.

Soklong Lim, Tyler Coy, Zaixin Lu, Bin Ren, and Xuechen Zhang. Nvgraph: En-
forcing crash consistency of evolving network analytics in nvmm systems. [FEE
Transactions on Parallel and Distributed Systems, 31(6):1255-1269, 2020.

Ziyang Liu, Chong Wang, and Yi Chen. Keyword search on temporal graphs. IEEE
Transactions on Knowledge and Data Engineering, 29(8):1667-1680, 2017.

Tkechukwu Maduako, Monica Wachowicz, and Trevor Hanson. Stvg: an evolutionary
graph framework for analyzing fast-evolving networks. Journal of Big Data, 6(1):1-
24, 2019.

Maria Massri, Philippe Raipin Parvedy, and Pierre Meye. Gdbalive: a temporal
graph database built on top of a columnar data store. Journal of Advances in
Information Technology, 12, 09 2020.

Youshan Miao, Wentao Han, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan
Prabhakaran, Enhong Chen, and Wenguang Chen. Immortalgraph: A system for
storage and analysis of temporal graphs. ACM Trans. Storage, 11(3), jul 2015.

Vera Moffitt and Julia Stoyanovich. Portal: A query language for evolving graphs.
02 2016.

Vera Zaychik Moffitt. Framework for Querying and Analysis of Evolving Graphs.
PhD thesis, 07 2017.

Vera Zaychik Moffitt and Julia Stoyanovich. Towards sequenced semantics for evolv-
ing graphs. In EDBT, pages 446-449, 2017.

25

[52]

[53]

[54]

Jayanta Mondal and Amol Deshpande. Managing large dynamic graphs efficiently.
In Proceedings of the 2012 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’12, page 145-156, New York, NY, USA, 2012. Association for
Computing Machinery.

Mohammad Hossein Namaki, Yinghui Wu, Qi Song, Peng Lin, and Tingjian Ge.
Discovering graph temporal association rules. New York, NY, USA, 2017. Associa-
tion for Computing Machinery.

Michael Nelson, Sridhar Radhakrishnan, and Chandra N. Sekharan. Queryable
compression on time-evolving social networks with streaming. In 2018 IEEFE Inter-
national Conference on Big Data (Big Data), pages 146-151, 2018.

Michael Nelson, Sridhar Radhakrishnan, and Chandra N. Sekharan. Algorithms on
compressed time-evolving graphs. In 2019 IEEE International Conference on Big
Data (Big Data), pages 227-232, 2019.

Peng Ni, Masatoshi Hanai, Wen Jun Tan, and Wentong Cai. Efficient closeness
centrality computation in time-evolving graphs. ASONAM ’19, page 378-385, New
York, NY, USA, 2019. Association for Computing Machinery.

Mohamed Ragab, Riccardo Tommasini, and Sherif Sakr. Benchmarking spark-sql
under alliterative rdf relational storage backends. In QuWeDa@ISWC, 2019.

Shriram Ramesh, Animesh Baranawal, and Yogesh Simmhan. Granite: A dis-
tributed engine for scalable path queries over temporal property graphs. Journal of
Parallel and Distributed Computing, 151:94-111, 2021.

Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, Reynold Cheng, and David W. Che-
ung. Efficient processing of shortest path queries in evolving graph sequences. Infor-
mation Systems, 70:18-31, 2017. Advances in databases and Information Systems.

Christopher Rost, Kevin Gomez, Matthias Taschner, Philip Fritzsche, Lucas Schons,
Lukas Christ, Timo Adameit, Martin Junghanns, and Erhard Rahm. Distributed
temporal graph analytics with gradoop. The VLDB Journal, May 2021.

Christopher Rost, Andreas Thor, and Erhard Rahm. Analyzing temporal graphs
with gradoop. Datenbank-Spektrum, 19(3):199-208, 2019.

Siddhartha Sahu and Semih Salihoglu. Graphsurge: Graph analytics on view col-
lections using differential computation. In Proceedings of the 2021 International
Conference on Management of Data, pages 1518-1530, 2021.

Lucas Sakizloglou, Sona Ghahremani, Matthias Barkowsky, and Holger Giese. In-
cremental execution of temporal graph queries over runtime models with history
and its applications. Software and Systems Modeling, pages 1-41, 2021.

Konstantinos Semertzidis. Storage, Processing and Analysis of Large Evolving
Graphs. PhD thesis, 07 2018.

Konstantinos Semertzidis and Evaggelia Pitoura. Durable graph pattern queries on
historical graphs. In 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), pages 541-552, 2016.

Konstantinos Semertzidis and Evaggelia Pitoura. Top-k durable graph pattern
queries on temporal graphs. IEFEE Transactions on Knowledge and Data Engi-
neering, 31(1):181-194, 2019.

Konstantinos Semertzidis and Evaggelia Pitoura. A hybrid approach to temporal
pattern matching. In 2020 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), pages 384-388, 2020.

Shalini Sharma and Jerry Chou. A survey of computation techniques on time evolv-
ing graphs. International Journal of Big Data Intelligence, 7(1):1-14, 2020.

Alexandros Spitalas, Anastasios Gounaris, Kostas Tsichlas, and Andreas Kos-
matopoulos. Investigation of database models for evolving graphs. In Carlo Combi,

26

[74]

[75]

Johann Eder, and Mark Reynolds, editors, 28th International Symposium on Tempo-
ral Representation and Reasoning, TIME 2021, September 27-29, 2021, Klagenfurt,
Austria, volume 206 of LIPIcs, pages 6:1-6:13. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2021.

Benjamin Steer, Felix Cuadrado, and Richard Clegg. Raphtory: Streaming analysis
of distributed temporal graphs. Future Generation Computer Systems, 102:453-464,
2020.

Manuel Then, Timo Kersten, Stephan Giinnemann, Alfons Kemper, and Thomas
Neumann. Automatic algorithm transformation for efficient multi-snapshot ana-
lytics on temporal graphs. Proceedings of the VLDB Endowment, 10(8):877-888,
2017.

Warut D. Vijitbenjaronk, Jinho Lee, Toyotaro Suzumura, and Gabriel Tanase. Scal-
able time-versioning support for property graph databases. In 2017 IEEE Interna-
tional Conference on Big Data (Big Data), pages 1580-1589, 2017.

H.R. Vyawahare, P.P. Karde, and V.M. Thakare. A hybrid database approach
using graph and relational database. In 2018 International Conference on Research
in Intelligent and Computing in Engineering (RICE), pages 1-4, 2018.

Yishu Wang, Ye Yuan, Yuliang Ma, and Guoren Wang. Time-dependent graphs:
Definitions, applications, and algorithms. Data Science and Engineering, 4(4):352—
366, Dec 2019.

Dong Wen, Yilun Huang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin.
Efficiently answering span-reachability queries in large temporal graphs. In 2020
IEEF 36th International Conference on Data Engineering (ICDE), pages 1153-1164,
2020.

Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, and Yiping Ke. Reacha-
bility and time-based path queries in temporal graphs. In 2016 IEEE 32nd Inter-
national Conference on Data Engineering (ICDE), pages 145-156, 2016.

Michael Yu, Dong Wen, Lu Qin, Ying Zhang, Wenjie Zhang, and Xuemin Lin. On
querying historical k-cores. Proceedings of the VLDB Endowment, 14(11):2033—-2045,
2021.

Aya Zaki, Mahmoud Attia, Doaa Hegazy, and Safaa Amin. Comprehensive survey
on dynamic graph models. International Journal of Advanced Computer Science
and Applications, 7(2):573-582, 2016.

Jingwen Zhao, Yunjun Gao, Gang Chen, and Rui Chen. Towards efficient framework
for time-aware spatial keyword queries on road networks. ACM Trans. Inf. Syst.,
36(3), November 2017.

27

A Appendix

We provide some additional references to the literature that is more distantly related to
historical graph management systems.

A survey of computational techniques on time evolving graphs and the DASH
framework: In [68] they distinguish the Time Evolving Graphs (TEG) from their
aspects on Graph analytics, graph algorithms and the graph framework. For graph
analytics, they focus on graph mining techniques and especially centrality, community
detection, link prediction and rare category detection, targeting mainly at incremental
techniques. Regarding graph algorithms, they focus on where to compute (which portion
of the graph has been updated) and how to compute (which techniques will be used).
Regarding graph frameworks, they distinguish from the platform used to store the data
(e.g., single node, distributed), the programming models used, the communication model
(synchronous/asynchronous) and the data management strategy (e.g., partitioning strat-
egy). Also they state the importance of graph repartitioning as the graph evolves.

DASH: is a distributed, asynchronous, heterogeneous and dynamic event driven frame-
work that they propose to manage time evolving graphs. It takes events as input (e.g.,
addition/removal of edges), and instead of storing snapshots it reconstructs the graph
while computing a query (loading only necessary data to decrease memory usage). This
creates an overhead at query execution but it overlaps with the computation time while
doing incremental execution. They also dynamically break jobs into tasks to be computed
independently. The framework is divided in smaller components to deal with different
system requirements independently. Their query engine follows the publish/subscribe
model (pull-based) and it also supports work stealing between workers.

InTempo: INcremental execution of TEMPOral graph queries over runtime
models with history and its applications In [63], they introduce a language that
supports temporal queries, a querying scheme for historical runtime models, temporal
logic in queries and an implementation based on the Eclipse Modeling Framework for two
usecases. The model receives point events, like the creation/deletion of nodes. InTempo
constructs a GDN for each temporal graph query, it executes it over the RTM* and
prunes RT M over elements that will not be involved in future query executions. It also
supports postponing a decision if the query can be satisfied in the future. It supports
self-adaption on behavior or structure. The first usecase is for a Smart Healthcare System
(SHS) where they apply the temporal requirements of medical guidelines. The second
usecase is based on a social network.

Time-Dependent Graphs: Definitions, Applications, and Algorithms In [74]
they discuss the literature on evolving graphs. Quoting: ”Many problems, which can be
solved in a linear time or a polynomial time on static graphs, become NP-complete or
NP-hard problems on time-dependent graphs, such as the connected component prob-
lem.”. Two types of time-dependent graphs are discerned: time instance/interval. As
for models, the consider discrete and continuous time dependent graphs. The former
can be with labels for edges or snapshots or by transforming the graph into a static one
by building copies of vertices. The latter can be represented with either an index func-
tion, called presence function, or they can be treated as flow-dependent graphs. They
mention three types of shortest path problems: earliest arrival path problem, latest de-
parture path problem and shortest duration path problem. They also discuss strong
and weak connectivity and spanning trees in time-dependent graph. They also discuss
single-criteria/ multi-criteria route planning, time-dependent social analysis and time-
dependent subgraph problems (matching, mining). They distinguish two main directions
in systems, snapshot-based and traversal-based, arguing that the former are not suitable

28

. . Figure . . Figure
Relation code Relation | e Relation code Relation IBure
illustration illustration
€10—0 0—0 €2 e
e; before e 1 > 20=—0 0—0 €|
1 1 2 s f & 8 e, before e S LS 7
o—oe; o Oe() €]
ans €1 0= 2 ans €eo—0
2 e, overlaps e, 195, s P 9 e, ovetlaps e 57 f
[dle o} €0——0
3 e, starts e, o—0 fe 10 e, starts e, SOS—Q fr e
515 fo 152 f) -
. €10———0 . €,0———0
4 e, finishes e, 51 o—0 e 11 e, finishes ¢; © 0-—0/:1
2 fih st il
€] O=——CO——0 & €0—00—0 €]
2| meets e 4 2 12 m
5 e; meets e; ST AS: [e; meets e 2 fisi fi
. €] Om——0 . €3 OO
6 e, contains e, S| o=—0 & 13 e, contains ¢, s, 0—o0 f e
£ fh sonl
€,0———0
7 e equals e o————0e
1€q 2 58 fifh

Figure 3: Presentation of ALLEN’s 13 time-dependent relations.[74].

for some temporal queries like traversal-based queries. Finally, they list some open is-
sues for time-dependent graphs, such as the need for generative models, metrics for
time-dependent networks and dynamical systems for time-dependent networks (instead
of snapshot-based).

GTAR: temporal graph association rules In [53] they propose graph temporal as-
sociation rules (GTAR) so as to discover complex events and patterns using graph mining
algorithms. The temporal graph model investigated maintains timestamps instead of in-
tervals, but association rules are being discovered over a time window. They also define
a discovery graph mining algorithm (DisGTAR) to find association rules implemented in
Java.

OTG In [12], they create an Object Traceability Graph (OTG) for the object traceabil-
ity problem by using temporal graph traversals. They use the EPCIS standard for object
traceability and apply it to Chronograph (a persistent version that uses MongoDB) so
as to take advantage of temporal graph traversals and not execute expensive recursive
queries. To accomplish this, they create a conversion model for the EPICS system by
creating mapping rules from the EPICS document to temporal graphs elements.

TRPQ language In [6] they propose a general-purpose query language for interval-
timestamped temporal property graphs focused on temporal regular path queries by
extending the MATCH operator. It is implemented in Rust by using the Itertools library.
Their models are being evaluated over two principles, snapshot reducibility and extended
snapshot reducibility. They consider temporal and structural navigation, while queries
are being evaluated in polynomial time. Temporal navigation (for next or previous
timestamps) can be considered with the PREV and NEXT operators, while structural
navigation (for moving from node to node over edges) is accomplished with the BWD
and FWD operators.

Temporal Social Network In [I6] they focus on storing indexing and querying tem-
poral social networks. They implemented the algorithms on Java and experimented with
KONECT dataset. They propose a storage model and two index structures, TUR-tree
and TUA-tree, so as to efficiently answer three kind of temporal queries that they inves-
tigate: Friends of Interesting Activities (FIA), Users of Time Filter (UTF) and Group
of Users with Relationship Duration (GURD). They have two types of nodes, users and

29

activities (to denote events) as well as relationships between users or user and events as-
sociated with intervals or timestamps when a user participate in an activity. Users and
activities are stored separately, and users are clustered into pages on disk. For efficient
querying, they propose two index structures, one for Temporal Users and Relationships
(TUR-tree) and one for Temporal Users and Activities (TUA-tree). The former needs
to deal with time intervals that are associated both with users and relationships propos-
ing the MVB-tree. The latter uses a B*-tree and Bloom Filters, since activities are
timestamped.

Zooming Out an Evolving Graph In [3] they discuss zoom operations on tempo-
ral graphs, modifying the resolution based on the analysis needs. They propose two
operators, attribute-based zoom (aZoom) and temporal window-based zoom (wZoom)
implemented with dataflow operations to experiment over Portal’s TGraph models (dif-
ferent implementation for each model). The former modifies structural resolution (e.g.,
from nodes to neighborhoods) by computing new nodes for every occurrence of a certain
given pattern. The latter, modifies the temporal resolution (e.g., hours vs days).

Compressing and querying compressed evolving graphs In [38] they propose a
way to compress evolving graphs providing the ability to query them without decom-
pression. Due to the nature of evolving graphs, data may not fit in main memory for
analysis, which justifies compression. They exploit row-by-row compression for node data
separately using CSR and CBT data structures. The graph is represented based on the
neighbors of each node over time. Time is a stream of 0 and 1, indicating changes to the
neighborhood of a node from the previous timestamp. They experiment in combining
CSR, CBT and the bitpacking method. In [55], they focused on querying the compressed
graph without decompressing it. More specifically, they focused on earliest arrival path
query and time-evolving transitive closure, the former solved both on a point, incremen-
tally or in a time-window. One disadvantage of all the previous algorithms, is that the
compression is differential and the algorithms must be executed incrementally from time
0 independently of the query start time. In addition, in [54] they focus on querable com-
pression on time-evolving social networks with streaming (meaning they can add/remove
nodes/edges without decompression) based on previous techniques.

In [14], they proposed the compressed kd-tree (ck? — tree) to store temporal graphs
where all operations can be performed using orthogonal range search. They also discuss
different data structures for temporal graphs like EdgeLog, EveLog or TGCSA and they
compare them. They divide the temporal graphs to point-contact or interval graphs
and they also divide them based on the extent of their dynamics to incremental graphs,
decremental and partially dynamic.

A.1 Solutions for Particular Temporal Problems

In [65] - (analyzed in more detail in his PhD thesis [64]) they discuss pattern matching
in node-labeled temporal graphs. They created and implemented an algorithm that
compactly finds patterns that exist continuous or collectively across different snapshots.
In [67] they propose an approach to detect patterns that use an edge-based representation
of temporal graph while they use filtering based both on time and structure. In [66] they
create algorithms for top-k graph pattern matching on temporal graph using the previous
algorithm.

In [59] they discuss how to store and query evolving graphs with respect to shortest path
queries. In [71] they present SAMS; an approach for automatic algorithm transformation
so as to execute the same algorithm concurrently in multiple snapshots. They also provide
an implementation in C4++ by storing the graph in CSR format.

In [77] they propose an index-based solution (PHC-index) to find historical k-cores in a
temporal graph. In [75], the same authors define the span-reachability model for temporal

30

graphs, where in contrast to time-respecting paths models, they do not require paths to
follow a non-decreasing order but to be in a small time-interval close to each other. They
also propose ways to identify relationships between entities and implemented algorithms
to answer the reachability problem in C++.

In [27] they create internal memory temporal join algorithms focused on temporal skewed
datasets with the use of stab-forest index.

In [I5] they discuss and find algorithms for answering reachability and path queries on
temporal bipartite graphs by creating a TBP-Index that is based on 2-hop labeling. In
[76] they create TopChain as an indexing method for answering reachability and time-
based path queries on temporal graphs by transforming the temporal graph to DAG and
decomposing it into chains and then ranking them.

In [56] they discuss the closeness centrality problem on evolving graphs and design algo-
rithms to compute them (evolving graphs are modeled as a sequence of snapshots)

In [79] they propose the TG-index to deal with time-aware spatial keyword (TSK) and
top-k queries (caring about both distance/time to reach a POI and text similarity with
the query) focusing on applying it to road networks. To optimize the queries, they index
data to both textual and temporal information and employed pruning algorithms.

In [45] they propose keyword search on temporal graphs, using a path iterator to find
the best path between two nodes (according to three ranking factors) and furthermore
develop top-k queries. They also create a query syntax that follows the syntax of TSQL2.

In [42], they design dynamic programming algorithms to solve temporal path queries,
and compare them to one-pass algorithms (they use intervals while one-pass algorithms
use points in time). More specifically, they focus on shortest (SDP) and fastest (FDP)
path algorithms and restricted minimum temporal paths (REDP and RLDP) (restricted-
earliest arrival and latest-departure).

In [2] they do proximity based community detection on temporal graphs by converting
the temporal graph to static graph and apply the Louvain algorithm for community
detection.

31

	Introduction
	A Survey on Existing Systems for Historical Graph Management

	Different Architectures for Historical Graph Management Systems
	Different Approaches for MAGMA

	OLTP-focused with Secondary OLAP Functionality
	RDBMS-like
	Use NewSQL DB

	OLAP-focused with Added OLTP Functionality
	Master-Slave
	Master-Master

	Hybrid
	OLTP buffer + Store and OLAP System
	Discussing Different Threshold Choices

	Graph Databases
	Using an Existing Graph Database
	Extend an Existing Graph Database
	Create a new Graph Database

	The MAGMA Approach
	Queries on MAGMA
	The Scientific/Technical Plan
	Appendix
	Solutions for Particular Temporal Problems

