HFRI

Hellenic Foundation for
Research & Innovation

TEMPO

Management and Processing of Temporal Networks

H.F.R.I. Project No. 03480

D1.4: Second Year Project Report

Computer Engineering & Informatics Department
University of Patras

Greece
20/07,/2024

Second Year Project Report of TEMPO

Kostas Christopoulos (PhD student), Alexandros Spitalas (PhD student), Kostas Tsichlas (PI)
July 20, 2024

Abstract
This document discusses the progress during the second year of the project. First, we
report on the deliverables and milestones, as well as on the risks and deviations from the initial
plan. Then, we discuss the work performed within each WorkPackage (WP) and report on
dissemination activities.

1 Introduction

In the second year of the project, significant progress was made towards the intended goals. There
was no change in the research team compared to the first year of the project. In particular, the
research team consists of:

1. Konstantinos Tsichlas: Associate Professor at the University of Patras (Principal Investigator).
He has a global view of the project and participates in all aspects of TEMPO.

2. Spyros Sioutas: Professor at the University of Patras. His main contribution is the provision
of guidance related to graph-distributed databases.

3. Konstantinos Christopoulos: PhD student. He focuses on community detection (WP4) and
outlier detection (WP5).

4. Alexandros Spitalas: PhD student. He focuses on the implementation of the historical graph
management system (WP2) as well as on the implementation of the query engine for transac-
tional and analytic queries (WP3).

5. Anastasion Gounaris: Professor in the Informatics Department of Aristotle University of Thes-
saloniki. His area of expertise is on distributed systems (among others), and he provided
guidance related to query engines.

6. Apostolos Papadopoulos: Associate Professor in the Informatics Department of Aristotle Uni-
versity of Thessaloniki. His area of expertise is on graph databases (among others), and he
provided guidance related to OLAP queries and related technologies (SPARK).

Overall, one deliverable (report) was prepared in the 2nd year of the project, while considerable
progress in all WPs was achieved concerning the rest of the deliverables (demonstrations). In the
remainder of this section, we give an overview of the progress in terms of deliverable preparation and
milestone achievements. We also include a discussion regarding risks and deviations from the plan.
In Section [2] we provide more details about the technical work in each WP. Finally, in Section [3] we
provide an overview of the dissemination activities that took place in the second year of the project.

1.1 Deliverables
In the second year of the project, the following three deliverables were planned:

D1.4 2nd Year Project Report: The current document contains a description of the progress of
TEMPO during the second year.

D2.1 Initial Version of the MAGMA System Prototype: This was intended as a first check-
point highlighting the progress of the storage and maintenance mechanisms for the historical
graph.

D3.1 Initial Version of the Query Engine Module: Similarly, this was intended as a first
checkpoint highlighting the progress of the engine that will support a set of queries on the
historical graph.

1.2 Milestones

There were two milestones anticipated for the second year: MS2 (planned at month 18) MS3 (planned
at month 24). Both milestones are connected with deliverables D2.1 and D3.1 respectively. As
discussed and thoroughly justified in the 1st Year Project Report document, there was a 6 month
delay in achieving milestone MS1 that also affected the rest of the milestones. Milestone MS2 was
affected the most since we had to make extensive adjustments in our scientific approach regarding
the MAGMA system. Thus, milestone MS2 was achieved by M24 (a delay of 6 months). On the
other hand, MS3 was achieved by the end of the 2nd year (M24) as anticipated. In we discuss
and justify these delays while in Section [2| we thoroughly discuss the progress for each WP. The
progress related to milestones MS2 and MS3 are discussed in and respectively.

1.3 Risks and Deviation from the Plan

In the second year of the project, there is considerable progress in all WPs. Our main deviation
from the initial plan is related to the system implementation (WP2). As thoroughly discussed and
justified in the 1st Year Project Report, we decided instead of starting from scratch, to build on
the open-source graph database JanusGraph to support efficiently the maintenance of the history
of the graph. At the same time, we also decided to change the query engine Gremlin to support
time-related queries on the graph database. On the one hand, we needed to familiarize ourselves
with JanusGraph, which took us some time since we needed to see how JanusGraph combined with
Apache Cassandra as the storage mechanism, could maintain historical graphs without making any
changes to it (see . This resulted in achieving milestone MS2 on month 24. On the other hand,
Gremlin allowed us to define and develop new queries pretty fast, thus easily achieving milestone

MS3 (see [2.3).

2 Summary of Work per WP

A detailed report for each work-package follows.

2.1 WP1: Project Management - Result Dissemination

The main activity that took place was the preparation of the 2nd Year Project Report as well as 3
presentations at international conferences, as will be detailed in Section [3]

2.2 WP2: MAGMA System Implementation

During the 2nd year of the project, we familiarized ourselves with JanusGraph by studying its
architecture and creating prototypes of the HiNode implementation using JanusGraph. While our
ultimate goal is to modify JanusGraph to support the HiNode model, we began by implementing the
HiNode model with JanusGraph combined with Apache Cassandra as the storage machine, using
time as a simple property. This allowed us to experiment with JanusGraph and HiNode, using
JanusGraph as a middleware instead of directly interacting with the storage model. However, we
recognize that this approach is generally inefficient and not widely adoptable. Therefore, we plan
to modify the core components of the JanusGraph API to integrate the HiNode model with the
storage layer. This involves changing both the JanusGraph API to the storage layer (to follow the
HiNode approach) and the JanusGraph API to the query language (to support time-constrained
queries). Additionally, we need to add appropriate indexes in the index layer to efficiently support
time queries.

In [I4] we proposed a new implementation of the HiNode system using the Distributed-SQL
Database CockroachDB. We tested this implementation in terms of a new algorithm to query His-
torical Degree Distribution in a node-centric Historical Graph. We tested HiNode in a distributed

SQL database since it is best suited for applications where data reliability is crucial. In addition,
the new algorithm distributes query tasks and minimizes communication costs, making it ideal for
applications where I/Os are expensive, CPU-intensive operations that shouldn’t run locally, memory
specifications are strict, or distributed machines have significantly more performance than the local
machine. The goal of this work was for our team to get a grasp on how HiNode can be incorporated
into a distributed SQL database and have a future reference for comparison within the JanusGraph
environment.

In addition, we are preparing a journal submission that extends previous results on MongoDB, is
also implements event-based transactions for a streaming environment and finally introduces a mech-
anism to create interval-based historical graph datasets that will be used to test our system. In sum-
mary, in this work, we review previous research on historical graph databases and storage systems,
we introduce a way to generate historical graph datasets and we propose an enhanced methodology
for a space-optimal vertex-centric model with MongoDB. This approach prioritizes space optimiza-
tions while managing to achieve notable advancements in the execution time of global queries, known
for their complexity within entity-centric frameworks. Extensive experimentation has been done,
employing snapshot-based and interval-based datasets generated with the use of the LDBC SNB
generator, to validate our claims of achieving significant speed enhancements. Consequently, our
approach enables the execution of more resource-intensive queries with improved efficiency, reduced
client involvement, and less memory requirements.

Finally, we have made progress in partitioning Historical Graphs. Initially, we reviewed the exist-
ing partitioning methods for historical graphs and state-of-the-art techniques for static or dynamic
graphs. Subsequently, we developed algorithms that are tailored to node-centric historical graphs.
During our review, we discovered limited techniques for partitioning historical graphs, especially
for vertex-centric historical graphs. It is challenging to directly apply state-of-the-art techniques
for dynamic or static graphs to historical graphs. Indeed, we observed such an approach in one re-
search study that has the extra overhead of first transforming the historical graph to a static graph.
With these limitations in mind, we devised two algorithms suitable for a vertex-centric system. The
first is an incremental partitioning algorithm designed to partition data as they are inserted into
the database, while the second is a static partitioning algorithm that yields superior results but is
more suitable for static historical graph databases. Finally, we conducted simulations to test these
algorithms against the conventional hash-based approach, which has been the prevalent method for
partitioning historical graphs thus far.

2.3 WP3: Complex Data Analytic Queries

Regarding queries, our final goal (which extends the goals of our initial plan) is to support both On-
Line Transaction Processing (OLTP) and OnLine Analytical Processing (OLAP) historical queries
in JanusGraph. These queries must be implemented in Gremlin as it is the main query language
used in Janusgraph. Gremlin is a graph traversal query language as well as a graph traversal
machine, designed and developed by Apache TinkerPop. It has been developed so that Gremlin
traversal machine can be supported by a wide range of graph storage frameworks, including Janus-
Graph, Neo4j, Hadoop, and others. In the second year of the project, we first defined the semantics
of the fundamental historical operations, and then we proposed the basic OLTP queries that a
historical graph system should support. The following fundamental operations for inserting new
nodes/edges/properties must be supported by the system.

InsertNode(v, start,end) It creates a new empty historical node v with a valid interval [start, end)].
If start = —oo, then the node is valid for all time instances up to end. If end = +oo, then the
node is valid for all time instances after start. The same holds for all other operations as well, with
respect to the use of the special symbols toc.

InsertEdge(e = (u,v), start,end) It creates a new edge e with a valid interval [start, end], which
must be contained in the valid interval of both nodes w and v. The same check (although not
mentioned) holds for the rest of the operations.

InsertProperty(p, f,val, start,end) It creates a new property f in the historical object p (node
or edge) with value val and a valid interval [start, end)].

The following operations are used to add or change the valid interval of a node/edge and to add
values to an existing property.

ExtendNodeVI(v, start,end) Node v has its valid interval extended by [start,end]. In case of
intersection, we simply take the union.

ExtendEdgeVI(e, start,end) Edge e has its valid interval extended by [start,end]. In case of
intersection, we simply take the union.

ExtendProperty(p, f,val, start,end) A new value val is added to the property f of the historical
object p, such that val is valid in the time interval [start, end]. In case of intersections with other val-
ues of property f they are overwritten by appropriately managing the time intervals in the list of p. f.

The following operations are used to remove historical information from the historical graph.

ShrinkNodeVI(v, start,end) Node v has its valid interval shrunk since it is invalidated in the
time range [start, end]. This means that all properties of v and edges adjacent to v must be checked
so that their valid intervals are still legitimate. In case they are not, then their valid intervals are
shrunk as well by using other appropriate operations.

ShrinkEdgeVI(e, start,end) Edge e has its valid interval shrunk, since it is invalidated in the
time range [start,end]. This means that all properties of e must be checked so that their valid
intervals are still legitimate. In case they are not, then their valid intervals are shrunk as well, by
using other appropriate operations.

ShrinkPropertyVI(p, f, start,end) The valid interval of property f of the historical object p is
shrunk, since it is invalidated in the time range [start, end).

Using the metaprogramming provided by the Groovy language, a modification or addition of
methods to a class or interface can be executed to Gremlin. Thus, we developed the following meth-
ods in Gremlin (that implement the previously mentioned operations) using the Groovy metapro-
gramming. In the current implementation, these methods need to be imported into Gremlin so that
they can be supported out of the box. These methods are shown in Table [I] and they can be used
by just adding a patch to Gremlin during its initialization phase.

lifetime(start, end) Stores as property of the vertex/edge its active period
vid(value) Stores as property of the vertex the given id

insertE(label, sourceid, targetid) Inserts a labeled edge between the given vertices

weight (value) Stores as property of the edge the given value

addA (name, value , start, end) Stores an attribute as a property of the vertex and its active

period as meta-properties

the specified time

deleteV(vid, end) Sets the termination of the vertex with the specified vid at

deleteE(sourceid, targetid, end) Sets the termination of the defined edge at the defined time

Table 1: Custom Gremlin methods.

Historical OLAP queries have not yet been implemented in Gremlin, but they can be executed
either using the Janusgraph internal API, or the Gremlin API, but in both cases the user must
change the queries accordingly.

2.4 WP4: Local Community Detection

During the 2nd year of the project our research efforts were directed toward developing new variants
of an existing local community detection algorithm. The objective was to enhance the detection of

single communities around significant seed nodes, ensuring faster and more accurate subgroup iden-
tification compared to global methods. Extensive experiments were conducted on both synthetic and
real datasets. The new methods demonstrated superior performance over a baseline algorithm, three
state-of-the-art local community detection methods, and one global community detection method.
These results have been compiled into a research paper, highlighting the significant advancements

in local community detection and its applications in network analysis.
In the third year of the project, the focus will be on developing a distributed algorithm in Spark,

based on [2], for community detection within specified query time intervals in historical graphs.
The method will identify communities by evaluating the contributions of each edge/node during the
user-defined time interval. This novel approach, not previously addressed in the literature, aims to
enhance the understanding of evolving connections in static networks with temporal dimensions. As
soon as a working version of the system is available, these algorithms will be implemented on this
system with the help of Gremlin.

2.5 WP5: Outlier Detection

This year, recent developments in community-based anomaly detection in dynamic networks were
comprehensively examined. An established algorithm for dynamic local community detection was
introduced, aimed at identifying anomalies based on community evolution over time. Preliminary

experimental findings using synthetic datasets were provided to support the study.
In the third year of the project, the focus will be on developing a distributed algorithm in Spark

for anomaly detection in dynamic networks. The algorithm will analyze static aggregate community
detection within specified query time intervals in historical graphs, evaluating the contributions of
each edge/node during the user-defined time interval. As soon as a working version of the system is
available, these algorithms will be implemented on this system with the help of Gremlin.

3 Publications and Other Dissemination Material

There are eight publications (six conferences and two journals) from the research work conducted
until July 2024:

1. State-of-the-art in Community Detection in Temporal Networks [§] that contains the
work within deliverable D4.1. (1st Year)

2. MAGMA: Proposing a Massive Historical Graph Management System [13] that
contains part of the survey within deliverable D1.2 as well as a preliminary version of the
system architecture of MAGMA. (Ist Year)

3. Dynamic Local Community Detection with Anchors [4] that contains a streaming
algorithm for local community detection by using anchors instead of seeds. (st Year)

4. Local Community Detection: A survey [5] that contains a survey on local community
detection algorithms based partially on deliverable D4.1. Note that no such stand-alone survey
existed for the problem of local community detection. (st Year)

5. Local Community Detection in Graph Streams with Anchors [J] that contains ex-

tended research on local community detection in a streaming environment based on [4]. (Ist
Year)

6. Adopting Different Strategies for Improving Local Community Detection: A Com-
parative Study [3] that introduce new variants of an existing local community detection
algorithm that uncover a single community. (2nd Year)

7. Local Community-Based Anomaly Detection in Graph Streams [I] that introduces an
established algorithm for dynamic local community detection, aimed at identifying anomalies
based on community evolution over time. (2nd Year)

8. Degree Distribution Optimization in Historical Graphs [14] that builds HiNode model
on top of CockroachDB, a Distributed SQL database, for more resilience of data, and also

introduces a new space-efficient algorithm for degree distribution query in historical graphs.
(2nd Year)

References

[1] Local Community-Based Anomaly Detection in Graph Streams. Konstantinos
Christopoulos, and Konstantinos Tsichlas. In Proc. of the 20th International Conference on
Artificial Intelligence Applications and Innovations, 2024.

[2] High quality, scalable and parallel community detection for large real graphs. Prat-
Pérez, Arnau, David Dominguez-Sal, and Josep-Lluis Larriba-Pey. In Proc. of the 23rd interna-
tional conference on World wide web, 2015.

[3] Adopting Different Strategies for Improving Local Community Detection: A Com-
parative Study. Konstantinos Christopoulos, and Konstantinos Tsichlas. In Proc. of the 12th
Intern. Conference on Complex Networks and their Applications, 2023.

[4] Dynamic Local Community Detection with Anchors. G. Baltsou, K. Christopoulos and
K. Tsichlas. In Proc. of the 11th Intern. Conference on Complex Networks and their Applications,
2022.

[5] Local Community Detection: A survey. G. Baltsou, K. Christopoulos and K. Tsichlas.
IEEE ACCESS, vol. 10, pp. 110701-110726, 2022.

[6] Local community detection with hints. G. Baltsou, K. Tsichlas and A. Vakali. Applied
Intelligence,doi:10.1007 /s10489-021-02946-7, 2022.

[7] Dynamic Community Detection with Anchors (Extended Abstract) G. Baltsou and K.
Tsichlas. In Proc. of the 10th Intern. Conference on Complex Networks and their Applications,
2021.

[8] State-of-the-art in Community Detection in Temporal Networks. K. Christopoulos and
K. Tsichlas. In Proc. of the 18th International Conference on Artificial Intelligence, Applications,
and Innovations (AIAI) - Mining Humanistic Data Workshop (MHDW), 2022.

[9] Local Community Detection in Graph Streams with Anchors. K. Christopoulos, G.
Baltsou and K. Tsichlas. Information, 14(6): 332, 2023.

[10] HiNode: An Asymptotically Space-Optimal Storage Model for Historical Queries
on Graphs. A. Kosmatopoulos, K. Tsichlas, A. Gounaris, S. Sioutas and E. Pitoura. Distributed
and Parallel Databases, 35(3-4):249-285, 2017.

[11] Hinode: Implementing a Vertex-Centric Modelling Approach to Maintaining His-
torical Graph Data. A. Kosmatopoulos, A. Gounaris and K. Tsichlas. Computing, pp. 1-24,
2019.

[12] Investigation of Database Models for Evolving Graphs. A. Spitalas, A. Gounaris, A.
Kosmatopoulos, K. Tsichlas. In proc. of the 28th International Symposium on Temporal Repre-
sentation and Reasoning(TIME), pp. 6:1-6:13, 2021.

[13] MAGMA: Proposing a Massive Historical Graph Management System. A. Spitalas
and K. Tsichlas. In Proc. of the 7th International Symposium on Algorithmic Aspects of Cloud
Computing ALGOCLOUD, pp. 42-57, 2022.

[14] Degree Distribution Optimization in Historical Graphs. A. Spitalas, Charilaos Kapele-
tiotis, and K. Tsichlas. Submitted to the 9th International Symposium on Algorithmic Aspects of
Cloud Computing ALGOCLOUD.

	Introduction
	Deliverables
	Milestones
	Risks and Deviation from the Plan

	Summary of Work per WP
	WP1: Project Management - Result Dissemination
	WP2: MAGMA System Implementation
	WP3: Complex Data Analytic Queries
	WP4: Local Community Detection
	WP5: Outlier Detection

	Publications and Other Dissemination Material

