
TEMPO
Management and Processing of Temporal Networks

H.F.R.I. Project No. 03480

D4.1: State of the Art in Temporal Community Detection

Computer Engineering & Informatics Department
University of Patras

Greece
01/12/2022



State of the Art in Temporal Community Detection

Kostas Christopoulos and Kostas Tsichlas

December 01, 2022

Abstract

Community detection is a prominent process on networks and has been extensively stud-
ied on static networks the last 25 years. This problem concerns the structural partitioning of
networks into classes of nodes that are more densely connected when compared to the rest of
the network. However, a plethora of real-world networks are highly dynamic, in the sense that
entities (nodes) as well as relations between them (edges) constantly change. As a result, many
solutions have also been applied in dynamic/temporal networks under various assumptions con-
cerning the modeling of time as well as the emerging communities. The problem becomes quite
harder when the notion of time is introduced, since various unseen problems in the static case
arise, like the identity problem. In the last few years, a few surveys have been conducted re-
garding community detection in time-evolving networks. In this survey, our objective is to give
a rather condensed but up-to-date overview, when compared to previous surveys, of the current
state-of-the-art regarding community detection in temporal networks. We also extend the pre-
vious classification of the algorithmic approaches for the problem by discerning between global
and local dynamic community detection. The former aims at identifying the evolution of all
communities and the latter aims at identifying the evolution of a partition around a set of seed
nodes. Moreover, we also discuss community detection methods tailored to distributed systems
that can handle massive graphs.

Keywords: Temporal Graphs, Community Detection

1 Introduction

Networks are widely used as a method for analyzing data in many scientific fields, such as social
sciences, transportation and biology. The process of community detection (henceforth also referred
as CD) that has its origins in graph partitioning, is concerned with node intra-connectivity and its
goal is to identify highly linked groups (communities) of nodes. For example, finding clusters of
users in social networks and functional protein complexes in bioinformatics networks are two widely
used applications of this problem.

In general, a static network is represented as G = (V,E), where V is the set of vertices (entities)
and E is the set of edges (interactions/relations between entities). An edge can be directed, such
as the connection between two people where one sends an email to another or undirected, such
as the connection between two collaborating peers. Lastly, edges among nodes can be associated
with weights (e.g., frequency of interactions) or nodes can be associated to weights (e.g., specific
properties of nodes). In many cases, real-world networks are dynamic, in the sense that new edges or
nodes appear and existing edges or nodes disappear. As a result, the communities themselves change
because of the evolution of the network. The appearance of a new community, the disappearance or
the split of an existing community, are examples of changes in the community structure.

Generally, the representation of a temporal network can either be based on a sequence of static
graphs (snapshots) possibly with logs between them or as a network with time annotations on
its nodes/edges that represent its time evolution. The former approach requires, among others, the
specification of the time window that defines the time instances of snapshot construction. The latter,
is related to events, like edge/node insertion or deletion or their existence interval. The notion of
a time annotation may have different aspects/interpretations depending on the application. The
following three aspects have been used in the literature [60]:

1. Point Networks: every link among two vertices x and y, which has been created at certain
time t, can be represented as a triplet e = (x, y, t).

1



2. Time Interval Networks: the time-interval connection of two nodes is represented as a quadru-
plet e = (x, y, t,∆t). ∆t is the duration of the link between the vertices x and y.

3. Incremental Networks: edges/nodes can only be added and deletions are forbidden.

It is worth mentioning that multilayer networks [47] can be used for dynamic community detection
as well. In particular, a multilayer network is a network made of multiple networks, called layers,
where each layer has the same number of nodes, but different edge connections. The multilayer
network model is commonly employed in the study of temporal networks, in which each snapshot is
represented as a layer and all layers are interconnected based on their time relationship.

Working with big data in a centralized system e.g., personal computer, is very difficult. Indeed,
dealing with networks that consist of billions/trillions entities and edges is rather impossible in a
single system. For instance, the number of Facebook active users worldwide is more than 2.6 billions.
Consequently, as the data are becoming bigger, the need for computing power is also increasing. One
potential issue is the scaling-up process’s limitation. At some point, by providing more resources to
the server will not improve analogously its performance. Another disadvantage is that the server
acts as a single point of failure. As a result, if the server fails, the entire service goes down.

To deal with these issues, centralized systems are shifted to distributed, decentralized systems
e.g., a peer to peer network. An apparent advantage of adopting a distributed system is eradicating
the single point of failure compared to centralized computing. For instance, a peer can fail while
the service is still available. This means that other peers can inform the requesting entities that a
particular peer failed and/or take over the task of the failed peer. One more advantage of utilizing
distributed systems is that we can add extra computational resources to the entities in the system
in order to scale-up and/or new entities in order to provide new services in the system.

In the last few years, many surveys in the community detection field in temporal networks have
been published. These are discussed briefly in Section 2. The basic notions on temporal networks
are discussed in Section 3. The main contribution of this report is in Section 4, which can be
summarized as follows: 1) we provide an updated overview of the current state-of-the-art methods
for CD in temporal networks, since the last years there are quite a few new related results, and 2)
we further classify the approaches in global and local, distributed and non-distributed community
detection methods. The local CD concerns the discussion on new methods related as to how a
community around a given set of nodes evolves in time. This approach is appropriate in cases where
one is not interested in discovering all communities, leading to large efficiency and effectiveness gains.
Furthermore, commonly used datasets in the related literature are presented in Section 5. Finally,
we conclude in Section 6.

2 Related Work

In this section we discuss existing surveys on CD in temporal networks. In [12], a general classification
of methods is proposed into two classes: 1) Online (real time, incremental detection) and 2) Offline
(prior knowledge of network changes). Similarly, in [42], authors identify the same two classes but
they focus on online approaches dividing them into two sub-classes: 1) Temporal Smoothness, where
at each snapshot a static CD algorithm is run from scratch and 2) Dynamic Update, where the
communities are updated based on the differences of two consecutive snapshots.

Two very interesting surveys are [79, 22], where the dynamic CD algorithms have been classified
based on the strategy they use for detecting meaningfull evolving communities. They propose three
classes of approaches: 1) Instant - optimal, where the algorithms detect communities from scratch at
each snapshot and then match them between consecutive snapshots, 2) Temporal Trade-off, where
the algorithms detect communities comparing the topology of two consecutive snapshots and 3)
Cross-Time, where the algorithms discover communities using the information of all snapshots.
In the same manner, in [6], the authors identify three similar categories as well: 1) Two-Stage
methods that detect the communities from scratch at each snapshot and then match them across
different snapshots, 2) Evolutionary Clustering that detect communities based on the changes in
the topology between two consecutive snapshots and 3) Coupling Graph that creates an aggregate
network containing all snapshots and then uses a static CD algorithm.

In [26] the authors classified the dynamic CD algorithms into four classes: 1) Independent Detec-
tion, where the communities are detected from scratch at each snapshot and then they are matched

2



among consecutive snapshots, 2) Dependent Detection, where communities are identified based on
the changes of the topology between two consecutive snapshots, 3) Simultaneous Detection, where
communities are detected by using the information from all snapshots and 4) Dynamic Detection,
where the communities are updated based on the network updates. Additionally, in [36] four classes
of evolving clustering methods are provided that are similar to the preceding classification: 1)
Sequential mapping-driven, 2) Temporal smoothing-driven, 3) Milestone detection-driven and 4) In-
cremental adaptation-driven.

In [16], a survey is conducted exclusively for incremental (online) CD methods in temporal
networks. The proposed classification contains two subcategories of incremental methods: 1) Com-
munity Detection in Fully Temporal Networks, where insertions and deletions of nodes and edges are
permitted and 2) Community Detection in Growing Temporal Networks, where only insertions of
nodes and edges are permitted. Authors in [9], in order to deal with the problem of local community
detection, implement and employ a number of existing local community detection algorithms in
dynamic networks. The results from the experiments, which are conducted using the LFR synthetic
dynamic network generator, help to analyze the weaknesses and strengths of the existing algorithms
and subsequently to develop an efficient algorithm. The most recent survey in local community
detection in both static and dynamic networks is described in [10]. Among others, authors pro-
pose useful tools (GUIs or scripting/programming languages) that are used in the detection of local
communities.

Finally, regarding the distributed systems, we mention a survey based on vertex-centric frame-
works [65], in large scale networks, that uses the Think Like A Vertex paradigm (TLAV). It is a
type of framework that implements user defined programs from the perspective of a vertex rather
than a graph. This method enhances locality, exhibits linear scalability, and provides a simple way
to define and calculate various iterative graph algorithms, community detection among others. In
[7], researchers analyze a number of distributed algorithms that are applied to detect communities
in both static and dynamic networks. Authors discuss extensively the definition of the concept of
local communities and a variety of algorithms in order to detect them. They segregate them based
on the structural and semantic properties of the graph, stating methods such as: LP algorithm,
LabelRank, LabelRankT, LPA on graphs, Dynamic Planted Bisection Model based algorithms, Dy-
namic Bayesian Nonnegative Matrix Factorization (DBNMF) and Huang and Yang’s approach to
semantic community clustering.

3 Basic Notions on Temporal Graphs

In this section we discuss preliminary notions related to temporal graphs. We discern mainly the
following issues: a) A formalism for temporal graphs, b) The notion of time and c) The model of
computation.

3.1 Unified Frameworks

There is a plethora of results on temporal graphs related to concepts, formalisms as well as algo-
rithms. Research has been done on how to unify all these under a common framework.

Time-Varying Graphs (TVGs) [20] are one such notable effort to accomplish this unification.
Temporal systems can be described by a TVG G = (V,E, T , ρ, ζ) as follows:

V : A set of entities (nodes)

E : A set of relations between entities as well as an alphabet L accounting for a set of properties
that this relation could have; that is E ⊆ V × V × L.

T : All these relations are assumed to hold over a time lifespan T ⊆ T, where the temporal domain
T is assumed to be N for discrete systems or R for continuous systems.

ρ : is the presence function ρ : E × T → {0, 1}, which indicates whether a given edge is valid at
some specific time instance (a similar function can be defined for nodes).

3



ζ : is the latency function ζ : E×T → T, which indicates the time it takes to cross an edge given
the starting time of the traversal (a similar function can be defined for nodes).

In [20] it is shown how TVGs can cope with the notion of time in various network settings. For
example, the latency functions can be used to define journeys on such a temporal network. In a
journey we require a path from a node to another node such that all time constraints are satisfied.

Stream Graphs and Stream Links [55] is another more recent unified framework for reasoning
on temporal graphs. Note that streaming is not related to the notion of streaming as a model of
computation.

A simple undirected stream graph S = (T, V,W,E) is defined as follows:

V : set of nodes.

T : set of time instants (it can be discrete or continuous)

W : a set of temporal nodes W ⊆ T × V

E : a set of links E ⊆ T × V ⊗ V 1

In case where there are no temporal nodes we get a stream link. We define by Tv and Te the set
of instances where the node v and the edge e are present in the graph. In [55] there is an extensive
discussion about how stream graphs can be used as a formalism to transfer various notions of static
graphs to temporal graphs.

3.2 The Notion of Time

The addition of the time dimension in graphs gives rise to temporal graphs. The notion of time may
have different aspects/interpretations depending on the application. The following aspects in order
of generality can be used:

1. Transaction Time: represents the time that an event takes place (i.e., the moment that an
edge is inserted or deleted from the graph). In the transaction time setting, updates can only
occur in an append-like manner (i.e. an update changes the most recent version).

2. Valid Time: it signifies the time period in which an object is valid [17, 18] (i.e. the time
interval that an object existed in the graph). Transaction time can be emulated in the valid
time setting by restricting updates to intervals that begin on the time moment of the update.
Valid time is the time period during which a fact is true in the real world.

3. Multiple Universe Valid Time: assumes that the history has a tree-like shape, instead of
a linear structure. This is reminiscent of the notion of full persistence in data structures [28],
in the sense that the history of the data structure is fully characterized by a tree structure.
Similarly, since history is not linear, we require its explicit representation by a history tree.
Instead of talking about time that implies a linear evolution we now talk about versions of
graphs. New version instances are created by making updates to existing versions of the history
tree. For example, let a node v of the history tree correspond to the graph of version v. An
update at version v gives a new instance that is represented by node u (with version u) that
is a child of v in the version tree. We refer the interested reader for a more detailed analysis
to [28]. The crucial point is that navigation in history requires the efficient support of nearest
common ancestor queries on the history tree. In this way, searching for a version v in a node is
equivalent to finding the version u that exists in this node and is the nearest ancestor among
all versions in the node of v. By employing an auxiliary structure for such a tree-like history
one can answer efficiently such nearest ancestor queries without further changes to the rest of
the structure. Apparently, a special case of this notion of time is the previously mentioned
valid time where the history tree degenerates to a single path. We could further generalize
this notion, e.g., by allowing merges of graphs of different versions.

1⊗ corresponds to an unordered pair of elements.

4



4 Detecting Communities in Temporal Networks: Classifica-

tion

In this section, a classification of dynamic CD methods is provided. Firstly, the different versions of
the dynamic CD problem are discerned into two categories: Global and Local. The former, concerns
the identification of all communities and their evolution in the temporal network, while the latter
concerns the identification of a community around a given set of seed nodes and its evolution in the
temporal network. This corresponds to the division between global and local CD in static graphs.
The main body of the literature concerns the global version of the problem; however, there is recently
an admittedly small number of publications on the local version. Although the local version uses
techniques especially from the global online dynamic CD category we believe that it constitutes a
class by itself since there are many differences in terms of efficiency as well as effectiveness of the
methods. We further divide this category into two: distributed and non-distributed methods. Thus
we identify the following 6 classes of methods:

1. Global:

(a) Community Detection from Scratch and Match

(b) Dependent or Temporal Trade - off Community Detection

(c) Simultaneous or Offline Community Detection

(d) Online Community Detection in fully Temporal Networks and in Growing Temporal Net-
works

2. Local:

(a) Non-distributed Community Detection in Temporal Networks using Seed Nodes

(b) Distributed Community Detection in Temporal Networks in a vertex-centric way

In the following, we present in detail these classes by discussing recent representative methods.

4.1 Global Techniques in Community Detection in Temporal Networks

4.1.1 Community Detection from Scratch and Match

In this class, a static CD algorithm is applied on each snapshot from scratch and then the commu-
nities that have been found at snapshot t+1 are matched (by using a similarity metric like Jaccard
similarity) with the communities found at snapshot t. The advantage is that communities can be
detected in parallel and existing methods for static CD can be used. On the other hand, instability
(the communities may have a lot of changes between consecutive snapshots) and inefficiency (in
each snapshot a static community detection algorithm is invoked) are its main two drawbacks. In
the following, we discuss some representative methods of this category (more such methods can be
found in [89]).

In [71], an algorithm for community detection is provided that uses an iterative similarity-based
approach. It is applied on general weighted networks and a streaming scenario is assumed with
respect to snapshots. In each snapshot, CPM [72] is used to find the community partition. The user
needs to determine the size of the clique (k-clique) as well as a weight threshold W (links weaker
than W are ignored) in order to define the cliques. Then, the identification of evolving communities
is realized, for different time steps t, t + 1. Firstly, for these consecutive time-steps a joined graph
is constructed which is composed of the links of both graphs. The communities in the united
graph may grow, merge or remain unchanged. In general, if a community in the constructed graph
contains a single community from time steps t or t + 1, then they are matched. Otherwise, when
the joined graph contains more than one community, then the matching is performed in descending
order (death or creation of a community) of their relative node overlap. There is one significant
observation regarding the lifetime of the communities. The authors state that the survival key for
large communities is by taking part in merging processes. On the contrary, for small communities
the stability is guaranteed.

In [24], authors track the evolution of community and graph representatives. This is a method
that is based on independently discovering communities in each snapshot and then matching them.

5



Table 1: Overview of the proposed temporal community detection classification.
Global Temporal Community Detection

Class Description References

From Scratch and Match Static algorithm at each
snapshot and matching

[89, 71, 24, 66, 29, 52]

Dependent or Temporal
Trade-off

Based on the topology of
two adjacent snapshots

[84, 81, 83, 39, 108, 102,
58, 100, 94, 37, 61]

Simultaneous or Offline Creation of single graph-
run static algorithm on it

[88, 63, 34, 50, 64, 35, 44]

Online Community Detec-
tion

Update in proportion to
network modifications

[80, 57, 105, 106, 21, 70,
69, 74, 93, 97, 56, 109, 25,
13, 41, 91, 90, 86, 87, 15,
5, 110, 2, 107]

Local Temporal Community Detection

Class Description References

Using Seed Nodes Update only the area
around the seed node

[68, 27, 49, 40, 23, 96, 76,
32, 62, 11, 33, 46, 101, 59,
43, 104, 103]

Distributed Community
Detection

Vertex-centric approach
to graph processing

[82, 48, 73, 8, 3, 1, 67, 51,
30, 31]

Given as input a sequence of different time steps of the graph, initially the graph representatives
are found, based on the common nodes between two different time steps of the graph, and then
the communities are listed. Then, the community representatives are identified (the minimum
number of presences of a node in different communities of the same graph). Consequently, the
relation of communities between different time steps (Gt, Gt+1, Gt+2) is established by finding the
predecessors and successors for each community (utilizing the community representatives). Finally,
the dynamic community detection is performed and six events (Grown, Merged, Split, Shrunken,
Born and Vanished) may happen. For all the events, we need to track forward the graph sequence,
except for the cases of shrunken and split communities, where a backtracking process is applied.
For evaluation purposes, this algorithm was compared to another version of it without graph or
community representatives. The experiments shown that the proposed version was 11 to 46 times
slower because each community of the current graph should be compared with all the detected
communities from the next time step.

In [66] the authors use sliding windows to track the dynamics. They compute partitions for
each time slice and they modify the community description at time t using the structures found
at times t − 1 and t + 1. More specifically, the data set is divided into time windows and for
each one a known static algorithm is used. Then, all similarities between communities at times
t−2, t−1, t, t+1, t+2 are computed. Thus, for each community at time t, the ancestor, predecessor,
successor and grandchild are defined. The above information makes it easy to distinguish noise from
real evolution. Consequently, this information is used to smooth out the community evolution. Then,
communities that appear to be unduly split by the independent community detection are merged,
and communities that appear to be artificial merges are separated. At the end of the procedure, a
description of the network evolution is obtained.

An interesting work based on an independent method is proposed in [29]. In each network
snapshot, the Ensemble Louvain algorithm is utilized, which is an extension of Louvain. In order to
measure the community similarity between to consecutive snapshots, the Bcubed measure is used.
Lastly, by giving the notion of internal and external influence, this method can also identify super
communities.

A recent paper in dynamic community detection is presented in [52]. The authors divide the
problem of tracking the community evolution into three steps. First, they define the time window
(time step); second, in each time window the communities are detected. Finally, they use for each
time window a hash-map ((key,value) pair) technique in order to store the entity affiliations and

6



similarity lists in order to track the community evolution between different time windows.

4.1.2 Dependent or Temporal Trade-off Community Detection

Methods in this class process repeatedly network changes. First, by using a static CD algorithm
they find partitions for the initial state (first snapshot) of the network, and then they identify
communities at snapshot t by using information from both the current snapshot (t) and previous
snapshots (< t). These methods don’t suffer from the instability problem and are faster than those
from the previous category. On the other hand, its two main drawbacks are the avalanche effect 2

as well as the fact that these methods are generally not parallelizable. Global and multi-objective
optimization methods are the most common subcategories in this class.

In [84] an efficient real-time, incremental modularity-based algorithm is proposed for tracking
community structures of dynamic networks. A two-step approach is adopted. First, the BGL static
algorithm [14] is applied in order to obtain an initial community structure and then incremental
updating strategies are applied in order to track the dynamic communities. Initially, each node is
placed in a separate community and the first phase of the BGL algorithm starts. BGL checks each
node as to whether its transfer to one of its neighbor communities could incur a modularity increase.
If this is the case, then the node is moved to the community that gives the highest modularity gain.
When this phase is completed for all nodes, then each community is converted to a single node and
the algorithm applies iteratively the same procedure and terminates when the modularity is lower
than a given threshold. At the next step, the proposed incremental algorithm takes action. When
an edge is updated, four different cases are discerned based on the type of the respective nodes.

1. Inner community edge: the two nodes incident to the edge already exist and belong to the
same community.

2. Cross community edge: the two nodes incident to the edge already exist and belong to different
communities.

3. Half-new edge: one of the nodes incident to the edge is new.

4. New edge: both of the nodes incident to the edge are new.

Based on these four types, the communities may be updated as follows: 1) The community remain
unchanged; 2) Merge two communities in one; 3) Assign the nodes to an existing community and 4)
Assign the new nodes to a new community. The operation must be chosen so that the modularity
has the largest gain or the less loss in case no increase in the modularity is possible. The greatest
strength of the algorithm is its low computing complexity. The algorithm is compared with both
CNM and BGL and the experimental results show that the proposed incremental algorithm has
reasonably good performance on both modularity and computing time.

Similarly, in [81], four possible edge transitions take place and the dynamic algorithm CRep aims
to maximize the time-dependent log-Likelihood. This is achieved by utilizing an iterative process.
In this process, interchangeably either the parameters are kept fixed or the probability distribution
of edge transitions is kept fixed. The process iterates until the log-Likelihood converges.

A modified Louvain (C-Blondel) method is proposed in [83]. The historical information from
the previews snapshot (t − 1) and the current one (t) communities are used in order to construct
the compressed graph GH , which contains more information compared to the graph of the current
time step while having smaller size at the same time, reducing the computational complexity of the
algorithm. In this method the notion of the destructive node is introduced. During the construction
of the compressed graph, when a destructive node disappears a community collapse happens.

The method introduced in [39] detects the evolutionary community structure in weighted dynamic
networks. Weighted networks are considered, whose number of nodes, edges and communities are
different from time-step t to time-step t + 1. The main steps of this method are the following.
First, for each time-step they detect the initial community (using the input matrix that considers
the previews community structure) and then they expand the community. This is iterated until all
nodes have been assigned to a community. Finally, the communities are merged. To trace the initial
community the input matrix Uij = (ut

ij)Nt×Nt should be calculated:

2The avalanche effect describes the phenomenon when communities can experience substantial drifts compared to
what a static algorithm would find on the static network at a particular time instance.

7



uij =

{
wt

ij if t = 1

(1− α)wt
ij + αut−1

ij δt−1
ij if t ≥ 2

where wij is the adjacency matrix, threshold α ∈ [0, 1], δt−1
ij is equal to 1 when nodes i and j

belong to the same community and 0 otherwise. As it can be seen from this piece-wise function,
the community structure remains faithful to the current data and it is expected that it will not
shift a lot from one time step to the next. Then, by using the input matrix, the belonging degree
BDt(ui

i, C
t
p) is calculated and the initial community is found. The greater the belonging degree, the

more the node belongs to the community. At the next step, the nodes (one by one) are attached to
the community Ct

p (community C at time t) that provides the highest modularity gain. In the last
step, When all the communities have been identified, they are merged given that the modularity
gain of the new community is positive than when the two communities are separate. Regarding the
experimental evaluation, the algorithm is tested on a synthetic dataset and two real network datasets.
Three quality functions have been used (snapshot, history and total quality function). According to
the experimental results, the algorithm works effectively in dynamic weighted networks, identifying
successfully the evolutionary community structure. It is mentioned that its main drawback is the
difficulty to handle networks that change extremely fast (churn).

The CCPSO (Consensus Community Particle Swarm Optimization) approach is proposed in
[108]. In this paper, the optimal population from the previous time step (intrapopulation) is com-
pared to the population of the current time step, using the high support rate. The subset of the same
communities between these two consecutive time steps are recognized as consensus communities (in-
terpopulation). In addition, two objective functions, KKM (kernel k-means) and RC (Ratio Cut),
have to be optimized. A similar approach is given in [102], where they utilize different objective
functions and an improved version of the PSO method.

Another multi-objective optimization method is described in [58]. In its ititialization step, this
approach uses the probability fusion method in order to produce high quality partitions. The crowd
and diversity neighbor fusion strategies are used in order to obtain a better partition and to avoid
local optima. Finally, modularity and DCEC metrics were used for the purpose of evaluating the
objective function.

Another representative algorithm of this subclass is proposed in [100]. The DSBM (Dynamic
Stochastic Block Model) algorithm, which is the extended version of SBM [45], detects both the
structure of communities and their evolution in a consolidated probabilistic model. The model has
online (the model is updated repetitively over time) and offline (the model is trained with data from
all time steps) learning versions. The model is based on the Beyesian treatment. Many approaches,
in order to estimate the unknown parameters, compute the most credible values. Instead, the
DSBM algorithm calculates the prior distribution of the parameters. Assuming that nodes remain
unchanged, then in the first snapshot (t = 1), the network is generated by applying the SBM. Each
node is assigned to a community k with probability πk and the link between two nodes is generated
by a Bernoulli distribution with parameter Pkℓ (link between one node from the k community to
one node of the ℓ community). For the following time steps, one more parameter Akℓ (transition
matrix) is introduced. This parameter estimates the probability that a node will be assigned to
the same community, as in the previous time step, or to a new one. The conjugate priors for
the three parameters π , P and A are introduced and then by using the Gibbs sampling method
(inference algorithm) the posterior probabilities are optimized in order to decide the community
assignments of all the nodes (simultaneously) in offline learning and each time (incrementally) in
online learning. Furthermore, some extensions are proposed in order to handle different type of links
and insertion/deletion of nodes. The experimental evaluation on synthetic and real datasets verified
that the DSBM when compared to baseline algorithms (SSBM, SGFC and SSpect), converges very
quickly, with many meaningful community changes. The effectiveness of the algorithm, when ground
truth is available, is measured by using the Normalized Mutual Information (NMI - cost associated
to the current snapshot), or by using modularity (the smoothness with respect to the past history).

[94] proposes the DYN-OPGPBA algorithm. This method works in two stages. First, in order
to obtain the optimal snapshot quality, they optimize the modularity metric and for the second
stage, in order to obtain both the optimal snapshot quality and temporal cost, they optimize the
medularity and NMI. Finally, two recent methods are discussed in [37, 61], both uses deep learning

8



methods. The former is based on generative adversarial networks while the latter is based on RNN
networks.

4.1.3 Simultaneous or Offline Community Detection

Methods in this class discover partitions by considering all states of the temporal network at the same
time. A single multilayer network is created from all snapshots using edges based on the relationship
between nodes at the same snapshot and at adjacent (preceding and succeeding) snapshots. Then,
the communities are detected by using an appropriately modified static algorithm on the multilayer
network. Methods in this category don’t suffer from instability and the avalanche effect. On the
other hand, they have certain limitations: they usually require the assumption of a fixed number
of communities and they lack a mechanism to determine operations between temporally successive
partitions (like merge of communities). In the following, we discuss some representative methods of
this category.

GraphScope [88] is a parameter-free algorithm, and was proposed to address the problems of
community detection in a bipartite graph (source and destination partition associated to each other)
and change detection (a change of community structure) simultaneously. This method is based on
MDL [77] (Minimum Description Length) principle, where the objective function is used to calculate
the number of bits we need to encode the full graph stream. First, they divide the problem into two
subproblems: 1) Assuming that a graph segment G(s) (set of similar graphs between timestamps) is
given, they discover the partitions and 2) they detect changes in the graph stream. Given the graph
segment, by using the modified entropy (the lower the encoding cost the better), they determine
the source and destination partition by merging or splitting the communities. Then, by finding the
encoding cost of assigning a node to a particular partition, the algorithm considers assigning each
source/destination node to the source/destination partition that yields the smallest encoding cost.
On the other hand, when the graph segments are not known, the GraphScope algorithm constructs
them incrementally, by comparing the union of the segment and the newly arrived snapshot with
this new snapshot, and finding the encoding cost for both of them. Then it decides if the new
snapshot stays with the current segment or a new segment starts with this snapshot. Several real
and large graph datasets are used for the its experimental evaluation. The experimental results show
that the source and destination groups forms meaningful clusters, and the groups evolve over time
and time segments indicate interesting change-points. Regarding the quality and scalability of two
initialization steps, Fresh-Start and Resume, are compared. The results show that Resume is much
faster than fresh-start, especially for large graphs.

[34] proposes a community detection model for temporal networks, where nodes can interact
(inter/intra-connectivity) during a time interval. However, it is assumed that there is a fixed num-
ber of communities and that they don’t change with time. In this method, a streaming scenario is
assumed with respect to snapshots and the data is represented by a rank-3 tensor. The Non-negative
Tensor Factorization Approach (NTFA) is utilized in order to identify the structures that correspond
to communities. The non-negativity makes the resulting factorization (decomposition) more inter-
pretative. This is an optimization problem and we approximate it by minimizing the distance
(Frobenius norm) of the tensor and the product of the three factors (PARAFAC Decomposition) as
follows:

minA,B,C∥T −A,B,C∥2F (1)

where A and B represent the structure of the community and C the temporal activity. However, in
order to reduce the dimension from three to two, they convert the tensor to three matrices:

X(1), X(2), X(3)

. Applying the PARAFAC decomposition in each of these three matrices, three minimization prob-
lems are defined like the one defined in Equation 1. These are solved by utilizing the non negative
Alternate Least Squares method. The method is evaluated by using the Core Consistency metric.
Comparing the NTFA to four other static algorithms, they observed that NTFA has the same perfor-
mance as INFOMAP and Community WALKTRAP. On the other hand, the OSLOM and Louvain
algorithms merge small communities into larger and the number of detected communities is not the
same like NTFA.

9



Another recent study is described in [50]. Given a multi-layer network, authors apply a random
walk-based approach in order to calculate the visiting probabilities and to construct the matrix W
(by merging the matrices of different layers). At the end, the Leiden algorithm [92] is applied on
matrix W in order to obtain the partition of the network.

In [64] an interesting method is proposed. The PPSBM (Poisson Process Stochastic Block Model)
is utilized in order to detect communities in dynamic networks. The connection characteristics of
partitions is defined by a time function. The EM (Expectation Maximization) is introduced to
detect the nodes affiliation and the time function that is suitable for the studied network. Lastly, it
is assumed that the node affiliations are fixed.

A significant study of the fundamental limits of detecting community structure in dynamic net-
works can be found in [35]. In particular, the authors are trying to analyze the boundaries of
detectability for a Dynamic Stochastic Block Model (DSBM) where nodes affiliations can change
over time (from one community to other), and edges are created separately at each time step. The
method exploits the powerful tools of probabilistic generative models and Bayesian inference, and
by utilizing the cavity method, they obtain a clearly defined detectability threshold as a function of
the rate of change and the community strength. Below this threshold, they claim that no efficient
algorithm can identify the communities. Then, they propose two algorithms that are optimal in
the sense that they succeed up to this threshold. The first algorithm utilizes Belief Propagation
(BP), which provides asymptotically optimal accuracy, and the second is a quick spectral algorithm,
founded on linearizing the BP equations.

An algorithm based on clique enumeration is proposed in [44]. In this case, a well-known recursive
static backtracking algorithm, Bron-Kerbosch [19], is adapted to temporal graphs. Finally, another
method in this category can be found in [63].

4.1.4 Online Community Detection in Fully Temporal Networks and in Growing Tem-
poral Networks

In these methods, the temporal network is not considered as a sequence of snapshots, but instead
as a succession of network transformations. The methods are initialized by discovering partitions
at time 0 and then the community structure is updated in each update of nodes/edges. This class
of methods is further divided into two main subcategories of incremental methods: 1) Community
Detection in Fully Temporal Networks, where insertions and deletions of nodes and edges are allowed
and 2) Community Detection in Growing Temporal Networks, where only insertions of nodes and
edges are allowed. In addition, the methods of this class can either handle network updates in
batches of arbitrary size. One extreme is to consider batches of size 1, that is after each update
the community structure is updated. One advantage of this method is that algorithms for static
CD can be used with minor modifications. Moreover, this approach does not suffer from instability,
and it is quite efficient since updates for the community structure are usually applied locally. In the
following, we discuss some representative methods of this category.

In [80], Tiles is proposed as a method that follows the evolution of communities. The method
works in a streaming scenario, treating each topological perturbation as a domino tile fall: when-
ever a new interaction emerges in the network, Tiles first updates the communities locally, then
propagates the changes to the node’s neighborhood and finally it modifies the neighbors’ community
memberships. The online nature of Tiles provides several benefits. First, the network sub-structure
computation is local and involves a small number of nodes and communities; thus speeding up the
updating process. Second, this method allow us to study two forms of evolutionary behaviors: (1)
the stability of individuals’ attachments to communities, and (2) the emergence of interaction-based
communities through time.

In [57] a method for dynamic community detection is presented that is based on incremental
analysis (CDBIA). The main assumption behind this method is that the communities evolve as time
goes by and will not abruptly appear or disappear. According to this method, five main operations
are applied during the incremental computation: add or delete a node outlier, add or delete a link
between two nodes and finally change the community affiliation of a node. These operations are
involved in an iterative process until all vertices do not change their community affiliation. More
specifically, a vertex belongs to the community that shares the highest number of links. Based on
their experimental evaluation, they argued that CDBIA is better than existing algorithms in many
cases, with a running time O(dn), where d is the number of operations.

10



Another dynamic algorithm that adopts an incremental approach, is described in both [105] and
[106]. They introduce a filtering technique, which is called ”∆-Screening”. During two consecutive
time steps, the set of changes are applied and potentially affect the structure of the graph. The
technique of ∆-Screening is proposed to capture, in each time step, new inserted/deleted nodes,
where their changes (e.g., appearance of an edge), affect the structure of the network, in the sense
that nodes change community affiliation. At the beginning (t = 0), a static algorithm detects the
communities of the initial network. Next, for each time step t, all the added nodes are assigned a
new community label. Then, ∆-Screening captures a subset Rt of these nodes. Finally, the static
algorithm is evoked to detect the evolution of the communities, visiting only the subset of nodes Rt.

In [21], the algorithm iLCD (intrinsic Longitudinal Community Detection) is presented. This
method is an alternative to the Clique Percolation Method (CPM) [72] and it is suitable for ad-
dressing the problem of overlapping communities. Receiving as input a sorted set of inserted edges,
the algorithm is composed of three steps. First, the existing communities are updated. Then, the
algorithm looks as to whether it is possible to create a new community based on the incoming up-
date. Finally, the algorithm looks as to whether it is possible to merge communities. This method
supports only addition of new nodes and edges and does not allow deletions.

In [70], the Quick Community Adaptation (QCA) method is proposed, which is based on mod-
ularity optimization. It is used for identifying and tracing community structure of dynamic online
social networks. The current method has the advantage of rapidly and effectively updating the
graph structure, through a series of changes: newVertex, removeVertex, newEdge, and removeEdge,
by utilizing the structure related to previous snapshots. In addition, it provides the capability to
trace the evolution of its communities as time goes by. In [69], a modified version of [70] is discussed
that deals with overlapping communities.

A non-parametric (without the need to assume prior knowledge) probabilistic model that utilizes
Bayesian treatment and detect communities in an online incremental manner is proposed in [74].
The IC-DRF model forms dynamic random fields as the graph evolves. These fields define and
modify the community structure based. Furthermore, the number of communities is determined
dynamically and automatically at any given time, so that the model is able to successfully adjust
to global changes in the level of detail of the natural community structure. The Gibbs sampling
algorithm is utilized with the purpose of accelerating this approach. Its experimental evaluation
show that the proposed method compared to other state-of-the-art algorithms is more effective.

In [93], they use the Louvain algorithm in conjunction with the the concept of the core nodes
[95]. Their method detects communities utilizing core nodes (strong clusters or stable memberships).
They construct the membership matrix P , applying repeatedly the Louvain [14] algorithm until it
converges. Choosing a stable (large) cluster from each community, which is based on the overlapping
size with its community, the expansion of the core cluster is performed by using a fitness score
function. For the next time steps, the discovered cores are used as an initialization step and the
Louvain method is used for the purpose of calculating the new communities. Then, the tracking
of community evolution is evoked, based on [38], and the new community structure is compared
with the previous one. The experimental results show that there is significant influence on the
effectiveness of the method from the temporal variation of the community structure.

An incremental community detection algorithm, LabelRankT, which is based on a label-propagation
method called LabelRank [98], is discussed in [97]. In both methods four main operations take place:
1) propagation, 2) inflation, 3) cutoff, and finally 4) conditional update. The difference between these
two methods lies on the last operation. In LabelRankT, there is an extra conditional update rule
for the involved vertices. Vertices that are transformed among two successive snapshots need to be
updated, including instances like add or delete edges from a vertex and deletion or insertion of an
existing vertex.

In [56], the objective of the incremental clustering algorithm is to monitor the progress of event
patterns. For this purpose, a skeletal graph is utilized to represent the whole network and by
using sliding windows all the updates can be tracked. Consequently, a sequence of operations is
devised in order to help with the expression of the cluster evolution patterns. Differently from other
methods and approaches, this algorithm, called eTrack, handles really well real time incremental
bulk updates. For experimental purposes, the method is applied on two real data sets from Twitter
with the purpose of tracking the event evolution in social streams. Another similar in spirit method
is proposed in [109].

An incremental, modified Louvain algorithm [14] is proposed in [25]. In this method, nodes and

11



edges are inserted or deleted in the network as time evolves, and the Louvain method is applied
only on those communities that are affected. Stability and computational cost are the two main
advantages of the method, since the local modularity optimization metric is applied only in a part
of network, where the changes are taking place.

A density-based framework, called HOCTracker, is proposed in [13]. For the purpose of monitor-
ing the evolution of overlapping and hierarchical communities in temporal social networks, differently
from other methods, this method adjusts a preparatory community structure to the transformations
that are happening in a temporal network, and handle systematically only ”active” nodes. Further-
more, HOCTracker recognizes all the events (birth, growth, contraction, merge, split, and death)
that can occur during the evolution of the community.

In [41], a dynamic community detection algorithm based on distance dynamics is proposed, which
is an extended version of the static algorithm in [85]. By utilizing a local interaction model, based
on Jaccard distance, and a disturbance factor,the method in [41] overcomes the disadvantages of
modularity-based algorithms by detecting small communities or outliers. In addition, regardless of
the processing order of the increment set, it can achieve the same community partition results in
near-linear time.

An effective, parametric-free and incremental method, based on Matthew effect, is proposed in
[91], aiming at detecting dynamic communities. Unlike other incremental approaches, a batch of
changes is processed. Between two consecutive snapshots, where a batch of deletions and insertions
of nodes and edges takes place, the changed subgraph is extracted by using the notion of node
and group attractiveness. Then the changed and unchanged communities are calculated between
each two consecutive snapshots. The same dynamic community detection framework, based on
information dynamics, is used in [90]. a similar approach is also used in [86].

An incremental density-based approach is proposed in [87]. This method consists of two basic
parts: an online and an offline part. In the online part, the algorithm produces the core-connected
chain (using the idea of similarity based on core-connectivity), in which the internal partition knowl-
edge of the network can be preserved during the evolution of the network. In the offline part, the
extraction of the partitions from the core-connected chain is performed. This part helps the algo-
rithm to react to user queries in an efficient way.

An online version of Dynamic CPM [71] (clique percolation method), using at the same time
the LPA [75] (Label Propagation Algorithm), is presented in [15]. The proposed OLCPM (Online
Label Propagation Clique Percolation Method) is a two-step framework. First, it uses the Dynamic
CPM [71] that updates the communities locally by utilizing a stream model, aiming at improving
the time complexity, Then, by using the LPA, the algorithm solves the problem of node affiliations,
by allocating each node to one or more partitions. In [5], an incremental method based on the SLPA
[99] algorithm is proposed. The ISLPA (Incremental Speaker-Listener Label Propagation Algorithm)
can detect overlapping and non-overlapping communities by considering the network modifications
between two consecutive time steps. The learning process can be done in an unsupervised or semi-
supervised manner.

Another method that uses the static Louvain algorithm for initialization is discussed in [110].
The algorithm, called DynaMo, utilizes six different strategies in order to process a set of network
changes (edge/node insertion/deletion). The aim of this method is to maximize the community
structure modularity while efficiently handling all incoming updates. In [2], the method CSIMCD
is proposed. This method is initialized by extracting the topics of interest, and in each cluster of a
specific topic it applies link analysis in order to discover communities. Then, in the incremental part
of the method, for each node modification is uses the ACSIMCD (Adaptive CSIMCD) algorithm
in order to find the topical cluster of the modified node and then apply Louvain to update the
community structure. Finally, an incremental approach based on message distribution and structural
and attributes similarities is proposed in [107]. This method applies the Louvain algorithm at the
starting graph to obtain the initial communities. Then, considering the modifications in each time
step (edge/node insertion or deletion and new messages among nodes that belong to two different
partitions), it applies the Louvain algorithm for the affected subgraph or merges the communities if
the number of overlapping nodes exceeds a predefined threshold.

12



4.2 Local Techniques in Community Detection in Temporal Networks

4.2.1 Community Detection in Temporal Networks using Seed Nodes

Given a set of seed nodes Z, our goal is to detect the community that includes Z. The main
assumption in this case is that Z is of high importance (e.g., high degree centrality) and act as
the community reference point. This problem differs from general temporal CD approaches since
our objective is to discover the community defined around the set of seed nodes. This community
may not coincide with a community when a global partition is considered. Notice that the online
methods described in 4.1.4 are global in the sense that they maintain a partition of the network in
communities. The algorithms in this class are very efficient, since by definition it is required from
them to maintain a single community by looking only at its neighbor, thus there is no need to access
the whole graph.

A dynamic algorithm for local community detection in graphs that solve the problem of seed
set expansion is proposed in [103]. This algorithm detects the local community that consists of a
set of nodes with high interest. First, a greedy static algorithm is used in order to discover the
local community in the starting graph. Initially, the community contains only the seed node and
in each iteration one neighbor node is added maximizing the chosen fitness score. At the end of
this step, there is a collection of sequences (vertex,interior/border edge sum and fitness score) for
each iteration, in an increasing order with respect to the fitness score. Thus, in each iteration the
fitness score of the local community always increases. When the fitness score cannot increase any
further, the next phase starts. For each stream update of the graph, the algorithm modifies the
collection of sequences. If after the modification, the fitness score of a position is higher than the
fitness score of the next position, then the node is removed and interior/border edges are modified
as well. When this step is finished, the collection of modified sequences is scanned, and if in any
position the fitness score is not in an increasing order then the set of collection from this position
until the end is removed. Finally, the static algorithm is used one more time in order to add
new nodes (community neighbors) to the local community. A full streaming version of seed set
expansion method is described in [104]. The seed set expansion dynamic algorithm is tested in three
social network graphs and is compared with the static local community detection algorithm. Three
metrics (average ratio, precision and recall) were used in order to measure the performance of both
algorithms. The results shows that the dynamic method is more efficient as well as more effective
in identifying the correct local community of the seeds.

In [43], a hierarchical algorithm is presented. This method discovers communities in temporal
networks based on hubs (nodes with large connections) by grouping nodes around them. Each node
carries hub information (e.g., distance between nodes, hub and parent nodes, threshold level) and the
idea is based on passing this information through the network. Then, the intra-node hubs transfer
the information (message) to the outer nodes and in this way, all non-hub elements are assigned to
the closest hub. Then, the membership (fuzzy membership) of each node can be calculated. The
major advantages of the method is that only a small amount of processing steps have to be done to
update the partitions and no predefined parameters are required.

A graph streaming process is described in [59], which is called CoEuS. The authors propose an
algorithm in order to detect local dynamic communities by expanding sets of seed nodes. The mem-
ory that is used is limited and moreover there is no restriction regarding the order of the edges that
are coming in the stream. Another method, called SCDAC, which is similar to CoEuS is proposed
in [101]. This method is based on a single pass streaming community detection procedure. In order
to find the optimal community, the ”approximate conductance” metric is used. The experimental
comparison in real networks has shown that SCDAC is more effective and efficient than CoEuS.
A dynamic community detection algorithm, based on static local seeding, is proposed in [46]. The
authors use hybrid centrality measures to evaluate the best seed set of nodes. This set in each time
step can be updated only by nodes that are affected by network changes.

Another approach is Evoleaders [33], which employs leader nodes with followers in order to
identify the evolution of the communities. The ”Top leaders” algorithm [53] initialize D leader
nodes, one for each community, and associate the nodes of the network to an appropriate leader.
In this way, the communities are constructed and by utilizing the highest centrality node, a new
leader is picked and the old one is replaced. Then, in each time step, for the initialization of the
leader nodes, their common neighbors from the previous and the current time step are taken into
consideration and the Top leaders algorithm is used iteratively. Then, the process of community

13



splitting starts and all small communities can be merged, in an appropriate manner, so that the
quality (in terms of modularity) of the community structure is improved. Finally, [11] proposed a
framework that strengthens the vicinity of the seed set (called anchors) exploiting the fact that the
seed set is of central importance for the evolving community. As a matter of fact, it is assumed that
the importance of seeds for the community is established by external knowledge that is not related
to topological information of the network.

To address the problem of multiple local community detection in static and dynamic networks,
authors in [62] proposed the HqsMLCD and HqsDMLCD methods respectively. The notion of high
quality seeds is introduced, which are obtained by the (dynamic for HqsDMLCD) embedding can-
didate subgraph, and then are (dynamicly for HqsDMLCD) expanded to the detected communities.
In addition, in [32], by proposing three main techniques (edge filtering, motif push operation and
incremental sweep cut), they can achieve high effectiveness and efficiency in local community detec-
tion.

A different method that utilizes differential geometry properties is described in [76]. In this
method, the affiliation of a (boundary) node into the local community is determined by the velocity
function that uses the derivatives, curvature and gradient, and then tracks the temporal smoothness
transformations of the network.

In [96], authors present a multi-step local community detection method. First, by measuring
the influence of a node in the community, the seed nodes are selected. Then, communities are
expanded by measuring the closeness degree between seed community and non-seed nodes. Finally,
the communities are optimized (using conductance) and free nodes are assigned to the communities
when high degree similarity between the community and the free node is reached. Another recent
research is presented in [23]. In this case, authors generate a k-NN graph based on the high and low
order structure and attributed similarity. By processing both categorical and numerical attributes,
they can find and expand the seed nodes to the communities. Finally, in [40], in order to identify the
best seed nodes, they introduce the node fitness score and then they propose the node contribution
measure to detect clusters incrementally. More methods in this category can be found in [68, 27, 49].

4.2.2 Vertex-Centric Distributed Community Detection in Temporal Networks

In this subsection we summarize recent research in the field of community detection utilizing a
distributed system. A distributed system is a collection of autonomous computer systems (clusters)
that are connected by a centralized computer network equipped with distributed system software.
The autonomous computers communicate among each other by sharing resources and files and
performing the tasks assigned to them. The most recent papers on community detection related
to the vertex-centric approach, are discussed below. This is a subcategory of local community
detection since distributed community detection methods tend to allow nodes to access only their
immediate neighbor. This tendency has been enforced on distributed algorithms by the vertex-
centric approach for computation on networks. Thus, the methods described can in principle be
used for local community detection but it would not fit well the distributed computation unless we
considered a concurrent distributed system (queries and updates executed in parallel).

An incremental community detection algorithm for distributed dynamic networks using the WCC
metric is discussed in [1]. The authors begin by noting that the existence of such metrics is important
as they provide information about the quality of a community. They continue with the analysis of the
WCC algorithm and mention the three basic conditions that should be satisfied: 1. Each community
should contain a central node and a set of nodes that will be connected to the central nodes, 2. The
central node should be the one with the largest clustering coefficient, and 3. Given a central node
x and a border node y within a community a, the clustering coefficient of x should be greater than
the clustering coefficient of any neighbor z of y that is the center of its own community. Then,
based on the Distributed Weighted Community Clustering (DWCC) algorithm, they devise the
Incremental Distributed Weighted Community Clustering (IDWCC) method. The two algorithms
were implemented in the Spark and GraphX environment and the experimental evaluation shows
that IDWCC is two to three times faster in detecting local communities than DWCC.

In [67], the authors present an alternative version of the PHASR (Prune-Hash-Refine) method, in
a way that it is consistent with known distributed models. For this reason, the algorithm is executed
using the big data analysis engine Apache Spark. Although most distributed local community
detection algorithms aim to discover a subset of edges within the network using some metric, the

14



techniques presented in this paper attempt to discover local communities that have the lowest
temporal conductivity in a distributed way. The algorithm uses notions like temporal conductivity
in order to identify the local communities. Then, they use the Personalized PageRank metric, which
will be used in the refinement step of the algorithm and is based on random interactions between
the nodes. The analysis of the modified PHASR algorithm is provided. Finally, there are extensive
experiments that yield interesting conclusions.

In [51], the authors present a method called randomized Speaker-Listener Label Propagation
Algorithm (rLSPA), which is based on LPA and its goal is to detect overlapping communities on
distributed dynamic graphs. The authors succinctly present the four steps of their algorithm (Initial-
ization, Label Propagation, Incremental Updating, Post-Processing) and then proceed to its analysis.
In a nutshell, the algorithm operates as follows: for the starting graph, the Initialization and Label
Propagation stages will be executed and a chart of the graph will be extracted. Then, if the user
wants to capture the local communities that are created, the chart is passed to the Post-Processing
stage and the result is exported. However, if changes are made to the graph, then it goes to the
Incremental Updating stage in order to handle efficiently these updates.

In [30], authors propose a distributed algorithm for detecting local communities in the Stochastic-
block model or the Planted Partition Model, which is a model related to random graphs. The
proposed algorithm is called CDRW (Community Detection by Random Walks) and is based on
random interactions between nodes. A characteristic of the algorithm is that it uses the idea of local
mixing sets to prove that specific nodes are part of a specific community. In addition to the Planted
Partition Model, they analyze the performance of the CDRW algorithm on CONGEST (widespread
model for distributed computing which captures the inherent bandwidth limitations in modern
real-world networks) and in the k-machine distributed model through a communication device, as
well. These are models for large-scale distributed computing and highlight the significant efficiency
of the CDRW algorithm. Finally, they succinctly analyze the complexity of CDRW by analyzing
probabilistic techniques and drawing necessary conclusions through graphical representations that
highlight the efficiency and accuracy of the method.

An information-theoretic approach for the community detection problem in large networks is
described in [31]. The authors begin by providing background into the InfoMap method, which is
an information theoretic approach to community detection. This is a sequential algorithm known
for providing high quality results. InfoMap uses a standard data compression technique utilizing the
PageRank algorithm in order to balance the workload and keep communication, among processes,
minimal. Nonetheless, a scalable parallel execution version of InfoMap was needed due to the very
high execution time to process large scale networks. Thus, the authors present their solution of a
distributed-memory parallel algorithm based on the InfoMap method. The authors conclude that the
quality of communities is similar to the sequential InfoMap, providing good scalability and reduced
communication cost across processors by transferring a minimal amount of information More papers
related to this category are [82, 48, 73, 8, 3].

5 Datasets

In this section we describe various datasets (real or synthetic generators) used in the context of
community detection in temporal networks. There are various repositories for temporal networks.
We list the most important below accompanied by a small discussion.

5.1 Real Datasets

There is a plethora of real datasets that are used to experiment with proposed approaches. Most of
these datasets, followed by a small description, can be found in the following repositories.

• SNAP (https://snap.stanford.edu/snap/) A large repository of networks of various types
among which one can find temporal networks as well. It also provides a Python API.

• SocioPatterns (http://www.sociopatterns.org/datasets/) It contains social networks
(people/animals), some of which have also temporal information.

• KONECT (http://konect.cc/) Another repository of general purpose networks that also
contain temporal information (although no explicit such category).

15

https://snap.stanford.edu/snap/
http://www.sociopatterns.org/datasets/
http://konect.cc/


5.2 Synthetic Generators

A synthetic generator for dynamic networks with communities is given in [78]. They introduce
the extensively used dynamic network generator RDyn, which is suitable for generating community
dynamics. RDyn is intended to ensure power-law distributions of node degrees and community sizes
and can be instantiated in order to crete planted communities that make optimal several different
quality measures. The suggested technique first generates the community size and degree distribution
and utilize both of them to connect every node to a partition. Then it uses network dynamics by
repeatedly adding and removing links. When RDyn recognizes a stable state (a partition of high
quality), it provides an output as ground truth and generates community perturbations (split and
merge), changing node-community connections of chosen communities.

Another synthetic generator for social graphs is described in [4]. The LDBC Social Network
Benchmark (LDBC SNB) has two components: a synthetic generator for social graphs as well
as a suite of benchmark queries. LDBC SNB is meant to be a believable look-alike of all the
aspects of in operation a social network site. LDBC SNB includes the Interactive workload, that
consists of user-centric transactional-like interactive queries, as well as the Business Intelligence
Workload, which incorporates analytic queries that corresponds to business essential queries. At
first, a graph analytics workload was conjointly enclosed within the roadmap of LDBC SNB, but
this was finally delegated to the Graphalytics benchmark project, that was adopted as a formal
LDBC graph analytics benchmark. LDBC SNB and Graphalytics joined, target a broad variety of
systems with totally different nature and characteristics. LDBC SNB and Graphalytics are intended
to capture the essential options of those scenarios, whereas abstracting away details of specific
business deployments.

Finally, in [54], the LFR Benchmark network is proposed. They utilize features of real networks,
(e.g., heterogeneity), in order to generate graphs. The experimental results show that these features
contribute to a harder test of the existing methods.

6 Conclusion

Our aim in this survey is to reexamine all the recent surveys in the field of CD in temporal networks
and to propose a new category of methods based on local community detection. Thus, we propose
six classes of algorithms and discuss some representative methods. The advantages and drawbacks
of each class are also discussed. In future work, it will be beneficial to delve into the local community
detection class and to enrich the current survey with more literature.

Acknowledgments

This research was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.)
under the “2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers”
(Project Number: 3480).

References

[1] Tariq Abughofa, Ahmed A Harby, Haruna Isah, and Farhana Zulkernine. Incremental commu-
nity detection in distributed dynamic graph. In 2021 IEEE Seventh International Conference
on Big Data Computing Service and Applications (BigDataService), pages 50–59. IEEE, 2021.

[2] Elyazid Akachar, Brahim Ouhbi, and Bouchra Frikh. Acsimcd: A 2-phase framework for
detecting meaningful communities in dynamic social networks. Future Generation Computer
Systems, 125:399–420, 2021.

[3] Hamidreza Alvari, Alireza Hajibagheri, and Gita Sukthankar. Community detection in dy-
namic social networks: A game-theoretic approach. In 2014 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining (ASONAM 2014), pages 101–107.
IEEE, 2014.

16



[4] Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter Boncz, Orri Erling, Andrey Gu-
bichev, Vlad Haprian, Moritz Kaufmann, Josep Llúıs Larriba Pey, Norbert Mart́ınez, József
Marton, Marcus Paradies, Minh-Duc Pham, Arnau Prat-Pérez, Mirko Spasić, Benjamin A.
Steer, Gábor Szárnyas, and Jack Waudby. The ldbc social network benchmark, 2021.

[5] Mohammad Asadi and Foad Ghaderi. Incremental community detection in social networks
using label propagation method. In 2018 23rd Conference of Open Innovations Association
(FRUCT), pages 39–47. IEEE, 2018.

[6] Thomas Aynaud, Eric Fleury, Jean-Loup Guillaume, and Qinna Wang. Communities in evolv-
ing networks: definitions, detection, and analysis techniques. In Dynamics On and Of Complex
Networks, Volume 2, pages 159–200. Springer, 2013.

[7] Mehdi Azaouzi, Delel Rhouma, and Lotfi Ben Romdhane. Community detection in large-scale
social networks: state-of-the-art and future directions. Social Network Analysis and Mining,
9(1):1–32, 2019.

[8] Seung-Hee Bae and Bill Howe. Gossipmap: A distributed community detection algorithm for
billion-edge directed graphs. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 1–12, 2015.

[9] Sahar Bakhtar and Hovhannes A. Harutyunyan. Dynamic local community detection algo-
rithms. In NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium,
pages 1–6, 2022.

[10] Georgia Baltsou, Konstantinos Christopoulos, and Konstantinos Tsichlas. Local community
detection: A survey. IEEE Access, 10:110701–110726, 2022.

[11] Georgia Baltsou and Konstantinos Tsichlas. Dynamic community detection with anchors.

[12] Shweta Bansal, Sanjukta Bhowmick, and Prashant Paymal. Fast community detection for
dynamic complex networks. In Complex networks, pages 196–207. Springer, 2011.

[13] Sajid Yousuf Bhat and Muhammad Abulaish. Hoctracker: Tracking the evolution of hier-
archical and overlapping communities in dynamic social networks. IEEE Transactions on
Knowledge and Data engineering, 27(4):1019–1013, 2014.

[14] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, oct 2008.

[15] Souâad Boudebza, Rémy Cazabet, Faiçal Azouaou, and Omar Nouali. Olcpm: An online
framework for detecting overlapping communities in dynamic social networks. Computer Com-
munications, 123:36–51, 2018.

[16] Fariza Bouhatem, Ali Ait El Hadj, Fatiha Souam, and Abdelhakim Dafeur. Incremental meth-
ods for community detection in both fully and growing dynamic networks. Acta Universitatis
Sapientiae, Informatica, 13(2):220–250, 2021.

[17] Nieves R Brisaboa, Diego Caro, Antonio Farina, and M Andrea Rodriguez. Using compressed
suffix-arrays for a compact representation of temporal-graphs. Information Sciences, 465:459–
483, 2018.

[18] Luiz FA Brito, Bruno AN Travençolo, and Marcelo K Albertini. A review of in-memory
space-efficient data structures for temporal graphs. arXiv preprint arXiv:2204.12468, 2022.

[19] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575–577, 1973.

[20] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. In Proceedings of the 10th International Conference on Ad-
Hoc, Mobile, and Wireless Networks, ADHOC-NOW’11, page 346–359, Berlin, Heidelberg,
2011. Springer-Verlag.

17



[21] Remy Cazabet, Frederic Amblard, and Chihab Hanachi. Detection of overlapping communi-
ties in dynamical social networks. In 2010 IEEE Second International Conference on Social
Computing, pages 309–314, 2010.

[22] Remy Cazabet and Giulio Rossetti. Challenges in community discovery on temporal networks.
In Temporal Network Theory, pages 181–197. Springer, 2019.

[23] Wenju Chen, Kun Guo, and Yuzhong Chen. Adaptive seed expansion based on composite
similarity for community detection in attributed networks. In CCF Conference on Computer
Supported Cooperative Work and Social Computing, pages 214–227. Springer, 2022.

[24] Zhengzhang Chen, Kevin A. Wilson, Ye Jin, William Hendrix, and Nagiza F. Samatova.
Detecting and tracking community dynamics in evolutionary networks. In 2010 IEEE Inter-
national Conference on Data Mining Workshops, pages 318–327, 2010.

[25] Mário Cordeiro, Rui Portocarrero Sarmento, and Joao Gama. Dynamic community detection
in evolving networks using locality modularity optimization. Social Network Analysis and
Mining, 6(1):1–20, 2016.

[26] Narimene Dakiche, Fatima Benbouzid-Si Tayeb, Yahya Slimani, and Karima Benatchba.
Tracking community evolution in social networks: A survey. Information Processing and
Management, 56(3):1084–1102, 2019.

[27] Daniel J DiTursi, Gaurav Ghosh, and Petko Bogdanov. Local community detection in dynamic
networks. In 2017 IEEE International Conference on Data Mining (ICDM), pages 847–852.
IEEE, 2017.

[28] J R Driscoll, N Sarnak, D D Sleator, and R E Tarjan. Making data structures persistent. In
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing, STOC ’86,
page 109–121, New York, NY, USA, 1986. Association for Computing Machinery.

[29] Bojan Evkoski, Igor Mozetič, Nikola Ljubešić, and Petra Kralj Novak. Community evolution
in retweet networks. Plos one, 16(9):e0256175, 2021.

[30] Reza Fathi, Anisur Rahaman Molla, and Gopal Pandurangan. Efficient distributed community
detection in the stochastic block model. In 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), pages 409–419. IEEE, 2019.

[31] Md Abdul Motaleb Faysal and Shaikh Arifuzzaman. Distributed community detection in large
networks using an information-theoretic approach. In 2019 IEEE International Conference on
Big Data (Big Data), pages 4773–4782. IEEE, 2019.

[32] Dongqi Fu, Dawei Zhou, and Jingrui He. Local motif clustering on time-evolving graphs. In
Proceedings of the 26th ACM SIGKDD International conference on knowledge discovery &
data mining, pages 390–400, 2020.

[33] Wenhao Gao, Wenjian Luo, and Chenyang Bu. Evolutionary community discovery in dynamic
networks based on leader nodes. In 2016 International Conference on Big Data and Smart
Computing (BigComp), pages 53–60, 2016.

[34] Laetitia Gauvin, André Panisson, and Ciro Cattuto. Detecting the community structure and
activity patterns of temporal networks: A non-negative tensor factorization approach. PLOS
ONE, 9(1):e86028, 2014.

[35] Amir Ghasemian, Pan Zhang, Aaron Clauset, Cristopher Moore, and Leto Peel. Detectability
thresholds and optimal algorithms for community structure in dynamic networks. Physical
Review X, 6(3):031005, 2016.

[36] Maria Giatsoglou and Athena Vakali. Capturing social data evolution using graph clustering.
IEEE Internet Computing, 17(1):74–79, Jan 2013.

18



[37] Changwei Gong, Changhong Jing, Yanyan Shen, and Shuqiang Wang. Dynamic com-
munity detection via adversarial temporal graph representation learning. arXiv preprint
arXiv:2207.03580, 2022.

[38] Derek Greene, Donal Doyle, and Padraig Cunningham. Tracking the evolution of communities
in dynamic social networks. In 2010 international conference on advances in social networks
analysis and mining, pages 176–183. IEEE, 2010.

[39] Chonghui Guo, Jiajia Wang, and Zhen Zhang. Evolutionary community structure discovery in
dynamic weighted networks. Physica A: Statistical Mechanics and its Applications, 413:565–
576, 2014.

[40] Kun Guo, Ling He, Jiangsheng Huang, Yuzhong Chen, and Bing Lin. A local dynamic com-
munity detection algorithm based on node contribution. In CCF Conference on Computer
Supported Cooperative Work and Social Computing, pages 363–376. Springer, 2019.

[41] Qian Guo, Lei Zhang, Bin Wu, and Xuelin Zeng. Dynamic community detection based on
distance dynamics. In 2016 IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining (ASONAM), pages 329–336, 2016.

[42] Tanja Hartmann, Andrea Kappes, and Dorothea Wagner. Clustering evolving networks. In
Algorithm engineering, pages 280–329. Springer, 2016.

[43] Pascal Held and Rudolf Kruse. Detecting overlapping community hierarchies in dynamic
graphs. In 2016 IEEE/ACM International Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), pages 1063–1070. IEEE, 2016.

[44] Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Enumerating
maximal cliques in temporal graphs. In 2016 IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining (ASONAM), pages 337–344. IEEE, 2016.

[45] Paul W Holland and Samuel Leinhardt. Local structure in social networks. Sociological
methodology, 7:1–45, 1976.

[46] Yanmei Hu, Yingxi Zhang, Xiabing Wang, Jing Wu, and Bin Duo. A local seeding algorithm
for community detection in dynamic networks. In International Conference on Advanced Data
Mining and Applications, pages 97–112. Springer, 2022.

[47] Xinyu Huang, Dongming Chen, Tao Ren, and Dongqi Wang. A survey of community detection
methods in multilayer networks. Data Mining and Knowledge Discovery, 35:1–45, 2021.

[48] San-Chuan Hung, Miguel Araujo, and Christos Faloutsos. Distributed community detection
on edge-labeled graphs using spark. In 12th International Workshop on Mining and Learning
with Graphs (MLG), volume 113, 2016.

[49] Saeed Haji Seyed Javadi, Pedram Gharani, and Shahram Khadivi. Detecting community struc-
ture in dynamic social networks using the concept of leadership. In Sustainable interdependent
networks, pages 97–118. Springer, 2018.

[50] Tao Jia, Chenxi Cai, Xin Li, Xi Luo, Yuanyu Zhang, and Xuesong Yu. Dynamical commu-
nity detection and spatiotemporal analysis in multilayer spatial interaction networks using
trajectory data. International Journal of Geographical Information Science, pages 1–22, 2022.

[51] Xun Jian, Xiang Lian, and Lei Chen. On efficiently detecting overlapping communities over
distributed dynamic graphs. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE), pages 1328–1331. IEEE, 2018.

[52] Kaveh Kadkhoda Mohammadmosaferi and Hassan Naderi. Evolution of communities in dy-
namic social networks: An efficient map-based approach. Expert Systems with Applications,
147:113221, 2020.

19



[53] Reihaneh Rabbany Khorasgani, Jiyang Chen, and Osmar R Zaiane. Top leaders community
detection approach in information networks. In 4th SNA-KDD workshop on social network
mining and analysis. Citeseer, 2010.

[54] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing
community detection algorithms. Physical review E, 78(4):046110, 2008.

[55] Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams
for the modeling of interactions over time. Social Network Analysis and Mining, 8:1–29, 2018.

[56] Pei Lee, Laks V.S. Lakshmanan, and Evangelos E. Milios. Incremental cluster evolution
tracking from highly dynamic network data. In 2014 IEEE 30th International Conference on
Data Engineering, pages 3–14, 2014.

[57] Jingyong Li, Lan Huang, Tian Bai, Zhe Wang, and Hongsheng Chen. Cdbia: A dynamic
community detection method based on incremental analysis. In 2012 International Conference
on Systems and Informatics (ICSAI2012), pages 2224–2228. IEEE, 2012.

[58] Weimin Li, Xiaokang Zhou, Chao Yang, Yuting Fan, Zhao Wang, and Yanxia Liu. Multi-
objective optimization algorithm based on characteristics fusion of dynamic social networks
for community discovery. Information Fusion, 79:110–123, 2022.

[59] Panagiotis Liakos, Katia Papakonstantinopoulou, Alexandros Ntoulas, and Alex Delis. Rapid
detection of local communities in graph streams. IEEE Transactions on Knowledge and Data
Engineering, 2020.

[60] Panagiotis Liakos, Katia Papakonstantinopoulou, Theodoros Stefou, and Alex Delis. On com-
pressing temporal graphs. 05 2022.

[61] Hao Liu, Langzhou He, Fan Zhang, Zhen Wang, and Chao Gao. Dynamic community detection
over evolving networks based on the optimized deep graph infomax. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 32(5):053119, 2022.

[62] Jiaxu Liu, Yingxia Shao, and Sen Su. Multiple local community detection via high-quality
seed identification over both static and dynamic networks. Data Science and Engineering,
6(3):249–264, 2021.

[63] Catherine Matias and Vincent Miele. Statistical clustering of temporal networks through a
dynamic stochastic block model series b statistical methodology. 2017.

[64] Catherine Matias, Tabea Rebafka, and Fanny Villers. A semiparametric extension of the
stochastic block model for longitudinal networks. Biometrika, 105(3):665–680, 2018.

[65] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a vertex: a survey
of vertex-centric frameworks for large-scale distributed graph processing. ACM Computing
Surveys (CSUR), 48(2):1–39, 2015.

[66] Matteo Morini, Patrick Flandrin, Eric Fleury, Tommaso Venturini, and Pablo Jensen. Reveal-
ing evolutions in dynamical networks. arXiv preprint arXiv:1707.02114, 2017.

[67] Apostolos N. Papadopoulos and Georgios Tzortzidis. Distributed time-based local community
detection. In 24th Pan-Hellenic Conference on Informatics, pages 390–393, 2020.

[68] Eisha Nathan, Anita Zakrzewska, Jason Riedy, and David A Bader. Local community detection
in dynamic graphs using personalized centrality. Algorithms, 10(3):102, 2017.

[69] Nam P. Nguyen, Thang N. Dinh, Sindhura Tokala, and My T. Thai. Overlapping communities
in dynamic networks: Their detection and mobile applications. In Proceedings of the 17th
Annual International Conference on Mobile Computing and Networking, MobiCom ’11, page
85–96, New York, NY, USA, 2011. Association for Computing Machinery.

20



[70] Nam P. Nguyen, Thang N. Dinh, Ying Xuan, and My T. Thai. Adaptive algorithms for detect-
ing community structure in dynamic social networks. In 2011 Proceedings IEEE INFOCOM,
pages 2282–2290, 2011.

[71] Gergely Palla, Albert-László Barabási, and Tamás Vicsek. Quantifying social group evolution.
Nature, 446(7136):664–667, Apr 2007.

[72] Gergely Palla, Imre Derényi, Illés J. Farkas, and Tamás Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature, 435:814–818, 2005.

[73] Harris Papadakis, Costas Panagiotakis, and Paraskevi Fragopoulou. Distributed detection of
communities in complex networks using synthetic coordinates. Journal of Statistical Mechan-
ics: Theory and Experiment, 2014(3):P03013, 2014.

[74] Guo-Jun Qi, Charu C. Aggarwal, and Thomas S. Huang. Online community detection in social
sensing. In Proceedings of the Sixth ACM International Conference on Web Search and Data
Mining, WSDM ’13, page 617–626, New York, NY, USA, 2013. Association for Computing
Machinery.

[75] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to
detect community structures in large-scale networks. Physical review E, 76(3):036106, 2007.

[76] M Amin Rigi, Irene Moser, M Mehdi Farhangi, and Chengfei Lui. Finding and tracking local
communities by approximating derivatives in networks. World Wide Web, 23(3):1519–1551,
2020.

[77] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

[78] Giulio Rossetti. RDYN: graph benchmark handling community dynamics. Journal of Complex
Networks, 5(6):893–912, 07 2017.

[79] Giulio Rossetti and Rémy Cazabet. Community discovery in dynamic networks: A survey.
ACM Comput. Surv., 51(2), feb 2018.

[80] Giulio Rossetti, Luca Pappalardo, Dino Pedreschi, and Fosca Giannotti. Tiles: an online algo-
rithm for community discovery in dynamic social networks. Machine Learning, 106(8):1213–
1241, 2017.

[81] Hadiseh Safdari, Martina Contisciani, and Caterina De Bacco. Reciprocity, community detec-
tion, and link prediction in dynamic networks. Journal of Physics: Complexity, 3(1):015010,
2022.

[82] Matthew Saltz, Arnau Prat-Pérez, and David Dominguez-Sal. Distributed community detec-
tion with the wcc metric. In Proceedings of the 24th International Conference on World Wide
Web, pages 1095–1100, 2015.

[83] Mahsa Seifikar, Saeed Farzi, and Masoud Barati. C-blondel: An efficient louvain-based dy-
namic community detection algorithm. IEEE Transactions on Computational Social Systems,
7(2):308–318, 2020.

[84] Jiaxing Shang, Lianchen Liu, Feng Xie, Zhen Chen, Jiajia Miao, Xuelin Fang, and Cheng Wu.
A real-time detecting algorithm for tracking community structure of dynamic networks, 2014.

[85] Junming Shao, Zhichao Han, Qinli Yang, and Tao Zhou. Community detection based on
distance dynamics. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1075–1084, 2015.

[86] Xing Su, Jianjun Cheng, Haijuan Yang, Mingwei Leng, Wenbo Zhang, and Xiaoyun Chen.
Incnsa: Detecting communities incrementally from time-evolving networks based on node sim-
ilarity. International Journal of Modern Physics C, 31(07):2050094, 2020.

21



[87] Heli Sun, Jianbin Huang, Xin Zhang, Jiao Liu, Dong Wang, Huailiang Liu, Jianhua Zou, and
Qinbao Song. Incorder: Incremental density-based community detection in dynamic networks.
Knowledge-Based Systems, 72:1–12, 2014.

[88] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu. Graphscope:
Parameter-free mining of large time-evolving graphs. KDD ’07, page 687–696, New York,
NY, USA, 2007. Association for Computing Machinery.

[89] Yang Sun, Junhua Tang, Li Pan, and Jianhua Li. Matrix based community evolution
events detection in online social networks. In 2015 IEEE international conference on smart
city/SocialCom/SustainCom (SmartCity), pages 465–470. IEEE, 2015.

[90] Zejun Sun, Jinfang Sheng, Bin Wang, Aman Ullah, and FaizaRiaz Khawaja. Identifying
communities in dynamic networks using information dynamics. Entropy, 22(4):425, 2020.

[91] ZeJun Sun, YaNan Sun, Xinfeng Chang, Feifei Wang, Zhongqiang Pan, Guan Wang, and
Jianfen Liu. Dynamic community detection based on the matthew effect. Physica A: Statistical
Mechanics and its Applications, page 127315, 2022.

[92] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing
well-connected communities. Scientific reports, 9(1):1–12, 2019.

[93] Qinna Wang and Eric Fleury. Mining time-dependent communities. LAWDN - Latin-American
Workshop on Dynamic Networks, 11 2010.

[94] Yan-Jiao Wang, Jia-Xu Song, and Peng Sun. Research on dynamic community detection
method based on an improved pity beetle algorithm. IEEE Access, 10:43914–43933, 2022.

[95] Yi Wang, Bin Wu, and Nan Du. Community evolution of social network: Feature, algorithm
and model, 2008.

[96] Simeng Wu, Jun Gong, Fei Liu, and Laizong Huang. Multi-step locally expansion detec-
tion method using dispersed seeds for overlapping community. In ITM Web of Conferences,
volume 47, page 02008. EDP Sciences, 2022.

[97] Jierui Xie, Mingming Chen, and Boleslaw K Szymanski. Labelrankt: Incremental community
detection in dynamic networks via label propagation. In Proceedings of the workshop on
dynamic networks management and mining, pages 25–32, 2013.

[98] Jierui Xie and Boleslaw K Szymanski. Labelrank: A stabilized label propagation algorithm
for community detection in networks. In 2013 IEEE 2nd Network Science Workshop (NSW),
pages 138–143. IEEE, 2013.

[99] Jierui Xie, Boleslaw K Szymanski, and Xiaoming Liu. Slpa: Uncovering overlapping commu-
nities in social networks via a speaker-listener interaction dynamic process. In 2011 ieee 11th
international conference on data mining workshops, pages 344–349. IEEE, 2011.

[100] Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, and Rong Jin. A bayesian approach
toward finding communities and their evolutions in dynamic social networks. pages 990–1001,
04 2009.

[101] Yanhao Yang, Meng Wang, David Bindel, and Kun He. Streaming local community detection
through approximate conductance. arXiv preprint arXiv:2110.14972, 2021.

[102] Ying Yin, Yuhai Zhao, He Li, and Xiangjun Dong. Multi-objective evolutionary clustering for
large-scale dynamic community detection. Information Sciences, 549:269–287, 2021.

[103] Anita Zakrzewska and David A. Bader. A dynamic algorithm for local community detection in
graphs. ASONAM ’15, page 559–564, New York, NY, USA, 2015. Association for Computing
Machinery.

[104] Anita Zakrzewska and David A Bader. Tracking local communities in streaming graphs with
a dynamic algorithm. Social Network Analysis and Mining, 6(1):1–16, 2016.

22



[105] Neda Zarayeneh and Ananth Kalyanaraman. A fast and efficient incremental approach toward
dynamic community detection. In Proceedings of the 2019 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining, ASONAM ’19, page 9–16, New
York, NY, USA, 2019. Association for Computing Machinery.

[106] Neda Zarayeneh, Nitesh Kumar, Ananth Kalyanaraman, and Aurora Clark. Dynamic commu-
nity detection decouples hierarchical timescale behavior of complex chemical systems. 2022.

[107] Hedia Zardi, Bushra Alharbi, Walid Karamti, Hanen Karamti, and Eatedal Alabdulkreem.
Detection of community structures in dynamic social networks based on message distribution
and structural/attribute similarities. IEEE Access, 9:67028–67041, 2021.

[108] Xiangxiang Zeng, Wen Wang, Cong Chen, and Gary G. Yen. A consensus community-based
particle swarm optimization for dynamic community detection. IEEE Transactions on Cyber-
netics, 50(6):2502–2513, 2020.

[109] Zhongying Zhao, Chao Li, Xuejian Zhang, Francisco Chiclana, and Enrique Herrera
Viedma. An incremental method to detect communities in dynamic evolving social networks.
Knowledge-Based Systems, 163:404–415, 2019.

[110] Di Zhuang, J Morris Chang, and Mingchen Li. Dynamo: Dynamic community detection by in-
crementally maximizing modularity. IEEE Transactions on Knowledge and Data Engineering,
33(5):1934–1945, 2019.

23


	Introduction
	Related Work
	Basic Notions on Temporal Graphs
	Unified Frameworks
	The Notion of Time

	Detecting Communities in Temporal Networks: Classification
	Global Techniques in Community Detection in Temporal Networks
	Community Detection from Scratch and Match
	Dependent or Temporal Trade-off Community Detection
	Simultaneous or Offline Community Detection
	Online Community Detection in Fully Temporal Networks and in Growing Temporal Networks

	Local Techniques in Community Detection in Temporal Networks
	Community Detection in Temporal Networks using Seed Nodes
	Vertex-Centric Distributed Community Detection in Temporal Networks


	Datasets
	Real Datasets
	Synthetic Generators

	Conclusion

