Triangle Counting in Large Historical Graphs®

Regular paper’

Konstantinos Christopoulos
Computer Engineering and Informatics
University of Patras
Rion, Achaia, GREECE
kchristopou@upnet.gr

Agorakis Bompotas
Computer Engineering and Informatics
University of Patras
Rion, Achaia, GREECE
mpompotas@ceid.upatras.gr

Abstract

Counting local topological structures, such as triangles, is crucial
to analyse large-scale networks and to understand the evolution of
graphs. Triangles are fundamental for computing transitivity and
for applications such as community detection and link prediction.
Despite the importance of triangle counting, traditional algorithms
struggle with scalability in networks with millions or billions of
vertices, prompting the development of approximation methods
and distributed solutions.

In this paper, we present a distributed algorithm that can han-
dle historical graphs in order to count triangles communities in a
query time interval. We introduce a pioneering approach to triangle
counting in historical graphs, a novel concept that incorporates
temporal dimensions into traditional graph models. Our method,
which has not been previously explored, uniquely counts triangles
within user-defined time intervals, offering new insights into the
evolution of network interactions. Experiments with real-world
historical datasets validate the effectiveness of our approach in
capturing temporal patterns, marking a significant advancement in
the field, and setting the stage for future research.

CCS Concepts

« Computer systems organization — Embedded systems.

Keywords
Triangle Counting, Historical Graphs, Distributed Computing

“Produces the permission block, and copyright information
The full version of the author’s guide is available as acmart. pdf document

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC’25, March 31 -April 4, 2025, Sicily, Italy

© 2025 ACM.

ACM ISBN 979-8-4007-0629-5/25/03
https://doi.org/https://doi.org/10.1145/3672608.3707982

Evaggelos Daskalakis
Computer Engineering and Informatics
University of Patras
Rion, Achaia, GREECE
e_daskalakis@upnet.gr

Konstantinos Tsichlas
Computer Engineering and Informatics
University of Patras
Rion, Achaia, GREECE
ktsichlas@ceid.upatras.gr

ACM Reference Format:

Konstantinos Christopoulos, Evaggelos Daskalakis, Agorakis Bompotas,
and Konstantinos Tsichlas. 2025. Triangle Counting in Large Historical
Graphs: Regular paper. In Proceedings of ACM SAC Conference (SAC’25).
ACM, New York, NY, USA, Article 4, 7 pages. https://doi.org/https://doi.org/
10.1145/3672608.3707982

1 Introduction

Networks serve as fundamental models for representing entities
and their relationships across diverse domains such as biology, com-
munication, social systems, and transportation. Despite the varying
structural characteristics of networks in these fields, certain topo-
logical patterns, particularly triangles, are frequently observed. The
prevalence of triangles in real-world networks has spurred the de-
velopment of metrics like the clustering coefficient and transitivity
ratio, which are used to characterize and analyze network struc-
tures. These triangles are not only important for understanding
network topology but also have significant implications in social
science theories, such as homophily and transitivity, which explore
the dynamics of social relationships.

A static graph is defined as a graph where the relationships,
or edges, between nodes, or vertices, remain constant over time.
In static graphs, triangle counting involves identifying all sets of
three nodes that form a complete subgraph, or triangle, where
each pair of nodes is interconnected. This process is vital because
triangles are fundamental components that reveal insights into
the network’s local structure and connectivity. For example, in
social networks, the presence of triangles can indicate tightly-knit
groups or communities, shedding light on social cohesion and group
dynamics.

Historical graphs extend the static graph model by integrating a
temporal dimension, capturing how edges between nodes change
over time. Formally, in a historical graph, an edge is characterized
by a time interval during which it exists. This temporal aspect
introduces additional complexity to triangle counting. In historical
graphs, the objective is to determine the number of triangles that
exist within specific time intervals. This involves not only tracking
the presence of edges but also understanding how triangles form
and dissolve as the network evolves. For instance, in a historical
social network, triangles might emerge during periods of high

https://doi.org/https://doi.org/10.1145/3672608.3707982
https://doi.org/https://doi.org/10.1145/3672608.3707982
https://doi.org/https://doi.org/10.1145/3672608.3707982

SAC’25, March 31 -April 4, 2025, Sicily, Italy

activity and fade as relationships evolve, reflecting the dynamic
nature of social interactions.

The challenge of triangle counting is significantly amplified
when transitioning from static to historical graphs due to the added
temporal dimension. While static graphs provide a snapshot of
network structure, historical graphs require continuous analysis to
account for temporal changes in edge existence. This necessitates
the development of advanced methods capable of handling the
dynamic relationships and providing insights into the temporal
evolution of network structures.

In this paper, we present a novel approach tailored for triangle
counting in historical graphs. Our method addresses the complexi-
ties introduced by the temporal nature of these graphs, offering a
framework for accurately counting triangles within user-defined
time intervals. This work advances research in historical graph
analysis and paves the way for future exploration in the field of
temporal network analysis.

2 Related Work

The existing literature covers triangle counting in both static and
dynamic graphs. However, there is no research specifically focused
on historical graphs, considering edge time intervals and the periods
during which an edge remains active. In the following section, we
review recent work in this area, spanning approaches from sequen-
tial to parallel, single-machine to distributed, exact to approximate,
and offline to streaming methodologies.

In this paper [4], the authors presented an algorithm named
BA to anonymise triangle counts on large graphs using node-
differential privacy. They developed two methods, Tr-Histogram
and TC-Histogram, to publish these triangle counts. After con-
ducting a theoretical analysis, they decided to evaluate the two
approaches. Furthermore, they showed that the cumulative distri-
bution TC-Histogram delivers superior performance compared to
the triangle count distribution Tr-Histogram. They also extended
their research to the local clustering coefficient, which they pub-
lished by categorising the coefficients into k distinct groups.

In [18], the authors introduce DOULION, an algorithm that em-
ploys random sampling to create a smaller, weighted graph, provid-
ing a triangle count that closely approximates the actual number.
They emphasize that DOULION complements existing triangle
counting methods by serving as an effective preprocessing step for
both streaming and non-streaming algorithms. The algorithm is
noted for its high parallelizability, achieving optimal performance
in Hadoop environments. Experiments with real-world graphs re-
veal that DOULION delivers nearly perfect accuracy across various
probability settings and can accelerate triangle counting by approx-
imately 130 times compared to a basic exact counting algorithm
when used as an initial step.

In this work [8], the authors present a highly efficient triangle-
counting approximation algorithm that is designed to be adapted
to the semistreaming model as described in [6]. The core idea be-
hind their approach is the innovative integration of the sampling
algorithm from [16, 18] with a method that partitions the set of ver-
tices into high- and low-degree subsets, as proposed by [2]. They
apply their methods to a range of networks with million edges

Konstantinos Christopoulos, Evaggelos Daskalakis, Agorakis Bompotas, and Konstantinos Tsichlas

and achieve exceptional results, exceeding the performance of cur-
rent triangle-counting techniques. Additionally, they introduce a
method for triangle counting that leverages random projection and
establish a sufficient condition to ensure that the estimates have
low variance.

Authours in [7] introduced TriX, a highly scalable and distributed
algorithm for triangle counting designed for external memory use.
TriX utilizes an innovative 2-D managed partitioning scheme and a
parallel binary search method for intersections optimized for GPUs.
The algorithm effectively scales across multiple GPUs, enabling
the counting of triangles in extremely large graphs with billions of
nodes and edges in a relatively short time. It demonstrates a high
performance rate, processing millions of traverse edges per second.

Authors in [17] present two algorithms: Eigen-Triangle for count-
ing the total number of triangles in a graph, and EigenTriangleLocal
for counting triangles that include a specific node. They demon-
strate that both algorithms achieve high accuracy and are up to
approximately 1000 times faster on real-world graphs. The key
innovation is the Eigen-Triangle algorithm, which links triangle
counts to the eigenvalues of the adjacency matrix, focusing on
the significant contribution of the top eigenvalues. This approach
leverages advanced, parallelizable eigenvalue algorithms, making
it well-suited for extremely large graphs. The method can be effi-
ciently applied to petabyte-scale graphs using existing eigenvalue
implementations like Lanczos. Additionally, the authors discover
two new power laws, Degree-Triangle and TriangleParticipation,
which reveal unexpected properties.

Two advanced MPI-based distributed memory parallel algorithms
for efficiently counting triangles in large graphs are introduced in
[3]. The first algorithm utilizes overlapping partitioning and load
balancing to provide rapid parallel processing, accurately comput-
ing the number of triangles in a network with 10 billion edges in
just 16 minutes. The second algorithm emphasizes space efficiency
by partitioning the network into non-overlapping segments, which
significantly reduces memory usage. Both algorithms feature an in-
novative approach to minimizing communication costs, enhancing
both space and runtime efficiency. Additionally, these methods are
applicable for listing all triangles in a graph, calculating node clus-
tering coeflicients, and can be adapted for parallel approximation
using edge sparsification.

The work in [10] presents both deterministic and random sam-
pling techniques for quickly discovering the most significant 3-
cliques (triangles) in weighted graphs. For instance, one of their
algorithms can identify the top 1,000 triangles with the highest
weights in a graph containing billions of edges in just thirty seconds
on a standard server, making it vastly quicker than current rapid
enumeration methods. These innovations facilitate scalable pattern
extraction in weighted graphs. Similar paper for top k weighted
triangles we can find in [15].

The authors in [13] introduce a new MapReduce algorithm,
known as the TTP (Triangle Type Partition) algorithm, which is
based on graph partitioning to efficiently count triangles in large-
scale graphs. This algorithm significantly enhances efficiency by
classifying triangles into three distinct types and processing them
accordingly, which greatly reduces data redundancy. Experimen-
tal evaluations, including tests on both synthetic and real-world
datasets with millions of nodes and billions of edges, show that

SIG Proceedings Paper in LaTeX Format

the TTP algorithm outperforms previous MapReduce algorithms in
most cases. Notably, it demonstrates more than double the speed
on a Twitter dataset, with its performance advantage increasing as
graphs become larger and denser.

In [5] is presented an adaptive triangle-counting algorithm uti-
lizing SQL queries, tailored for large-scale graphs. This method
integrates smoothly into data analysis workflows and operates effi-
ciently within distributed DBMS, big data platforms, and analytical
tools. A central feature is the advanced vertex partitioning strategy,
which assigns graph data to cluster machines without duplication
or data exchange, facilitating local triangle detection within each
partition. The algorithm excels with skewed graphs, offering bal-
anced load distribution and significant performance improvements
over conventional approaches like Spark GraphX and G-thinker.
They also introduce a Python-based alternative using Pandas and
MPI, which shows strong performance on small to medium datasets.
Experimental results confirm the algorithm’s competitiveness with
specialized graph analysis engines.

3 Triangle Counting in Historical Graphs

3.1 Preliminaries

Let G = (V1, ET) be a historical network. The set of historical nodes
Vr consists of a set of nodes along with their time intervals, that
is V7 ¢ V x N2, The set of historical edges Er is a set of edges
along with their time intervals, that is ET C E X N2, where E
contains all possible (|‘2’|) undirected edges. Note that we consider
nodes and edges that have a single valid time interval, but it is
easy to generalize to a set of valid time intervals. The preceding
definitions mean that each node v € V (and edge e € E) has a time
interval attached [t,SS), tigf)] (similarly [t,gs), t,gf)]) (where (s) and
(f) stand for start and finish respectively) that dictates the time
instances where node v (edge e) is existent. Thus, if t ¢ [tzgs), tz(,f)],
then v is not existent at time ¢. V;; C V contains all nodes that
have a time interval that spans the query interval [t;, t;]. The time
interval of each edge is by definition a subset of the time interval
of the respective vertices. In case of multiple time intervals, we
have to define the borders of each interval accordingly, to avoid
overlaps. For example, each interval should be open at the left and
closed at the right. The convention we make is that a time point ¢
is represented by (¢, t].

Assume that by N;;(v) we represent the neighborhood of node v
in the query time interval [t;, t;]. Note that Nj;(v) may even be the
empty set for specific query time intervals. The routing table r(v)
of node v, contains all historical edges to other nodes in G. This
means that r(v) contains all edges and nodes along with their time
interval. By r;j(v), we represent the part of this table that contains
historical edges with time intervals that intersect the query time
interval [t;, t;], that is all edges that point to nodes that belong to
Nij(v).

Our algorithm is developed within the framework of the LocaL
distributed model [11]. In this model, graph nodes are uniquely
identified by distinct IDs and communicate with their neighboring
nodes via messages of unlimited size. Both communication and
computation occur synchronously, and the distributed system is
assumed to be fault-free, with nodes considered to possess infinite

SAC’25, March 31 -April 4, 2025, Sicily, Italy

computational power. In this work, we focus exclusively on histori-
cal edges, not historical nodes. This means that while nodes remain
valid at all times, edges are only valid during specific time intervals.

3.2 Problem Formulation

In a vertex-centric system, as described by Kosmatopoulos et al.[9],
the historical graph is organized to efficiently store the entire evo-
lution of a node and its adjacent edges over time. This system is
designed for space efficiency and optimized query performance,
particularly for temporal queries that involve both structural and
temporal dimensions of the graph. In this model, the entire history
of a node, including its adjacent edges and their states across dif-
ferent time periods, is stored within the node itself. This compact
representation makes it possible to efficiently perform both up-
dates and queries on the graph, particularly in scenarios involving
dynamic or evolving graphs.

Triangle Counting Over a Time Interval

The main task at hand is to efficiently compute triangle counts in
a temporal graph for a specific time interval, [t;, ¢;]. In a graph, a
triangle is formed by three nodes that are all mutually connected
by edges. However, in the temporal context, edges and nodes may
have varying lifespans, meaning they are only valid or active during
specific time periods. This adds a layer of complexity to triangle
counting as we need to account for both structural relationships
and temporal validity.

When the query asks for triangle counting at a specific time
instance t;, this problem reduces to the traditional triangle counting
algorithm applied to a single snapshot of the graph at time ¢;. In
this case, the algorithm identifies all triangles that exist at that
moment, excluding nodes or edges that are not valid at t;. This is
a static graph triangle counting problem, and existing algorithms
such as those discussed in the work of Pagh et al. [12] can be
applied efficiently. When the query spans a time interval [¢;, ¢;],
we consider two different approaches to measure the number of
triangles:

1. Aggregate Number of Triangles

This approach introduces a more nuanced method of triangle count-
ing by considering how long a triangle exists within the time inter-
val [t;, tj]. Instead of simply counting whether a triangle exists, it
weights each triangle based on the overlap between the lifespans
of its edges and the query interval.

For example, suppose an edge ey, is active between nodes a
and b from #; to ts, and the query interval is [2,6]. In this case,
eqp 1s valid for 4 out of the 5 time instances in the interval [2, 6],
so it would be assigned a weight of %. This weight reflects the
proportion of the time interval during which the edge contributes
to forming a triangle. For each edge that could potentially form
a triangle, calculate how long it is active within the time interval
[t tj]. If an edge is entirely outside the interval, it contributes
nothing. Otherwise, compute its weight based on the proportion of
the interval during which it is valid. For every potential triangle,
check whether all three constituent edges are valid during some
overlapping portion of the interval. Then, sum up the weights of the

SAC’25, March 31 -April 4, 2025, Sicily, Italy

edges that participate in the triangle. The total aggregate triangle
count is the sum of the weighted contributions of all valid triangles.

This method provides a more detailed understanding of the tri-
angle structure in a dynamic graph by accounting for the temporal
persistence of triangles, rather than just their presence or absence.
Triangles that persist longer within the time interval contribute
more heavily to the final count, reflecting their significance during
the specified time window.

Figure 1: Illustration of graph transformation over a specific
time interval to estimate the total number of triangles. a)
The initial network G, where each edge is associated with
a time interval. b) The transformed graph G for the query
time interval [2, 6], with a weight of 1 assigned to each active
edge.

>

Figure 2: Illustration of graph transformation over a specific
time interval to estimate the aggregate number of triangles.
a) The initial network G, where each edge is associated with
a time interval. b) The transformed graph G for the query
time interval [2, 6], showing the corresponding weights on
each active edge.

Definition 3.1. The observed interval of an edge is the inter-
section between the query time interval and the valid time interval
of this edge.

When an edge is not valid at any time instance of the query
time interval, then it is non-existent during this time interval. Con-
sequently, the unweighted historical graph is transformed into
a weighted static graph for a particular time interval, where the
weight of each node/edge represents the ratio of the size of its
observed interval to the size of the total query interval.

Definition 3.2. The observation ratio of an object (edge/triangle)
is the ratio between the size of the observed interval of the object
and the size of the query time interval defined by the user.

Konstantinos Christopoulos, Evaggelos Daskalakis, Agorakis Bompotas, and Konstantinos Tsichlas

In Figure 2, we illustrate a temporal network along with the
corresponding observation ratios. The maximum weight of an edge
is 1, which occurs when the edge’s time interval fully overlaps with
the query interval. Conversely, the minimum observation ratio is
zero when the time intervals of the edge and the query are disjoint,
resulting in the absence of an edge.

2. Total Number of Triangles

In this approach, the goal is to count all triangles that exist at any
point during the time interval [¢;, t;]. Here, a triangle is considered
valid if all three edges that form the triangle are active simultane-
ously at some time within the interval. This approach does not take
into account how long the triangle persists in the graph during
the interval. It simply checks whether a triangle is present at any
moment within the interval.

To compute this, we can iterate over each node in the graph,
retrieve its historical edges, and check for periods during which all
three edges of a potential triangle are active together. If there is any
overlap in the lifespans of the three edges, the triangle is counted.

For example, if an edge e,;, between nodes a and b is active from
ty to t4 and the other two edges ep. and e, also overlap during
this interval, then the triangle formed by nodes a, b, and ¢ will be
counted. Figure 1 presents two possible scenarios: either the edge
is active at least once within the query interval, in which case its
weight is always 1, or it is inactive throughout the interval, meaning
no edge is present.

Although the algorithms developed in this paper focus on the
total number of triangles, the aggregate method offers useful defini-
tions that enhance the understanding of the approaches described
below.

3.3 Methods of Triangle Counting in Historical
Graphs

In this section, we present three algorithms for counting triangles
in historical graphs, where the temporal dimension plays a crucial
role in determining the validity of edges and their contribution to
triangle formation.

(1) Time-Interval-Based Triangle Counting in historical
Graphs
This method operates without relying on queries and follows
a streamlined process as outlined below:

(a) The algorithm begins by creating neighbor sets for each
vertex in the graph. Each set includes information about
neighboring vertices and the time intervals during which
the edges between them are active.

(b) Next, it joins these neighbor sets with the original graph,
resulting in a new graph where each vertex’s attributes
contain its neighbor set along with their respective time
intervals.

(c) A function is defined to calculate the intersection of time
intervals between edges.

(d) For each edge in the graph, the algorithm checks for the
presence of triangles by examining the time intervals of
the edges. It calculates the number of triangles where all
three vertices are interconnected by edges with overlap-
ping time intervals.

SIG Proceedings Paper in LaTeX Format

(e) Finally, the triangle counts from each vertex are aggre-
gated to obtain the total number of triangles present in
the graph.

This approach provides a method for detecting triangles by
evaluating every possible combination of edges.
The following two methods rely on queries and follow a
streamlined process, detailed as follows

(2) Filtering-based Triangle Counting Algorithm in His-
torical Graphs
This algorithm introduces a crucial difference from the Time-
Interval-Based Triangle Counting method by beginning with
a preliminary filtering of edges based on a specified query
time interval. Only edges that are active within this time
window are retained, creating a subgraph that meets the
temporal criteria. After this initial filtering, the remaining
steps - such as the creation of the neighbour set, the detection
of triangles, and the aggregation - are identical to those of
the time interval-based triangle count method.
By focusing on time-based filtering at the outset,this ap-
proach simplifies the triangle detection process by signifi-
cantly reducing the graph size that needs to be processed.

(3) Thresholding and Filtering-Based Triangle counting
in Historical Graphs
The Thresholding and Filtering-Based Temporal Triangle
Algorithm introduces an additional layer of optimization by
incorporating both filtering based on time intervals and a
thresholding mechanism that evaluates edge relevance.
This algorithm differs significantly from the Time-Filtered
Triangle Counting Algorithm by first applying an overlap
threshold to the edges active during the specified query time
interval. In other words, if the observation ratio is equal to
or greater than the overlap threshold, the edge is considered
valid and can be included in the resulting subgraph produced
by the filtering process. This dual approach enhances effi-
ciency by ensuring that only edges with significant temporal
coherence are included in the analysis, thus further reducing
the size of the graph that needs to be processed.

4 Experiment Design

To assess the performance and scalability of our triangle counting
algorithms, we conduct experiments using three real-world datasets,
each representing a distinct type of network. These datasets en-
compass a variety of network structures and sizes, allowing us
to thoroughly evaluate the algorithms under different conditions.
The datasets include social networks, collaboration networks, and
product networks, all characterized by their undirected edges and
inherent community structures. The primary characteristics of the
datasets used in this study are summarized below:

o com-Youtube: Representing the YouTube online social net-
work, this dataset has 1,134,890 nodes and 2,987,624 edges,
with 3,056,386 triangles. This smaller dataset, relative to
others in the study, allows us to explore the algorithms’ effi-
ciency in sparse networks.

e com-DBLP: The DBLP collaboration network dataset con-
sists of 317,080 nodes and 1,049,866 edges, with 2,224,385
triangles. This graph represents a collaboration network

SAC’25, March 31 -April 4, 2025, Sicily, Italy

where researchers are linked through co-authorship, making
it ideal for testing triangle counting in academic and profes-
sional networks with a moderate community structure.

e com-Amazon: This dataset captures the Amazon product
network, containing 334,863 nodes, 925,872 edges, and 667,129
triangles. Nodes represent products, and edges indicate co-
purchase relationships, offering a scenario with a retail-based
network structure.

These datasets provide a comprehensive foundation for testing
the performance of triangle counting algorithms across a range of
network sizes, edge densities, and community distributions. Each
dataset’s specific structure allows us to explore different challenges,
from large-scale networks with millions of edges to smaller, more
sparse networks. The diversity of these datasets ensures that our
experiments yield insights into the algorithms’ behavior in real-
world scenarios.

Since the datasets used in our experiments are not inherently
temporal or historical, it is necessary to assign time intervals to the
edges in order to simulate dynamic graph behavior. To achieve this,
we associate each edge with a randomly generated time interval us-
ing a uniform distribution, where the start and end times are drawn
from a predefined time range. This approach allows us to introduce
a temporal dimension to the graph, enabling the evaluation of our
triangle counting algorithms in a temporal context. By distributing
time intervals uniformly, we ensure that all edges have equal prob-
ability of being active at any point in time, avoiding biases toward
specific time periods and creating a balanced temporal distribution
across the graph. This artificial temporal assignment is crucial for
testing how well the algorithms perform when handling historical
graphs where edges have varying periods of validity.

The range of each dataset spans from 1 to 100,000. In the first
method, Time-Interval-Based, we do not utilize query time intervals,
as mentioned earlier. In contrast, the other two methods employ
two distinct query time intervals: the first has range 5,000, and the
second 10,000. For the Thresholding and Filtering-Based method,
we established an overlap threshold of 40%. All of these parame-
ters were chosen randomly to obtain preliminary results for the
aforementioned methods.Lastly, for the sake of brevity, we refer to
the Time-Interval-Based method as Tr-Interval, the Filtering-Based
method as Tr-Filtering, and the Thresholding and Filtering-Based
method as Tr-Thresholding. The numbers 1 and 2 in the tables
below correspond to the ranges of 5,000 and 10,000, respectively.

The experiments were conducted in an Apache Spark 3.5.3 en-
vironment running on a small Kubernetes cluster composed of
various commodity hardware PCs. This heterogeneous setup al-
lowed for flexibility, as nodes of differing specifications could work
together, contributing to a robust yet economical test-bed for dis-
tributed processing. The final experimental configuration utilized
12 executor pods, each provisioned with 2 CPU cores and 4 GB of
RAM. This configuration enabled efficient parallel processing and
resource allocation across the cluster, allowing Spark jobs to lever-
age Kubernetes’ orchestration capabilities for load balancing and
fault tolerance. This setup facilitated the effective testing of Spark’s
distributed computing capabilities on a modest-scale cluster.

SAC’25, March 31 -April 4, 2025, Sicily, Italy

4.1 Experimental Results

The tables below present our preliminary results on four real-world
datasets. Each cell in the tables shows both the number of detected
triangles (tr) and the execution time in milliseconds. At first glance,
we can observe that as the dataset size increases, the thresholding
method yields more favorable results. This is logical, as the overlap
threshold leads to a smaller subgraph. When the initial graph is
large, triangles can be counted more efficiently within the reduced
subgraph.

Table 1: Experiments in Amazon and DBLP

Amazon DBLP

Tr-Intervals

286994 tr | 8288ms

957120 tr | 8717ms

Tr-Filtering 1

105703 tr | 12312ms

352710 tr | 9118ms

Tr-Filtering 2

186242 tr | 12791ms

622119 tr | 13041ms

Threshold 1

61916 tr | 6863ms

205998 tr | 10778ms

Threshold 2

90317 tr | 9972ms

302611 tr | 7821ms

Table 2: Experiments in Youtube

Youtube
1325051 tr | 20705ms
494973 tr | 28188ms
864790 tr | 30302ms
291911 tr | 18332ms
420434 tr | 17449ms

Tr-Intervals
Tr-Filtering 1
Tr-Filtering 2

Threshold 1

Threshold 2

The Tr-Interval method consistently demonstrates superior per-
formance in terms of both triangle detection and execution time, par-
ticularly in the Amazon and DBLP datasets, where it detects 286,994
triangles in 8,288 ms and 957,120 triangles in 8,717 ms, respectively.
This makes it the most efficient method for these datasets, par-
ticularly when processing large-scale graphs. In Youtube, it also
identifies a substantial number of triangles (1,325,051) in 20,705 ms,
reaffirming its effectiveness in large graphs.

Both Tr-Filtering 1 and 2 show significantly lower triangle counts
compared to the Tr-Interval method. For example, in Amazon, Tr-
Filtering 1 detects 105,703 triangles in 12,312 ms, while Tr-Filtering
2 detects 186,242 triangles in 12,791 ms. Similarly, in DBLP, Tr
filtering 1 and 2 detect 352,710 and 622,119 triangles respectively,
with execution times higher than Tr-interval. This suggests that
the additional filtering step required by these methods increases
computational overhead, particularly as the graph size grows. The
Youtube dataset shows the same trend, where both Tr-Filtering
methods have the slowest times, with Tr-Filtering 2 taking the
longest (30,302 ms), while Tr-Filtering 1 detects fewer triangles
(494,973) in 28,188 ms.

The threshold-based methods show mixed results across datasets.
In Amazon, both Threshold 1 and Threshold 2 detect the fewest
triangles (61,916 and 90,317, respectively), though Threshold 1 is
the fastest, completing in 6,863 ms. In DBLP, these methods detect
more triangles (205,998 and 302,611) than in Amazon, but with
longer execution times. In the Youtube dataset, Threshold 1 detects
291,911 triangles in 18,332 ms, while Threshold 2 detects 420,434
triangles in 17,449 ms. These results suggest that the thresholding

Konstantinos Christopoulos, Evaggelos Daskalakis, Agorakis Bompotas, and Konstantinos Tsichlas

methods, still perform reasonably well in larger graphs like Youtube
and DBLP.

The results indicate that the Tr-Interval method, in average, ex-
cels in both triangle detection and speed, especially in Amazon and
DBLP graphs. The reason could be that it skips the complex filtering
and thresholding steps, focusing directly on time intervals, which
simplifies the computation. On the other hand, the Tr-Filtering
methods, while more precise in filtering based on time intervals,
struggle with time complexity. Threshold methods appear to offer
a trade-off between computational efficiency and triangle detection
accuracy. In larger datasets, they perform relatively well and in
some cases surpass the Tr-Interval method in speed.

5 Conclusion

In this work, we focus on counting triangles in historical graphs that
include a temporal dimension. Specifically, the edges are associated
with valid time intervals, indicating their existence during specific
time instances. This represents a novel contribution to the field
of Temporal/Historical Graphs by introducing the innovative con-
cept of edge and node activity, which facilitates triangle counting
through the adaptation and extension of existing methodologies.

We aim to build upon the preliminary findings presented in this
paper through a more comprehensive theoretical analysis, includ-
ing an examination of time and computational complexity. In our
theoretical exploration, we will also investigate the implications of
nodes with multiple time intervals.

A significant extension of this research involves utilizing triangle
counting in historical graphs to detect communities. Drawing from
previous works such as [1] and [14], where triangle counting is
applied to undirected plain graphs to discover communities, we
plan to extend and adapt these methods to identify communities
within historical graphs.

Acknowledgment

“This research was supported by the Hellenic Foundation for Re-
search and Innovation (H.F.R.L) under the “2nd Call for HF.R.L Re-
search Projects to support Faculty Members & Researchers” (Project
Number: 3480). ”

References

[1] Tariq Abughofa, Ahmed A Harby, Haruna Isah, and Farhana Zulkernine. 2021.
Incremental community detection in distributed dynamic graph. In 2021 IEEE
Seventh International Conference on Big Data Computing Service and Applications
(BigDataService). IEEE, 50-59.

[2] Noga Alon, Raphael Yuster, and Uri Zwick. 1997. Finding and counting given

length cycles. Algorithmica 17, 3 (1997), 209-223.

Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. 2019. Fast parallel

algorithms for counting and listing triangles in big graphs. ACM Transactions on

Knowledge Discovery from Data (TKDD) 14, 1 (2019), 1-34.

[4] Xiaofeng Ding, Shujun Sheng, Huajian Zhou, Xiaodong Zhang, Zhifeng Bao, Pan
Zhou, and Hai Jin. 2021. Differentially private triangle counting in large graphs.
IEEE Transactions on Knowledge and Data Engineering 34, 11 (2021), 5278-5292.

[5] Abir Farouzi, Xiantian Zhou, Ladjel Bellatreche, Mimoun Malki, and Carlos Or-
donez. 2024. Balanced parallel triangle enumeration with an adaptive algorithm.
Distributed and Parallel Databases 42, 1 (2024), 103-141.

[6] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. 2005. On graph problems in a semi-streaming model. Theoretical

Computer Science 348, 2-3 (2005), 207-216.

Yang Hu, Pradeep Kumar, Guy Swope, and H Howie Huang. 2017. Trix: Triangle

counting at extreme scale. In 2017 IEEE High Performance Extreme Computing

Conference (HPEC). IEEE, 1-7.

—_
A

3

SIG Proceedings Paper in LaTeX Format

(8]

(9]

[10]

[11]

[13]

Mihail N Kolountzakis, Gary L Miller, Richard Peng, and Charalampos E
Tsourakakis. 2012. Efficient triangle counting in large graphs via degree-based
vertex partitioning. Internet Mathematics 8, 1-2 (2012), 161-185.

Andreas Kosmatopoulos, Kostas Tsichlas, Anastasios Gounaris, Spyros Sioutas,
and Evaggelia Pitoura. 2017. Hinode: an asymptotically space-optimal storage
model for historical queries on graphs. Distributed and Parallel Databases 35
(2017), 249-285.

Raunak Kumar, Paul Liu, Moses Charikar, and Austin R Benson. 2020. Retriev-
ing top weighted triangles in graphs. In Proceedings of the 13th International
Conference on Web Search and Data Mining. 295-303.

Nathan Linial. 1992. Locality in distributed graph algorithms. SIAM Journal on
computing 21, 1 (1992), 193-201.

Rasmus Pagh and Francesco Silvestri. 2014. The input/output complexity of
triangle enumeration. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. 224-233.

Ha-Myung Park and Chin-Wan Chung. 2013. An efficient mapreduce algorithm
for counting triangles in a very large graph. In Proceedings of the 22nd ACM

[14

[15

[16

(17

SAC’25, March 31 -April 4, 2025, Sicily, Italy

international conference on Information & Knowledge Management. 539-548.
Arnau Prat-Pérez, David Dominguez-Sal, and Josep-Lluis Larriba-Pey. 2014. High
quality, scalable and parallel community detection for large real graphs. In Pro-
ceedings of the 23rd international conference on World wide web. 225-236.
Ryosuke Taniguchi, Daichi Amagata, and Takahiro Hara. 2022. Efficient retrieval
of top-k weighted triangles on static and dynamic spatial data. IEEE Access 10
(2022), 55298-55307.

Charalampos Tsourakakis, Mihail Kolountzakis, and Gary Miller. 2011. Triangle
sparsifiers. Journal of Graph Algorithms and Applications 15, 6 (2011), 703-726.
Charalampos E Tsourakakis. 2008. Fast counting of triangles in large real net-
works without counting: Algorithms and laws. In 2008 Eighth IEEE International
Conference on Data Mining. IEEE, 608-617.

Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. 2009.
Doulion: counting triangles in massive graphs with a coin. In Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining. 837-846.

	Abstract
	1 Introduction
	2 Related Work
	3 Triangle Counting in Historical Graphs
	3.1 Preliminaries
	3.2 Problem Formulation
	3.3 Methods of Triangle Counting in Historical Graphs

	4 Experiment Design
	4.1 Experimental Results

	5 Conclusion
	References

