
Triangle Counting in Large Historical Graphs∗
Regular paper†

Konstantinos Christopoulos

Computer Engineering and Informatics

University of Patras

Rion, Achaia, GREECE

kchristopou@upnet.gr

Evaggelos Daskalakis

Computer Engineering and Informatics

University of Patras

Rion, Achaia, GREECE

e_daskalakis@upnet.gr

Agorakis Bompotas

Computer Engineering and Informatics

University of Patras

Rion, Achaia, GREECE

mpompotas@ceid.upatras.gr

Konstantinos Tsichlas

Computer Engineering and Informatics

University of Patras

Rion, Achaia, GREECE

ktsichlas@ceid.upatras.gr

Abstract
Counting local topological structures, such as triangles, is crucial

to analyse large-scale networks and to understand the evolution of

graphs. Triangles are fundamental for computing transitivity and

for applications such as community detection and link prediction.

Despite the importance of triangle counting, traditional algorithms

struggle with scalability in networks with millions or billions of

vertices, prompting the development of approximation methods

and distributed solutions.

In this paper, we present a distributed algorithm that can han-

dle historical graphs in order to count triangles communities in a

query time interval. We introduce a pioneering approach to triangle

counting in historical graphs, a novel concept that incorporates

temporal dimensions into traditional graph models. Our method,

which has not been previously explored, uniquely counts triangles

within user-defined time intervals, offering new insights into the

evolution of network interactions. Experiments with real-world

historical datasets validate the effectiveness of our approach in

capturing temporal patterns, marking a significant advancement in

the field, and setting the stage for future research.

CCS Concepts
• Computer systems organization→ Embedded systems.

Keywords
Triangle Counting, Historical Graphs, Distributed Computing

∗
Produces the permission block, and copyright information

†
The full version of the author’s guide is available as acmart.pdf document

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC’25, March 31 –April 4, 2025, Sicily, Italy
© 2025 ACM.

ACM ISBN 979-8-4007-0629-5/25/03

https://doi.org/https://doi.org/10.1145/3672608.3707982

ACM Reference Format:
Konstantinos Christopoulos, Evaggelos Daskalakis, Agorakis Bompotas,

and Konstantinos Tsichlas. 2025. Triangle Counting in Large Historical

Graphs: Regular paper. In Proceedings of ACM SAC Conference (SAC’25).
ACM, New York, NY, USA, Article 4, 7 pages. https://doi.org/https://doi.org/

10.1145/3672608.3707982

1 Introduction
Networks serve as fundamental models for representing entities

and their relationships across diverse domains such as biology, com-

munication, social systems, and transportation. Despite the varying

structural characteristics of networks in these fields, certain topo-

logical patterns, particularly triangles, are frequently observed. The

prevalence of triangles in real-world networks has spurred the de-

velopment of metrics like the clustering coefficient and transitivity

ratio, which are used to characterize and analyze network struc-

tures. These triangles are not only important for understanding

network topology but also have significant implications in social

science theories, such as homophily and transitivity, which explore

the dynamics of social relationships.

A static graph is defined as a graph where the relationships,

or edges, between nodes, or vertices, remain constant over time.

In static graphs, triangle counting involves identifying all sets of

three nodes that form a complete subgraph, or triangle, where

each pair of nodes is interconnected. This process is vital because

triangles are fundamental components that reveal insights into

the network’s local structure and connectivity. For example, in

social networks, the presence of triangles can indicate tightly-knit

groups or communities, shedding light on social cohesion and group

dynamics.

Historical graphs extend the static graph model by integrating a

temporal dimension, capturing how edges between nodes change

over time. Formally, in a historical graph, an edge is characterized

by a time interval during which it exists. This temporal aspect

introduces additional complexity to triangle counting. In historical

graphs, the objective is to determine the number of triangles that

exist within specific time intervals. This involves not only tracking

the presence of edges but also understanding how triangles form

and dissolve as the network evolves. For instance, in a historical

social network, triangles might emerge during periods of high

https://doi.org/https://doi.org/10.1145/3672608.3707982
https://doi.org/https://doi.org/10.1145/3672608.3707982
https://doi.org/https://doi.org/10.1145/3672608.3707982

SAC’25, March 31 –April 4, 2025, Sicily, Italy Konstantinos Christopoulos, Evaggelos Daskalakis, Agorakis Bompotas, and Konstantinos Tsichlas

activity and fade as relationships evolve, reflecting the dynamic

nature of social interactions.

The challenge of triangle counting is significantly amplified

when transitioning from static to historical graphs due to the added

temporal dimension. While static graphs provide a snapshot of

network structure, historical graphs require continuous analysis to

account for temporal changes in edge existence. This necessitates

the development of advanced methods capable of handling the

dynamic relationships and providing insights into the temporal

evolution of network structures.

In this paper, we present a novel approach tailored for triangle

counting in historical graphs. Our method addresses the complexi-

ties introduced by the temporal nature of these graphs, offering a

framework for accurately counting triangles within user-defined

time intervals. This work advances research in historical graph

analysis and paves the way for future exploration in the field of

temporal network analysis.

2 Related Work
The existing literature covers triangle counting in both static and

dynamic graphs. However, there is no research specifically focused

on historical graphs, considering edge time intervals and the periods

during which an edge remains active. In the following section, we

review recent work in this area, spanning approaches from sequen-

tial to parallel, single-machine to distributed, exact to approximate,

and offline to streaming methodologies.

In this paper [4], the authors presented an algorithm named

BA to anonymise triangle counts on large graphs using node-

differential privacy. They developed two methods, Tr-Histogram

and TC-Histogram, to publish these triangle counts. After con-

ducting a theoretical analysis, they decided to evaluate the two

approaches. Furthermore, they showed that the cumulative distri-

bution TC-Histogram delivers superior performance compared to

the triangle count distribution Tr-Histogram. They also extended

their research to the local clustering coefficient, which they pub-

lished by categorising the coefficients into k distinct groups.

In [18], the authors introduce DOULION, an algorithm that em-

ploys random sampling to create a smaller, weighted graph, provid-

ing a triangle count that closely approximates the actual number.

They emphasize that DOULION complements existing triangle

counting methods by serving as an effective preprocessing step for

both streaming and non-streaming algorithms. The algorithm is

noted for its high parallelizability, achieving optimal performance

in Hadoop environments. Experiments with real-world graphs re-

veal that DOULION delivers nearly perfect accuracy across various

probability settings and can accelerate triangle counting by approx-

imately 130 times compared to a basic exact counting algorithm

when used as an initial step.

In this work [8], the authors present a highly efficient triangle-

counting approximation algorithm that is designed to be adapted

to the semistreaming model as described in [6]. The core idea be-

hind their approach is the innovative integration of the sampling

algorithm from [16, 18] with a method that partitions the set of ver-

tices into high- and low-degree subsets, as proposed by [2]. They

apply their methods to a range of networks with million edges

and achieve exceptional results, exceeding the performance of cur-

rent triangle-counting techniques. Additionally, they introduce a

method for triangle counting that leverages random projection and

establish a sufficient condition to ensure that the estimates have

low variance.

Authours in [7] introduced TriX, a highly scalable and distributed

algorithm for triangle counting designed for external memory use.

TriX utilizes an innovative 2-D managed partitioning scheme and a

parallel binary search method for intersections optimized for GPUs.

The algorithm effectively scales across multiple GPUs, enabling

the counting of triangles in extremely large graphs with billions of

nodes and edges in a relatively short time. It demonstrates a high

performance rate, processing millions of traverse edges per second.

Authors in [17] present two algorithms: Eigen-Triangle for count-

ing the total number of triangles in a graph, and EigenTriangleLocal

for counting triangles that include a specific node. They demon-

strate that both algorithms achieve high accuracy and are up to

approximately 1000 times faster on real-world graphs. The key

innovation is the Eigen-Triangle algorithm, which links triangle

counts to the eigenvalues of the adjacency matrix, focusing on

the significant contribution of the top eigenvalues. This approach

leverages advanced, parallelizable eigenvalue algorithms, making

it well-suited for extremely large graphs. The method can be effi-

ciently applied to petabyte-scale graphs using existing eigenvalue

implementations like Lanczos. Additionally, the authors discover

two new power laws, Degree-Triangle and TriangleParticipation,

which reveal unexpected properties.

Two advancedMPI-based distributedmemory parallel algorithms

for efficiently counting triangles in large graphs are introduced in

[3]. The first algorithm utilizes overlapping partitioning and load

balancing to provide rapid parallel processing, accurately comput-

ing the number of triangles in a network with 10 billion edges in

just 16 minutes. The second algorithm emphasizes space efficiency

by partitioning the network into non-overlapping segments, which

significantly reduces memory usage. Both algorithms feature an in-

novative approach to minimizing communication costs, enhancing

both space and runtime efficiency. Additionally, these methods are

applicable for listing all triangles in a graph, calculating node clus-

tering coefficients, and can be adapted for parallel approximation

using edge sparsification.

The work in [10] presents both deterministic and random sam-

pling techniques for quickly discovering the most significant 3-

cliques (triangles) in weighted graphs. For instance, one of their

algorithms can identify the top 1,000 triangles with the highest

weights in a graph containing billions of edges in just thirty seconds

on a standard server, making it vastly quicker than current rapid

enumeration methods. These innovations facilitate scalable pattern

extraction in weighted graphs. Similar paper for top 𝑘 weighted

triangles we can find in [15].

The authors in [13] introduce a new MapReduce algorithm,

known as the 𝑇𝑇𝑃 (Triangle Type Partition) algorithm, which is

based on graph partitioning to efficiently count triangles in large-

scale graphs. This algorithm significantly enhances efficiency by

classifying triangles into three distinct types and processing them

accordingly, which greatly reduces data redundancy. Experimen-

tal evaluations, including tests on both synthetic and real-world

datasets with millions of nodes and billions of edges, show that

SIG Proceedings Paper in LaTeX Format SAC’25, March 31 –April 4, 2025, Sicily, Italy

the TTP algorithm outperforms previous MapReduce algorithms in

most cases. Notably, it demonstrates more than double the speed

on a Twitter dataset, with its performance advantage increasing as

graphs become larger and denser.

In [5] is presented an adaptive triangle-counting algorithm uti-

lizing SQL queries, tailored for large-scale graphs. This method

integrates smoothly into data analysis workflows and operates effi-

ciently within distributed DBMS, big data platforms, and analytical

tools. A central feature is the advanced vertex partitioning strategy,

which assigns graph data to cluster machines without duplication

or data exchange, facilitating local triangle detection within each

partition. The algorithm excels with skewed graphs, offering bal-

anced load distribution and significant performance improvements

over conventional approaches like Spark GraphX and G-thinker.

They also introduce a Python-based alternative using Pandas and

MPI, which shows strong performance on small to medium datasets.

Experimental results confirm the algorithm’s competitiveness with

specialized graph analysis engines.

3 Triangle Counting in Historical Graphs
3.1 Preliminaries
Let𝐺 = (𝑉𝑇 , 𝐸𝑇) be a historical network. The set of historical nodes
𝑉𝑇 consists of a set of nodes along with their time intervals, that

is 𝑉𝑇 ⊂ 𝑉 × N2
. The set of historical edges 𝐸𝑇 is a set of edges

along with their time intervals, that is 𝐸𝑇 ⊂ 𝐸 × N2
, where 𝐸

contains all possible

(|𝑉 |
2

)
undirected edges. Note that we consider

nodes and edges that have a single valid time interval, but it is

easy to generalize to a set of valid time intervals. The preceding

definitions mean that each node 𝑣 ∈ 𝑉 (and edge 𝑒 ∈ 𝐸) has a time

interval attached [𝑡 (𝑠)𝑣 , 𝑡
(𝑓)
𝑣] (similarly [𝑡 (𝑠)𝑒 , 𝑡

(𝑓)
𝑒]) (where (𝑠) and

(𝑓) stand for start and finish respectively) that dictates the time

instances where node 𝑣 (edge 𝑒) is existent. Thus, if 𝑡 ∉ [𝑡 (𝑠)𝑣 , 𝑡
(𝑓)
𝑣],

then 𝑣 is not existent at time 𝑡 . 𝑉𝑖 𝑗 ⊆ 𝑉 contains all nodes that

have a time interval that spans the query interval [𝑡𝑖 , 𝑡 𝑗]. The time

interval of each edge is by definition a subset of the time interval

of the respective vertices. In case of multiple time intervals, we

have to define the borders of each interval accordingly, to avoid

overlaps. For example, each interval should be open at the left and

closed at the right. The convention we make is that a time point 𝑡

is represented by (𝑡, 𝑡].
Assume that byN𝑖 𝑗 (𝑣) we represent the neighborhood of node 𝑣

in the query time interval [𝑡𝑖 , 𝑡 𝑗]. Note thatN𝑖 𝑗 (𝑣) may even be the

empty set for specific query time intervals. The routing table 𝑟 (𝑣)
of node 𝑣 , contains all historical edges to other nodes in 𝐺 . This

means that 𝑟 (𝑣) contains all edges and nodes along with their time

interval. By 𝑟𝑖 𝑗 (𝑣), we represent the part of this table that contains
historical edges with time intervals that intersect the query time

interval [𝑡𝑖 , 𝑡 𝑗], that is all edges that point to nodes that belong to

N𝑖 𝑗 (𝑣).
Our algorithm is developed within the framework of the Local

distributed model [11]. In this model, graph nodes are uniquely

identified by distinct IDs and communicate with their neighboring

nodes via messages of unlimited size. Both communication and

computation occur synchronously, and the distributed system is

assumed to be fault-free, with nodes considered to possess infinite

computational power. In this work, we focus exclusively on histori-

cal edges, not historical nodes. This means that while nodes remain

valid at all times, edges are only valid during specific time intervals.

3.2 Problem Formulation
In a vertex-centric system, as described by Kosmatopoulos et al.[9],

the historical graph is organized to efficiently store the entire evo-

lution of a node and its adjacent edges over time. This system is

designed for space efficiency and optimized query performance,

particularly for temporal queries that involve both structural and

temporal dimensions of the graph. In this model, the entire history

of a node, including its adjacent edges and their states across dif-

ferent time periods, is stored within the node itself. This compact

representation makes it possible to efficiently perform both up-

dates and queries on the graph, particularly in scenarios involving

dynamic or evolving graphs.

Triangle Counting Over a Time Interval
The main task at hand is to efficiently compute triangle counts in

a temporal graph for a specific time interval, [𝑡𝑖 , 𝑡 𝑗]. In a graph, a

triangle is formed by three nodes that are all mutually connected

by edges. However, in the temporal context, edges and nodes may

have varying lifespans, meaning they are only valid or active during

specific time periods. This adds a layer of complexity to triangle

counting as we need to account for both structural relationships

and temporal validity.

When the query asks for triangle counting at a specific time

instance 𝑡𝑖 , this problem reduces to the traditional triangle counting

algorithm applied to a single snapshot of the graph at time 𝑡𝑖 . In

this case, the algorithm identifies all triangles that exist at that

moment, excluding nodes or edges that are not valid at 𝑡𝑖 . This is

a static graph triangle counting problem, and existing algorithms

such as those discussed in the work of Pagh et al. [12] can be

applied efficiently. When the query spans a time interval [𝑡𝑖 , 𝑡 𝑗],
we consider two different approaches to measure the number of

triangles:

1. Aggregate Number of Triangles
This approach introduces a more nuanced method of triangle count-

ing by considering how long a triangle exists within the time inter-

val [𝑡𝑖 , 𝑡 𝑗]. Instead of simply counting whether a triangle exists, it

weights each triangle based on the overlap between the lifespans

of its edges and the query interval.

For example, suppose an edge 𝑒𝑎𝑏 is active between nodes 𝑎

and 𝑏 from 𝑡1 to 𝑡5, and the query interval is [2, 6]. In this case,

𝑒𝑎𝑏 is valid for 4 out of the 5 time instances in the interval [2, 6],
so it would be assigned a weight of

4

5
. This weight reflects the

proportion of the time interval during which the edge contributes

to forming a triangle. For each edge that could potentially form

a triangle, calculate how long it is active within the time interval

[𝑡𝑖 , 𝑡 𝑗]. If an edge is entirely outside the interval, it contributes

nothing. Otherwise, compute its weight based on the proportion of

the interval during which it is valid. For every potential triangle,

check whether all three constituent edges are valid during some

overlapping portion of the interval. Then, sum up the weights of the

SAC’25, March 31 –April 4, 2025, Sicily, Italy Konstantinos Christopoulos, Evaggelos Daskalakis, Agorakis Bompotas, and Konstantinos Tsichlas

edges that participate in the triangle. The total aggregate triangle

count is the sum of the weighted contributions of all valid triangles.

This method provides a more detailed understanding of the tri-

angle structure in a dynamic graph by accounting for the temporal

persistence of triangles, rather than just their presence or absence.

Triangles that persist longer within the time interval contribute

more heavily to the final count, reflecting their significance during

the specified time window.

Figure 1: Illustration of graph transformation over a specific
time interval to estimate the total number of triangles. a)
The initial network 𝐺 , where each edge is associated with
a time interval. b) The transformed graph 𝐺 for the query
time interval [2, 6], with a weight of 1 assigned to each active
edge.

Figure 2: Illustration of graph transformation over a specific
time interval to estimate the aggregate number of triangles.
a) The initial network𝐺 , where each edge is associated with
a time interval. b) The transformed graph 𝐺 for the query
time interval [2, 6], showing the corresponding weights on
each active edge.

Definition 3.1. The observed interval of an edge is the inter-

section between the query time interval and the valid time interval

of this edge.

When an edge is not valid at any time instance of the query

time interval, then it is non-existent during this time interval. Con-

sequently, the unweighted historical graph is transformed into

a weighted static graph for a particular time interval, where the

weight of each node/edge represents the ratio of the size of its

observed interval to the size of the total query interval.

Definition 3.2. The observation ratio of an object (edge/triangle)
is the ratio between the size of the observed interval of the object

and the size of the query time interval defined by the user.

In Figure 2, we illustrate a temporal network along with the

corresponding observation ratios. The maximum weight of an edge

is 1, which occurs when the edge’s time interval fully overlaps with

the query interval. Conversely, the minimum observation ratio is

zero when the time intervals of the edge and the query are disjoint,

resulting in the absence of an edge.

2. Total Number of Triangles
In this approach, the goal is to count all triangles that exist at any

point during the time interval [𝑡𝑖 , 𝑡 𝑗]. Here, a triangle is considered
valid if all three edges that form the triangle are active simultane-

ously at some time within the interval. This approach does not take

into account how long the triangle persists in the graph during

the interval. It simply checks whether a triangle is present at any

moment within the interval.

To compute this, we can iterate over each node in the graph,

retrieve its historical edges, and check for periods during which all

three edges of a potential triangle are active together. If there is any

overlap in the lifespans of the three edges, the triangle is counted.

For example, if an edge 𝑒𝑎𝑏 between nodes 𝑎 and 𝑏 is active from

𝑡2 to 𝑡4 and the other two edges 𝑒𝑏𝑐 and 𝑒𝑎𝑐 also overlap during

this interval, then the triangle formed by nodes 𝑎, 𝑏, and 𝑐 will be

counted. Figure 1 presents two possible scenarios: either the edge

is active at least once within the query interval, in which case its

weight is always 1, or it is inactive throughout the interval, meaning

no edge is present.

Although the algorithms developed in this paper focus on the

total number of triangles, the aggregate method offers useful defini-

tions that enhance the understanding of the approaches described

below.

3.3 Methods of Triangle Counting in Historical
Graphs

In this section, we present three algorithms for counting triangles

in historical graphs, where the temporal dimension plays a crucial

role in determining the validity of edges and their contribution to

triangle formation.

(1) Time-Interval-Based Triangle Counting in historical
Graphs
This method operates without relying on queries and follows

a streamlined process as outlined below:

(a) The algorithm begins by creating neighbor sets for each

vertex in the graph. Each set includes information about

neighboring vertices and the time intervals during which

the edges between them are active.

(b) Next, it joins these neighbor sets with the original graph,

resulting in a new graph where each vertex’s attributes

contain its neighbor set along with their respective time

intervals.

(c) A function is defined to calculate the intersection of time

intervals between edges.

(d) For each edge in the graph, the algorithm checks for the

presence of triangles by examining the time intervals of

the edges. It calculates the number of triangles where all

three vertices are interconnected by edges with overlap-

ping time intervals.

SIG Proceedings Paper in LaTeX Format SAC’25, March 31 –April 4, 2025, Sicily, Italy

(e) Finally, the triangle counts from each vertex are aggre-

gated to obtain the total number of triangles present in

the graph.

This approach provides a method for detecting triangles by

evaluating every possible combination of edges.

The following two methods rely on queries and follow a

streamlined process, detailed as follows

(2) Filtering-based Triangle Counting Algorithm in His-
torical Graphs
This algorithm introduces a crucial difference from the Time-

Interval-Based Triangle Counting method by beginning with

a preliminary filtering of edges based on a specified query

time interval. Only edges that are active within this time

window are retained, creating a subgraph that meets the

temporal criteria. After this initial filtering, the remaining

steps - such as the creation of the neighbour set, the detection

of triangles, and the aggregation - are identical to those of

the time interval-based triangle count method.

By focusing on time-based filtering at the outset,this ap-

proach simplifies the triangle detection process by signifi-

cantly reducing the graph size that needs to be processed.

(3) Thresholding and Filtering-Based Triangle counting
in Historical Graphs
The Thresholding and Filtering-Based Temporal Triangle

Algorithm introduces an additional layer of optimization by

incorporating both filtering based on time intervals and a

thresholding mechanism that evaluates edge relevance.

This algorithm differs significantly from the Time-Filtered

Triangle Counting Algorithm by first applying an overlap

threshold to the edges active during the specified query time

interval. In other words, if the observation ratio is equal to

or greater than the overlap threshold, the edge is considered

valid and can be included in the resulting subgraph produced

by the filtering process. This dual approach enhances effi-

ciency by ensuring that only edges with significant temporal

coherence are included in the analysis, thus further reducing

the size of the graph that needs to be processed.

4 Experiment Design
To assess the performance and scalability of our triangle counting

algorithms, we conduct experiments using three real-world datasets,

each representing a distinct type of network. These datasets en-

compass a variety of network structures and sizes, allowing us

to thoroughly evaluate the algorithms under different conditions.

The datasets include social networks, collaboration networks, and

product networks, all characterized by their undirected edges and

inherent community structures. The primary characteristics of the

datasets used in this study are summarized below:

• com-Youtube: Representing the YouTube online social net-

work, this dataset has 1,134,890 nodes and 2,987,624 edges,

with 3,056,386 triangles. This smaller dataset, relative to

others in the study, allows us to explore the algorithms’ effi-

ciency in sparse networks.

• com-DBLP: The DBLP collaboration network dataset con-

sists of 317,080 nodes and 1,049,866 edges, with 2,224,385

triangles. This graph represents a collaboration network

where researchers are linked through co-authorship, making

it ideal for testing triangle counting in academic and profes-

sional networks with a moderate community structure.

• com-Amazon: This dataset captures the Amazon product

network, containing 334,863 nodes, 925,872 edges, and 667,129

triangles. Nodes represent products, and edges indicate co-

purchase relationships, offering a scenariowith a retail-based

network structure.

These datasets provide a comprehensive foundation for testing

the performance of triangle counting algorithms across a range of

network sizes, edge densities, and community distributions. Each

dataset’s specific structure allows us to explore different challenges,

from large-scale networks with millions of edges to smaller, more

sparse networks. The diversity of these datasets ensures that our

experiments yield insights into the algorithms’ behavior in real-

world scenarios.

Since the datasets used in our experiments are not inherently

temporal or historical, it is necessary to assign time intervals to the

edges in order to simulate dynamic graph behavior. To achieve this,

we associate each edge with a randomly generated time interval us-

ing a uniform distribution, where the start and end times are drawn

from a predefined time range. This approach allows us to introduce

a temporal dimension to the graph, enabling the evaluation of our

triangle counting algorithms in a temporal context. By distributing

time intervals uniformly, we ensure that all edges have equal prob-

ability of being active at any point in time, avoiding biases toward

specific time periods and creating a balanced temporal distribution

across the graph. This artificial temporal assignment is crucial for

testing how well the algorithms perform when handling historical

graphs where edges have varying periods of validity.

The range of each dataset spans from 1 to 100,000. In the first

method, Time-Interval-Based, we do not utilize query time intervals,

as mentioned earlier. In contrast, the other two methods employ

two distinct query time intervals: the first has range 5,000, and the

second 10,000. For the Thresholding and Filtering-Based method,

we established an overlap threshold of 40%. All of these parame-

ters were chosen randomly to obtain preliminary results for the

aforementioned methods.Lastly, for the sake of brevity, we refer to

the Time-Interval-Based method as Tr-Interval, the Filtering-Based

method as Tr-Filtering, and the Thresholding and Filtering-Based

method as Tr-Thresholding. The numbers 1 and 2 in the tables

below correspond to the ranges of 5,000 and 10,000, respectively.

The experiments were conducted in an Apache Spark 3.5.3 en-

vironment running on a small Kubernetes cluster composed of

various commodity hardware PCs. This heterogeneous setup al-

lowed for flexibility, as nodes of differing specifications could work

together, contributing to a robust yet economical test-bed for dis-

tributed processing. The final experimental configuration utilized

12 executor pods, each provisioned with 2 CPU cores and 4 GB of

RAM. This configuration enabled efficient parallel processing and

resource allocation across the cluster, allowing Spark jobs to lever-

age Kubernetes’ orchestration capabilities for load balancing and

fault tolerance. This setup facilitated the effective testing of Spark’s

distributed computing capabilities on a modest-scale cluster.

SAC’25, March 31 –April 4, 2025, Sicily, Italy Konstantinos Christopoulos, Evaggelos Daskalakis, Agorakis Bompotas, and Konstantinos Tsichlas

4.1 Experimental Results
The tables below present our preliminary results on four real-world

datasets. Each cell in the tables shows both the number of detected

triangles (tr) and the execution time in milliseconds. At first glance,

we can observe that as the dataset size increases, the thresholding

method yields more favorable results. This is logical, as the overlap

threshold leads to a smaller subgraph. When the initial graph is

large, triangles can be counted more efficiently within the reduced

subgraph.

Table 1: Experiments in Amazon and DBLP

Amazon DBLP

Tr-Intervals 286994 tr | 8288ms 957120 tr | 8717ms

Tr-Filtering 1 105703 tr | 12312ms 352710 tr | 9118ms

Tr-Filtering 2 186242 tr | 12791ms 622119 tr | 13041ms

Threshold 1 61916 tr | 6863ms 205998 tr | 10778ms

Threshold 2 90317 tr | 9972ms 302611 tr | 7821ms

Table 2: Experiments in Youtube

Youtube

Tr-Intervals 1325051 tr | 20705ms

Tr-Filtering 1 494973 tr | 28188ms

Tr-Filtering 2 864790 tr | 30302ms

Threshold 1 291911 tr | 18332ms

Threshold 2 420434 tr | 17449ms

The Tr-Interval method consistently demonstrates superior per-

formance in terms of both triangle detection and execution time, par-

ticularly in the Amazon and DBLP datasets, where it detects 286,994

triangles in 8,288 ms and 957,120 triangles in 8,717 ms, respectively.

This makes it the most efficient method for these datasets, par-

ticularly when processing large-scale graphs. In Youtube, it also

identifies a substantial number of triangles (1,325,051) in 20,705 ms,

reaffirming its effectiveness in large graphs.

Both Tr-Filtering 1 and 2 show significantly lower triangle counts

compared to the Tr-Interval method. For example, in Amazon, Tr-

Filtering 1 detects 105,703 triangles in 12,312 ms, while Tr-Filtering

2 detects 186,242 triangles in 12,791 ms. Similarly, in DBLP, Tr

filtering 1 and 2 detect 352,710 and 622,119 triangles respectively,

with execution times higher than Tr-interval. This suggests that

the additional filtering step required by these methods increases

computational overhead, particularly as the graph size grows. The

Youtube dataset shows the same trend, where both Tr-Filtering

methods have the slowest times, with Tr-Filtering 2 taking the

longest (30,302 ms), while Tr-Filtering 1 detects fewer triangles

(494,973) in 28,188 ms.

The threshold-based methods showmixed results across datasets.

In Amazon, both Threshold 1 and Threshold 2 detect the fewest

triangles (61,916 and 90,317, respectively), though Threshold 1 is

the fastest, completing in 6,863 ms. In DBLP, these methods detect

more triangles (205,998 and 302,611) than in Amazon, but with

longer execution times. In the Youtube dataset, Threshold 1 detects

291,911 triangles in 18,332 ms, while Threshold 2 detects 420,434

triangles in 17,449 ms. These results suggest that the thresholding

methods, still perform reasonably well in larger graphs like Youtube

and DBLP.

The results indicate that the Tr-Interval method, in average, ex-

cels in both triangle detection and speed, especially in Amazon and

DBLP graphs. The reason could be that it skips the complex filtering

and thresholding steps, focusing directly on time intervals, which

simplifies the computation. On the other hand, the Tr-Filtering

methods, while more precise in filtering based on time intervals,

struggle with time complexity. Threshold methods appear to offer

a trade-off between computational efficiency and triangle detection

accuracy. In larger datasets, they perform relatively well and in

some cases surpass the Tr-Interval method in speed.

5 Conclusion
In this work, we focus on counting triangles in historical graphs that

include a temporal dimension. Specifically, the edges are associated

with valid time intervals, indicating their existence during specific

time instances. This represents a novel contribution to the field

of Temporal/Historical Graphs by introducing the innovative con-

cept of edge and node activity, which facilitates triangle counting

through the adaptation and extension of existing methodologies.

We aim to build upon the preliminary findings presented in this

paper through a more comprehensive theoretical analysis, includ-

ing an examination of time and computational complexity. In our

theoretical exploration, we will also investigate the implications of

nodes with multiple time intervals.

A significant extension of this research involves utilizing triangle

counting in historical graphs to detect communities. Drawing from

previous works such as [1] and [14], where triangle counting is

applied to undirected plain graphs to discover communities, we

plan to extend and adapt these methods to identify communities

within historical graphs.

Acknowledgment
“This research was supported by the Hellenic Foundation for Re-

search and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Re-

search Projects to support Faculty Members & Researchers” (Project

Number: 3480). ”

References
[1] Tariq Abughofa, Ahmed A Harby, Haruna Isah, and Farhana Zulkernine. 2021.

Incremental community detection in distributed dynamic graph. In 2021 IEEE
Seventh International Conference on Big Data Computing Service and Applications
(BigDataService). IEEE, 50–59.

[2] Noga Alon, Raphael Yuster, and Uri Zwick. 1997. Finding and counting given

length cycles. Algorithmica 17, 3 (1997), 209–223.
[3] Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. 2019. Fast parallel

algorithms for counting and listing triangles in big graphs. ACM Transactions on
Knowledge Discovery from Data (TKDD) 14, 1 (2019), 1–34.

[4] Xiaofeng Ding, Shujun Sheng, Huajian Zhou, Xiaodong Zhang, Zhifeng Bao, Pan

Zhou, and Hai Jin. 2021. Differentially private triangle counting in large graphs.

IEEE Transactions on Knowledge and Data Engineering 34, 11 (2021), 5278–5292.

[5] Abir Farouzi, Xiantian Zhou, Ladjel Bellatreche, Mimoun Malki, and Carlos Or-

donez. 2024. Balanced parallel triangle enumeration with an adaptive algorithm.

Distributed and Parallel Databases 42, 1 (2024), 103–141.
[6] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang. 2005. On graph problems in a semi-streaming model. Theoretical
Computer Science 348, 2-3 (2005), 207–216.

[7] Yang Hu, Pradeep Kumar, Guy Swope, and H Howie Huang. 2017. Trix: Triangle

counting at extreme scale. In 2017 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 1–7.

SIG Proceedings Paper in LaTeX Format SAC’25, March 31 –April 4, 2025, Sicily, Italy

[8] Mihail N Kolountzakis, Gary L Miller, Richard Peng, and Charalampos E

Tsourakakis. 2012. Efficient triangle counting in large graphs via degree-based

vertex partitioning. Internet Mathematics 8, 1-2 (2012), 161–185.
[9] Andreas Kosmatopoulos, Kostas Tsichlas, Anastasios Gounaris, Spyros Sioutas,

and Evaggelia Pitoura. 2017. Hinode: an asymptotically space-optimal storage

model for historical queries on graphs. Distributed and Parallel Databases 35
(2017), 249–285.

[10] Raunak Kumar, Paul Liu, Moses Charikar, and Austin R Benson. 2020. Retriev-

ing top weighted triangles in graphs. In Proceedings of the 13th International
Conference on Web Search and Data Mining. 295–303.

[11] Nathan Linial. 1992. Locality in distributed graph algorithms. SIAM Journal on
computing 21, 1 (1992), 193–201.

[12] Rasmus Pagh and Francesco Silvestri. 2014. The input/output complexity of

triangle enumeration. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. 224–233.

[13] Ha-Myung Park and Chin-Wan Chung. 2013. An efficient mapreduce algorithm

for counting triangles in a very large graph. In Proceedings of the 22nd ACM

international conference on Information & Knowledge Management. 539–548.
[14] Arnau Prat-Pérez, David Dominguez-Sal, and Josep-Lluis Larriba-Pey. 2014. High

quality, scalable and parallel community detection for large real graphs. In Pro-
ceedings of the 23rd international conference on World wide web. 225–236.

[15] Ryosuke Taniguchi, Daichi Amagata, and Takahiro Hara. 2022. Efficient retrieval

of top-k weighted triangles on static and dynamic spatial data. IEEE Access 10
(2022), 55298–55307.

[16] Charalampos Tsourakakis, Mihail Kolountzakis, and Gary Miller. 2011. Triangle

sparsifiers. Journal of Graph Algorithms and Applications 15, 6 (2011), 703–726.
[17] Charalampos E Tsourakakis. 2008. Fast counting of triangles in large real net-

works without counting: Algorithms and laws. In 2008 Eighth IEEE International
Conference on Data Mining. IEEE, 608–617.

[18] Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. 2009.

Doulion: counting triangles in massive graphs with a coin. In Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining. 837–846.

	Abstract
	1 Introduction
	2 Related Work
	3 Triangle Counting in Historical Graphs
	3.1 Preliminaries
	3.2 Problem Formulation
	3.3 Methods of Triangle Counting in Historical Graphs

	4 Experiment Design
	4.1 Experimental Results

	5 Conclusion
	References

