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Abstract
Community detection stands as a pivotal process in network analy-

sis, having undergone extensive examination over the past 25 years

within static network contexts. This task involves partitioning net-

works based on structural characteristics, specifically into classes

of nodes exhibiting denser connections than the overall network.

Moreover, in recent years, an additional layer of complexity has

arisen, particularly in networks characterized by a static nature

where each node and edge is assigned a valid time interval. Such

historical graphs, unlike traditional graphs, incorporate a temporal

dimension, allowing for the analysis of how connections between

entities evolve and change over different time intervals. In this

study, we present a distributed algorithm for static community de-

tection within a query time interval in historical graphs. Specifically,

when provided with a designated query time interval, our proposed

method identifies communities by assessing the individual contribu-

tions of each edge and node within the graph during that specified

time interval. To the best of our knowledge, this setting has not

been considered before in the literature.
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1 Introduction
Networks arewidely used for data analysis in domains such as social

sciences, transportation, and biology. A static network is typically

represented as𝐺 = (𝑉 , 𝐸), where 𝑉 denotes entities (nodes) and 𝐸

denotes interactions (edges), which may be directed or undirected.

Extending to temporal settings, historical graphs assign valid time

intervals to each node and edge. These graphs are static in structure

but dynamic in behavior due to time-based activation of nodes and

edges.
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Community Detection (CD) aims to identify densely connected

node groups[8, 16] (communities) and has applications ranging

from social networks to biological systems. Most existing CD al-

gorithms target networks with millions of nodes and edges [19].

However, the rise of massive datasets from sources like social media,

IoT, healthcare, and retail [18] has led to networks with billions

of entities—e.g., Facebook had 3.51 billion active users as of June

2021
1
—demanding greater computational resources. However, most

global CD algorithms run on a single machine, limiting their scal-

ability. This problem can be tackled by moving to a distributed

setting for the CD problem.

This paper proposes a distributed algorithm for detecting com-

munities in historical graphs within a given query time interval.

Building on the Weighted Clustering Coefficient (WCC) [20], we ex-

tend it to support temporal graphs by introducing the local temporal

Clustering Coefficient (ltCC), along with other adapted metrics.

The rest of the paper is organized as follows: Section 2 reviews

related work, Section 3 defines key concepts, Section 4 presents our

algorithm, and Section 5 concludes the paper

2 Related Work
The literature on distributed CD, especially in dynamic or historical

graphs, remains limited. In historical graphs, community detection

typically involves identifying communities in snapshots taken at

specific time points, following the instant-optimal paradigm [23].

A foundational distributed CD method based on the WCC metric is

presented in [24]. The algorithm runs in three phases: (1) Prepro-

cessing that filters edges not participating in triangles, (2) Initial-

ization that builds communities using clustering coefficients, and

(3) WCC Iteration that refines memberships until convergence. An

incremental version of this approach using Apache Spark/GraphX

is proposed in [1].

LazyFox [9] builds on WCC by optimizing triangle counting.

Similarly, [17] adapts PHASR for distributed environments using

Spark, focusing on temporal conductivity and refinement via Per-

sonalized PageRank. In [12], CD is performed on heterogeneous

temporal networks by converting historical data into snapshots,

using algorithms tailored for both static and dynamic scenarios. A

related preprocessing method is discussed in [2].

A local modularity-based distributed approach is presented in

[15], where communities grow from individual nodes through local

iterative expansion. Among TLAV (Think Like a Vertex) models,

[7] proposes a lightweight random-walk-based algorithm for local

CD, while a spectral method with similar objectives is found in

[25]. A message-passing implementation appears in [11], and label

propagation is employed in both classical [22] and dynamic [4]

distributed settings. A comprehensive survey of distributed CD al-

gorithms is provided in [3], categorizing them into self-aggregation

1
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and self-organization methods. Finally, more related waork we can

find in [].

In our work, we address triangle counting in historical graphs

which is a topic that has only recently begun to receive attention, as

evidenced by two recent studies [5, 26]. Among these, the study in

[26] considers a simplified scenario where edge histories are defined

by discrete timestamps. In contrast, our focus is on a more general

and challenging setting where edge histories are represented as

time intervals (i.e., valid intervals). To this end, we build on the

approach introduced in [5], which leverages temporal interval in-

tersections to identify triangles—specifically, those where all three

constituent edges are simultaneously active during at least one

common time instance. We extend this approach by assigning a

temporal coherence score to each triangle, aligning closely with

the objectives and methodology of our proposed framework.

3 Definitions
Let𝐺 = (𝑉𝑇 , 𝐸𝑇 ) be a static historical network. The set of historical
nodes𝑉𝑇 consists of a set of nodes along with their time intervals

2
,

that is 𝑉𝑇 ⊂ 𝑉 × N2
. The set of historical edges 𝐸𝑇 is a set of

edges along with their time intervals, that is 𝐸𝑇 ⊂ 𝐸 ×N2
, where 𝐸

contains all possible

( |𝑉 |
2

)
undirected edges. Note that we consider

nodes and edges that have a single valid time interval, but it is

easy to generalize to a set of valid time intervals. The preceding

definitions mean that each node 𝑣 ∈ 𝑉 (and edge 𝑒 ∈ 𝐸) has a time

interval attached [𝑡 (𝑠 )𝑣 , 𝑡
(𝑓 )
𝑣 ] (similarly [𝑡 (𝑠 )𝑒 , 𝑡

(𝑓 )
𝑒 ]) (where (𝑠) and

(𝑓 ) stand for start and finish respectively) that dictates the time

instances where node 𝑣 (edge 𝑒) is existent. Thus, if 𝑡 ∉ [𝑡 (𝑠 )𝑣 , 𝑡
(𝑓 )
𝑣 ],

then 𝑣 is not existent at time 𝑡 . 𝑉𝑖 𝑗 ⊆ 𝑉 contains all nodes that

have a time interval that spans the query interval [𝑡𝑖 , 𝑡 𝑗 ]. The time

interval of each edge is, by definition, a subset of the time interval

of the respective vertices. In case of multiple time intervals, we

have to define the borders of each interval accordingly, to avoid

overlaps. For example, each interval should be open at the left and

closed at the right. The convention we make is that a time point 𝑡

is represented by (𝑡, 𝑡].
Assume that byN𝑖 𝑗 (𝑣) we represent the neighborhood of node 𝑣

in the query time interval [𝑡𝑖 , 𝑡 𝑗 ]. Note thatN𝑖 𝑗 (𝑣) may even be the

empty set for specific query time intervals. The routing table 𝑟 (𝑣)
of node 𝑣 , contains all historical edges to other nodes in 𝐺 . This

means that 𝑟 (𝑣) contains all edges and nodes along with their time

interval. By 𝑟𝑖 𝑗 (𝑣), we represent the part of this table that contains
historical edges with time intervals that intersect the query time

interval [𝑡𝑖 , 𝑡 𝑗 ], that is all edges that point to nodes that belong to

N𝑖 𝑗 (𝑣).
Our algorithm is designed having in mind the Local distributed

model [14]. In a nutshell, the nodes of the graph have distinct

IDs and communicate with the nodes in their neighborhood with

messages (of unbounded size). Communication and computation

are synchronous, the distributed system is fault-free while the nodes

are considered to be infinitely powerful.

2
The provided definitions allow both for continuous and discrete time. One could

just as well assume real numbers to represent time. For simplicity, we assume natural

numbers.

3.1 Problem Formulation
We assume that the historical graph is stored in a vertex-centric

system, [13], which is space efficient and demonstrates the potential

for enhancing the efficiency and functionality of both update and

query operations. This means that the whole history of a node

along with its adjacent edges is stored in the node itself. We want

to support the following query:

CD(𝐺, [𝑡𝑖 , 𝑡 𝑗 ]): Find the aggregate communities in graph 𝐺 in the

time interval [𝑡𝑖 , 𝑡 𝑗 ]. If 𝑡𝑖 = 𝑡 𝑗 , find the communities in this time

instance.

In case the query is about a particular time instance 𝑡𝑖 , then

the community detection degenerates to a distributed community

detection algorithm [24] on a single instance (snapshot). When

an edge or a node is not valid at 𝑡𝑖 , then it does not exist in the

retrieved snapshot.

However, when the query contains a time interval [𝑡𝑖 , 𝑡 𝑗 ], an
approach would be to identify aggregated communities during this

interval. The other option is to identify the evolution of all (or

some) of these communities during this time interval. In this case,

apart from identifying these communities and their evolution, new

problems must be handled related to reporting all these commu-

nities and their evolution efficiently. The aggregation in this case

takes into account the contribution of each node/edge related to its

overlap with the query time interval. This means that we wish to

take into account that some nodes/edges are not valid in all time

instances of the query time interval [𝑡𝑖 , 𝑡 𝑗 ]. For example, assume

discrete time and assume that the user requests the communities of

the graph in the time interval 𝑇 = [2, 6]. The aforementioned time

interval consists of 5 different time instances {2, 3, 4, 5, 6}. Poten-
tially, there are nodes/edges that are valid over a span of 1, 2, 3 or 4

time instances in this time interval instead of spanning it entirely.

To be more precise, assume an edge 𝑒 that is valid in the time in-

terval [1, 5]. Since 𝑒 is valid for 4 time instances out of 5, we will

assume that the edge will have a weight equal to
4

5
. Informally, this

weight definition will be used to partition the graph into communi-

ties for the query time interval (it is straightforward to generalize

it to continuous time). The preceding discussion is captured in the

following definition.

Definition 1. The observed interval of a node/edge is the inter-
section between the query time interval and the valid time interval of
this node/edge.

When a node/edge is not valid at any time instance of the query

time interval, then it is nonexistent during this time interval. Con-

sequently, the unweighted historical graph is transformed into

a weighted static graph for a particular time interval, where the

weight of each node/edge represents the ratio of the size of its

observed interval to the size of the total query interval.

Definition 2. The observation ratio of an object (node, edge or
triangle) is the ratio between the size of the observed interval of the
object and the size of the query time interval defined by the user.

The maximum value of the observation ratio is 1 when the time

interval of the node/edge spans the query interval entirely. The

minimum value of the observation ratio is zero when the time

interval of the object and the query time interval are disjoint.
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3.2 The𝑊𝐶𝐶 and 𝑡𝑙𝐶𝐶 Metric for Temporal
Graphs

The basic idea behind the Weighted Clustering Coefficient (hence-

forth𝑊𝐶𝐶) metric [24], is that within a community, vertices should

have a higher concentration of triangles among themselves than

with other nodes outside the community. In this work, we extend

and adapt this metric to manage historical graphs instead of un-

weighted static graphs. Given a query time interval, the proposed

variant of𝑊𝐶𝐶 should handle each edge and node of the historical

graph in a way that reflects their contribution in that time inter-

val. In other words, we estimate the contribution of each edge and

vertex of the graph to𝑊𝐶𝐶 computation in a given time interval.

Based on this idea, given a historical graph 𝐺 (𝑉𝑇 , 𝐸𝑇 ), we define
the cohesion of a vertex 𝑥 to a set of vertices 𝑆 for the query time

interval [𝑡𝑖 , 𝑡 𝑗 ] as follows:

𝑊𝐶𝐶𝑖 𝑗 (𝑥, 𝑆) =
{
𝑡𝑖 𝑗 (𝑥,𝑆 )
𝑡𝑖 𝑗 (𝑥,𝑉 ) ×

𝑣𝑡𝑖 𝑗 (𝑥,𝑉 )
|𝑆\{𝑥 } |𝑖 𝑗+𝑣𝑡𝑖 𝑗 (𝑥,𝑉 \𝑆 ) if 𝑡𝑖 𝑗 (𝑥,𝑉 ) ≠ 0

0 if 𝑡𝑖 𝑗 (𝑥,𝑉 ) = 0

(1)

The function 𝑡𝑖 𝑗 (𝑥, 𝑆) denotes the sum of the contributions of

the edges to triangles closed by 𝑥 , with vertices in 𝑆 during the

time interval [𝑡𝑖 , 𝑡 𝑗 ]. More precisely, given a triangle with vertices

𝑢, 𝑣, 𝑥 , and their edges 𝑒1 = (𝑥,𝑢, 𝑡 (𝑠 )𝑒1 , 𝑡
(𝑓 )
𝑒1 ), 𝑒2 = (𝑥, 𝑣, 𝑡 (𝑠 )𝑒2 , 𝑡

(𝑓 )
𝑒2 )

and 𝑒3 = (𝑢, 𝑣, 𝑡 (𝑠 )𝑒3 , 𝑡
(𝑓 )
𝑒3 ), the observation ratio of the triangle closed

by 𝑥 is defined in Equation (2) as follows:

𝐶𝑒 (𝑥,𝑢, 𝑣) =

���[𝑡 (𝑠 )𝑒

1
,𝑡
(𝑓 )
𝑒
1

]∩[𝑡 (𝑠 )𝑒
2
,𝑡
(𝑓 )
𝑒
2

]∩[𝑡 (𝑠 )𝑒
3
,𝑡
(𝑓 )
𝑒
3

]∩[𝑡𝑖 ,𝑡 𝑗 ]
���

| [𝑡𝑖 ,𝑡 𝑗 ] | if 𝑥,𝑢, 𝑣 form a triangle

0 otherwise

(2)

𝑡𝑖 𝑗 (𝑥, 𝑆) =
∑︁
𝑢,𝑣∈𝑆

𝐶𝑒 (𝑥,𝑢, 𝑣) (3)

This is the ratio of the size (number of time instances) contained

in the intersection of the edges’s time intervals with the query

time interval to the size of the query time interval. 𝑡𝑖 𝑗 (𝑥,𝑉 ) is
defined accordingly. The function 𝑣𝑡𝑖 𝑗 (𝑥, 𝑆) estimates the sum of

the contributions of the vertices contained in all such triangles in

𝑆 . The contribution of a vertex 𝑢 to triangles closed by 𝑥 in 𝑆 , is

defined as follows:

𝐶𝑣𝑒𝑟𝑡 (𝑥,𝑢, 𝑆) =

���������[𝑡𝑖 ,𝑡 𝑗 ]∩
⋃
𝑣∈𝑆

(𝑥,𝑢,𝑣) is a triangle

(
[𝑡 (𝑠 )(𝑥,𝑣) ,𝑡

(𝑓 )
(𝑥,𝑣) ]∩[𝑡

(𝑠 )
(𝑥,𝑢) ,𝑡

(𝑓 )
(𝑥,𝑢) ]∩[𝑡

(𝑠 )
(𝑢,𝑣) ,𝑡

(𝑓 )
(𝑢,𝑣) ]

)���������
| [𝑡𝑖 ,𝑡 𝑗 ] |

(4)

𝑣𝑡𝑖 𝑗 (𝑥, 𝑆) =
∑︁
𝑢∈𝑆

𝐶𝑣𝑒𝑟𝑡 (𝑥,𝑢) (5)

This is the ratio of the size of the union of the time intervals of all

triangles (the intersection of the time intervals of the three respec-

tive edges) of 𝑥 and 𝑢 with nodes 𝑣 ∈ 𝑆 and the query time interval,

with the size of the query time interval. Then, in Equation (5) the

total contribution 𝑣𝑡𝑖 𝑗 (𝑥, 𝑆) of each vertex in triangles closed by 𝑥

is defined. The function 𝑣𝑡𝑖 𝑗 (𝑥,𝑉 \ 𝑆) is defined similarly.

Finally, |𝑆 \ {𝑥}|𝑖 𝑗 is estimated based on the observation ratio of

each vertex excluded 𝑥 , in 𝑆 . Thus, given the vertex𝑤 ∈ 𝑆 and its

time interval [𝑡 (𝑠 )𝑤 , 𝑡
(𝑓 )
𝑤 ], the contribution of node𝑤 is defined as

follows:

𝐶𝑆 (𝑤) =

���[𝑡 (𝑠 )𝑤 , 𝑡
(𝑓 )
𝑤 ] ∩ [𝑡𝑖 , 𝑡 𝑗 ]

�����[𝑡𝑖 , 𝑡 𝑗 ]�� (6)

Equation (7) computes the sum of the observation ratios of all nodes

in 𝑆 , except from 𝑥 .

|𝑆 \ {𝑥}|𝑖 𝑗 =
∑︁
𝑤∈𝑆

𝐶𝑆 (𝑤) (7)

Practically, the proposed𝑊𝐶𝐶 cohesionmetric rewards a high ra-

tio of intra-community closed triangles to inter-community closed

triangles (the left-hand side term) and awards a penalty to commu-

nity vertices that do not close any triangle in the community (the

right-hand side term).

Given a partitioning 𝑃𝑖 𝑗 = 𝐶1,𝐶2, ...,𝐶𝑛 during the query time

interval [𝑡𝑖 , 𝑡 𝑗 ] of𝑉 in𝐺 , the total𝑊𝐶𝐶𝑖 𝑗 score of this partitioning

𝑃 is defined as follows:

𝑊𝐶𝐶𝑖 𝑗 (𝑃) =
1

|𝑉 |𝑖 𝑗

∑︁
𝐶∈𝑃

∑︁
𝑥∈𝐶

𝑊𝐶𝐶𝑖 𝑗 (𝑥,𝐶) (8)

where |𝑉 |𝑖 𝑗 is defined similarly to Equation (7). Given 𝑃 , the𝑊𝐶𝐶𝑖 𝑗 (𝑃)
score is the weighted average of the𝑊𝐶𝐶𝑖 𝑗 (𝐶) scores of all the
communities in the partition.

To initialize communities we make use of the temporal local

Clustering Coefficient (tlCC). Local clustering coefficient has been

defined for temporal graphs but in an ad-hoc manner based on

its use (e.g., [6]). We define tlCC for node 𝑢 in the query time

interval [𝑡𝑖 , 𝑡 𝑗 ], as the sum of the observation ratios of all triangles

containing 𝑢 divided by the maximum observation ratios that one

could get for 𝑢. This maximum is computed by keeping existing

edges between the neighbors of 𝑢 with their current time intervals

and adding all possible non-existent edges during the query time

interval [𝑡𝑖 , 𝑡 𝑗 ]. The time interval of these new edges is equal to

the query time interval [𝑡𝑖 , 𝑡 𝑗 ]; thus, the observation ratio of each

new edge is 1. We define 𝑡 ′
𝑖 𝑗
(𝑥,𝑉 ) similarly to 𝑡𝑖 𝑗 (𝑥,𝑉 ) but for the

graph that also contains these new edges. Then, tlCC is defined as

follows:

𝑡𝑙𝐶𝐶𝑖 𝑗 (𝑢) =


𝑡𝑖 𝑗 (𝑢,𝑉 )
𝑡 ′
𝑖 𝑗
(𝑢,𝑉 ) if 𝑑𝑖 𝑗 (𝑢) > 0

0 otherwise

(9)

where 𝑑𝑖 𝑗 (𝑢) denotes the aggregate degree of node 𝑢 within the

time interval [𝑡𝑖 , 𝑡 𝑗 ].

4 The Distributed Algorithm for Community
Detection

In what follows, we describe the three steps of the proposed dis-

tributed community detection algorithm for historical graphs: pre-

processing, community initialization, and community refinement

via the𝑊𝐶𝐶𝑖 𝑗 iteration. This algorithm is based on the algorithms

presented in [21, 24].
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Figure 1: A depiction of the method’s three phases: yellow
boxes show local computations, while blue boxes indicate
computations requiring inter-node communication.

Preprocessing. In the preprocessing phase, certain functions are

computed to obtain an initial partition of our historical graph

and facilitate the next phases. In this step, the functions 𝑡𝑖 𝑗 (𝑥,𝑉 ),
𝑣𝑡𝑖 𝑗 (𝑥,𝑉 ) and 𝐶𝑉 (𝑥) are calculated ∀𝑥 ∈ 𝑉𝑖 𝑗 . 𝑣𝑡𝑖 𝑗 (𝑥,𝑉 ) can be eas-

ily estimated based on 𝑡𝑖 𝑗 (𝑥,𝑉 ), since 𝑡𝑖 𝑗 (𝑥,𝑉 ) value supplement

the 𝑣𝑡𝑖 𝑗 (𝑥, 𝑣) value. These values are immutable throughout the

computation and therefore only need to be calculated once.

Via message passing, all vertices 𝑥 communicate their 𝑟𝑖 𝑗 (𝑥)
to their neighbors N𝑖 𝑗 (𝑥). Then, each node calculates the nodes

with which it forms triangles by computing the intersection of

their neighborhoods. Due to the fact that the time intervals are

also communicated, we can use Equations (2) − (7) to compute the

function 𝑡𝑖 𝑗 (𝑥,𝑉 ), 𝑣𝑡𝑖 𝑗 (𝑥,𝑉 ) and 𝐶𝑉 (𝑥) for all nodes 𝑥 ∈ 𝑉𝑖 𝑗 .

When dealing with huge graphs, the communication of 𝑟𝑖 𝑗 (𝑥)
of a node to all its neighbors in a single superstep, could result in

prolonged communication time or, in a worse scenario, memory

issues leading to worker failures. More precisely, when vertices

with high degrees transmit their routing tables, it leads to notably

greater communication costs in contrast to messages from vertices

with low degrees. To circumvent this scenario and improve the com-

munication cost, vertices exchange exclusively their routing tables

with adjacent vertices that have higher degrees. In this way, we

encourage only one-way communication, from low-degree vertices

to high-degree vertices. Consequently, all the adjacent high-degree

nodes of node 𝑢 estimate the sum of the contributions of the edges

to triangles closed by 𝑢, and they respond by sending a message,

to 𝑢 containing this information. Subsequently, all the values of

𝑡𝑖 𝑗 (𝑥,𝑉 ) and 𝑣𝑡𝑖 𝑗 (𝑥,𝑉 ), ∀𝑥 ∈ 𝑉𝑖 𝑗 , are estimated.

Community Initialization. This phase involves the initialization of

the communities based on the local temporal clustering coefficient

𝑡𝑙𝐶𝐶𝑖 𝑗 . This is based on the assumption that the higher the 𝑡𝑙𝐶𝐶𝑖 𝑗
of a vertex, the more likely its neighbors are to belong to its commu-

nity, considering that a high local temporal clustering coefficient

shows how closely connected these vertices are.

To achieve this initial partitioning, we use a strategy that resem-

bles that of a distributed algorithm for Maximal Independent Set

(MIS) [10]. We impose the following rules for the initial partitioning:

a) Each initial community is a star network, where it consists of a

central node 𝑣 (hub) and its periphery, that is, a subset of N𝑖 𝑗 (𝑣),
b) the hub is the node with the highest 𝑡𝑙𝐶𝐶 in the community.

and c) each node in the periphery is connected to the hub with the

highest tlCC among all its neighbors. For initialization, one could

remove rules (b) and (c) and simply apply a distributed algorithm

for MIS. Although this is faster, it may degrade the quality of the

initial partitioning.

Partition Optimization via𝑊𝐶𝐶𝑖 𝑗 . In this phase, we use simple rules

to iteratively optimize the community partition by improving re-

peatedly the𝑊𝐶𝐶𝑖 𝑗 (𝑃) score for a partitioning 𝑃 of communities.

A user-defined threshold 𝜃 controls when the iterations will termi-

nate and provides a trade-off between quality of solution and speed.

In each iteration, each node has three different choices (moves)

as to what it will do concerning the current community partition.

The move that is chosen by the algorithm is the one that improves

𝑊𝐶𝐶𝑖 𝑗 (𝑃) the most. The allowed moves are the following:

(1) Stay: Vertex remains at the current community.

(2) Remove: Vertex is removed from the current community and

forms a new singleton community.

(3) Transfer: Vertex is removed from its current community and

joins another community.

To estimate the best move ∀𝑥 ∈ 𝑉 , all computations are done in

parallel.

Given the new partition after one iteration, we check if the ter-

mination condition is met. If the improvement in global quality ex-

ceeds a predefined threshold 𝜃 ,
𝑊𝐶𝐶𝑖 𝑗 (𝑃 ′ )−𝑊𝐶𝐶𝑖 𝑗 (𝑃 )

𝑊𝐶𝐶𝑖 𝑗 (𝑃 ) ≥ 𝜃 , indicating

a significant improvement in the community structure, the process

continues with another iteration. Otherwise, if the improvement

is less than 𝜃 , the process terminates, and each node retains the

community ID to which it belongs. This distributed termination ap-

proach ensures that the clustering algorithm converges efficiently

while accommodating the one-way communication nature of the

computation.

Details of𝑊𝐶𝐶𝑖 𝑗 (𝑃) estimation:To determine the actual global

Weighted Clustering Coefficient (𝑊𝐶𝐶𝑖 𝑗 (𝑃)), it is necessary to com-

pute the values 𝑡𝑖 𝑗 (𝑥,𝐶) and 𝑣𝑡𝑖 𝑗 (𝑥,𝐶) for each vertex 𝑥 and its

community 𝐶 . Note that for each vertex𝑤 , the 𝐶𝑆 (𝑤) quantity is

calculated during the preprocessing phase. Then, we use Equation

(7) to calculate the quantity |𝑆 \ {𝑥}|𝑖 𝑗 , for vertices 𝑥 and their com-

munity 𝑆 = 𝐶 . This process is similar to the distributed approach

used in the preprocessing, but with the distinction that messages

are exclusively exchanged among vertices within the same com-

munity𝐶 . Consequently, this step is less computationally intensive

than the global procedure. The resultant local𝑊𝐶𝐶𝑖 𝑗 (𝐶) values
are then combined and averaged to derive the global𝑊𝐶𝐶𝑖 𝑗 (𝑃). In
the event of achieving a new best𝑊𝐶𝐶𝑖 𝑗 (𝑃), vertices store their
current communities. When the termination criterion is satisfied,

vertices output their current community ID that contributed to the

overall best𝑊𝐶𝐶𝑖 𝑗 (𝑃).

5 Conclusions
We address community detection in static networks with temporal

semantics, where nodes and edges have valid time intervals. This

is the first approach for Temporal Historical Graphs, introducing

temporal node/edge contributions and adapting existing metrics.

Future work includes analyzing time/message complexity and test-

ing heuristics to improve performance or quality, plan to support

nodes with multiple time intervals, like multi-interval edges, by

treating each interval as a separate instance, and extensive experi-

mentation.
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