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Abstract

Community detection stands as a pivotal process in network analy-
sis, having undergone extensive examination over the past 25 years
within static network contexts. This task involves partitioning net-
works based on structural characteristics, specifically into classes
of nodes exhibiting denser connections than the overall network.
Moreover, in recent years, an additional layer of complexity has
arisen, particularly in networks characterized by a static nature
where each node and edge is assigned a valid time interval. Such
historical graphs, unlike traditional graphs, incorporate a temporal
dimension, allowing for the analysis of how connections between
entities evolve and change over different time intervals. In this
study, we present a distributed algorithm for static community de-
tection within a query time interval in historical graphs. Specifically,
when provided with a designated query time interval, our proposed
method identifies communities by assessing the individual contribu-
tions of each edge and node within the graph during that specified
time interval. To the best of our knowledge, this setting has not
been considered before in the literature.

CCS Concepts

« Do Not Use This Code — Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

ACM Reference Format:

Konstantinos Christopoulos and Konstantinos Tsichlas. 2025. Distributed
Community Detection in Temporal Graphs. In 19th International Symposium
on Spatial and Temporal Data (SSTD °25), August 25-27, 2025, Osaka, Japan.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3748777.3748793

1 Introduction

Networks are widely used for data analysis in domains such as social
sciences, transportation, and biology. A static network is typically
represented as G = (V, E), where V denotes entities (nodes) and E
denotes interactions (edges), which may be directed or undirected.
Extending to temporal settings, historical graphs assign valid time
intervals to each node and edge. These graphs are static in structure
but dynamic in behavior due to time-based activation of nodes and
edges.
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Community Detection (CD) aims to identify densely connected
node groups[8, 16] (communities) and has applications ranging
from social networks to biological systems. Most existing CD al-
gorithms target networks with millions of nodes and edges [19].
However, the rise of massive datasets from sources like social media,
10T, healthcare, and retail [18] has led to networks with billions
of entities—e.g., Facebook had 3.51 billion active users as of June
2021'—demanding greater computational resources. However, most
global CD algorithms run on a single machine, limiting their scal-
ability. This problem can be tackled by moving to a distributed
setting for the CD problem.

This paper proposes a distributed algorithm for detecting com-
munities in historical graphs within a given query time interval.
Building on the Weighted Clustering Coefficient (WCC) [20], we ex-
tend it to support temporal graphs by introducing the local temporal
Clustering Coeficient (1tCC), along with other adapted metrics.

The rest of the paper is organized as follows: Section 2 reviews
related work, Section 3 defines key concepts, Section 4 presents our
algorithm, and Section 5 concludes the paper

2 Related Work

The literature on distributed CD, especially in dynamic or historical
graphs, remains limited. In historical graphs, community detection
typically involves identifying communities in snapshots taken at
specific time points, following the instant-optimal paradigm [23].
A foundational distributed CD method based on the WCC metric is
presented in [24]. The algorithm runs in three phases: (1) Prepro-
cessing that filters edges not participating in triangles, (2) Initial-
ization that builds communities using clustering coefficients, and
(3) WCC Iteration that refines memberships until convergence. An
incremental version of this approach using Apache Spark/GraphX
is proposed in [1].

LazyFox [9] builds on WCC by optimizing triangle counting.
Similarly, [17] adapts PHASR for distributed environments using
Spark, focusing on temporal conductivity and refinement via Per-
sonalized PageRank. In [12], CD is performed on heterogeneous
temporal networks by converting historical data into snapshots,
using algorithms tailored for both static and dynamic scenarios. A
related preprocessing method is discussed in [2].

A local modularity-based distributed approach is presented in
[15], where communities grow from individual nodes through local
iterative expansion. Among TLAV (Think Like a Vertex) models,
[7] proposes a lightweight random-walk-based algorithm for local
CD, while a spectral method with similar objectives is found in
[25]. A message-passing implementation appears in [11], and label
propagation is employed in both classical [22] and dynamic [4]
distributed settings. A comprehensive survey of distributed CD al-
gorithms is provided in [3], categorizing them into self-aggregation
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and self-organization methods. Finally, more related waork we can
find in [].

In our work, we address triangle counting in historical graphs
which is a topic that has only recently begun to receive attention, as
evidenced by two recent studies [5, 26]. Among these, the study in
[26] considers a simplified scenario where edge histories are defined
by discrete timestamps. In contrast, our focus is on a more general
and challenging setting where edge histories are represented as
time intervals (i.e., valid intervals). To this end, we build on the
approach introduced in [5], which leverages temporal interval in-
tersections to identify triangles—specifically, those where all three
constituent edges are simultaneously active during at least one
common time instance. We extend this approach by assigning a
temporal coherence score to each triangle, aligning closely with
the objectives and methodology of our proposed framework.

3 Definitions

Let G = (VT, ET) be a static historical network. The set of historical
nodes VT consists of a set of nodes along with their time intervals?,
that is V7 € V x N2, The set of historical edges Er is a set of
edges along with their time intervals, that is Ep ¢ E x N2, where E
contains all possible (l‘zll) undirected edges. Note that we consider
nodes and edges that have a single valid time interval, but it is
easy to generalize to a set of valid time intervals. The preceding
definitions mean that each node v € V (and edge e € E) has a time

interval attached [tz(,s), tz(,f )] (similarly [tés) , te(f ) 1) (where (s) and
(f) stand for start and finish respectively) that dictates the time

instances where node v (edge e) is existent. Thus, if ¢ ¢ [tz(,s), tz(,f)],
then v is not existent at time t. V;; C V contains all nodes that
have a time interval that spans the query interval [#;, t;]. The time
interval of each edge is, by definition, a subset of the time interval
of the respective vertices. In case of multiple time intervals, we
have to define the borders of each interval accordingly, to avoid
overlaps. For example, each interval should be open at the left and
closed at the right. The convention we make is that a time point ¢
is represented by (¢, t].

Assume that by N;;(v) we represent the neighborhood of node v
in the query time interval [t;, t;]. Note that NV;;(v) may even be the
empty set for specific query time intervals. The routing table r(v)
of node v, contains all historical edges to other nodes in G. This
means that r(v) contains all edges and nodes along with their time
interval. By r;j(v), we represent the part of this table that contains
historical edges with time intervals that intersect the query time
interval [t;, t;], that is all edges that point to nodes that belong to
Nij(0).

Our algorithm is designed having in mind the LocaL distributed
model [14]. In a nutshell, the nodes of the graph have distinct
IDs and communicate with the nodes in their neighborhood with
messages (of unbounded size). Communication and computation
are synchronous, the distributed system is fault-free while the nodes
are considered to be infinitely powerful.

2The provided definitions allow both for continuous and discrete time. One could
just as well assume real numbers to represent time. For simplicity, we assume natural
numbers.
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3.1 Problem Formulation

We assume that the historical graph is stored in a vertex-centric
system, [13], which is space efficient and demonstrates the potential
for enhancing the efficiency and functionality of both update and
query operations. This means that the whole history of a node
along with its adjacent edges is stored in the node itself. We want
to support the following query:

CD(G, [ti, tj]): Find the aggregate communities in graph G in the
time interval [t;, ¢;]. If t; = t;, find the communities in this time
instance.

In case the query is about a particular time instance ¢;, then
the community detection degenerates to a distributed community
detection algorithm [24] on a single instance (snapshot). When
an edge or a node is not valid at ¢;, then it does not exist in the
retrieved snapshot.

However, when the query contains a time interval [t;, ¢;], an
approach would be to identify aggregated communities during this
interval. The other option is to identify the evolution of all (or
some) of these communities during this time interval. In this case,
apart from identifying these communities and their evolution, new
problems must be handled related to reporting all these commu-
nities and their evolution efficiently. The aggregation in this case
takes into account the contribution of each node/edge related to its
overlap with the query time interval. This means that we wish to
take into account that some nodes/edges are not valid in all time
instances of the query time interval [t;, t;]. For example, assume
discrete time and assume that the user requests the communities of
the graph in the time interval T = [2, 6]. The aforementioned time
interval consists of 5 different time instances {2, 3,4, 5, 6}. Poten-
tially, there are nodes/edges that are valid over a span of 1,2, 3 or 4
time instances in this time interval instead of spanning it entirely.
To be more precise, assume an edge e that is valid in the time in-
terval [1,5]. Since e is valid for 4 time instances out of 5, we will
assume that the edge will have a weight equal to %. Informally, this
weight definition will be used to partition the graph into communi-
ties for the query time interval (it is straightforward to generalize
it to continuous time). The preceding discussion is captured in the
following definition.

DEFINITION 1. The observed interval of a node/edge is the inter-
section between the query time interval and the valid time interval of
this node/edge.

When a node/edge is not valid at any time instance of the query
time interval, then it is nonexistent during this time interval. Con-
sequently, the unweighted historical graph is transformed into
a weighted static graph for a particular time interval, where the
weight of each node/edge represents the ratio of the size of its
observed interval to the size of the total query interval.

DEFINITION 2. The observation ratio of an object (node, edge or
triangle) is the ratio between the size of the observed interval of the
object and the size of the query time interval defined by the user.

The maximum value of the observation ratio is 1 when the time
interval of the node/edge spans the query interval entirely. The
minimum value of the observation ratio is zero when the time
interval of the object and the query time interval are disjoint.
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3.2 The WCC and tICC Metric for Temporal
Graphs

The basic idea behind the Weighted Clustering Coefficient (hence-
forth WCC) metric [24], is that within a community, vertices should
have a higher concentration of triangles among themselves than
with other nodes outside the community. In this work, we extend
and adapt this metric to manage historical graphs instead of un-
weighted static graphs. Given a query time interval, the proposed
variant of WCC should handle each edge and node of the historical
graph in a way that reflects their contribution in that time inter-
val. In other words, we estimate the contribution of each edge and
vertex of the graph to WCC computation in a given time interval.
Based on this idea, given a historical graph G(Vr, ET), we define
the cohesion of a vertex x to a set of vertices S for the query time
interval [t;, ;] as follows:

tij (x,S)

otjj (X,V)
WCCij(x,S) = {ffJ'(x:V)
0

[S\{x}ij+0ti; (x,V\S)

ift;;(x, V) #£0
ift,-j(x, V)=0
1)
The function t;;(x, S) denotes the sum of the contributions of
the edges to triangles closed by x, with vertices in S during the
time interval [t;, t;]. More precisely, given a triangle with vertices

(s) (f)) ey = (xv t<5) (f))

u,v,x, and their edges e; = (x,u,te,”, e >

(s)

andes = (u,0,,,", (f )) the observation ratio of the triangle closed
by x is defined in Equatlon (2) as follows:

s £ )
|[téf’,té{’]ﬂ[té§),té{’]ﬂ[t“ 2 ]ﬂ[ti,t,—]|

Ce(x,u,0) = Tl if x, u, v form a triangle
0 otherwise
)
tij(x,S) = Z Ce(x,u,0) 3)
[TRVISN)

This is the ratio of the size (number of time instances) contained
in the intersection of the edges’s time intervals with the query
time interval to the size of the query time interval. ¢;;(x, V) is
defined accordingly. The function vt;;(x, S) estimates the sum of
the contributions of the vertices contained in all such triangles in
S. The contribution of a vertex u to triangles closed by x in S, is
defined as follows:

[tat;10 U ([,m DAL D a0 ])

(x.0)F (x,0) (o) F o) (w0)"  (w,0)

. ve .
(xu,0) is a triangle

Coert(x,u,S) =

[[2i.t;1]

©

011j(x,5) = ) Coert (x,u) )
ues

This is the ratio of the size of the union of the time intervals of all
triangles (the intersection of the time intervals of the three respec-
tive edges) of x and u with nodes v € S and the query time interval,
with the size of the query time interval. Then, in Equation (5) the
total contribution vt;;(x, S) of each vertex in triangles closed by x

is defined. The function vt;;(x, V' \ S) is defined similarly.
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Finally, |S \ {x}|;; is estimated based on the observation ratio of
each vertex excluded x, in S. Thus, given the vertex w € S and its

time interval [t,(j ) )] the contribution of node w is defined as
follows:
(13, 1 s tj]|
Cs(w) = (6)

|[ti, £51|
Equation (7) computes the sum of the observation ratios of all nodes
in S, except from x.

IS\ (e}l = ) Cs(w) ™
weS
Practically, the proposed WCC cohesion metric rewards a high ra-
tio of intra-community closed triangles to inter-community closed
triangles (the left-hand side term) and awards a penalty to commu-
nity vertices that do not close any triangle in the community (the
right-hand side term).
Given a partitioning P;; = C1, Cy, ..., Cp during the query time
interval [#;, t;] of V in G, the total WCC;; score of this partitioning
P is defined as follows:

WCCi;(P) = lVlu > wec(x.0) ®)

CePxeC
where |V|;; is defined similarly to Equation (7). Given P, the WCC;; (P)
score is the weighted average of the WCC;;(C) scores of all the
communities in the partition.

To initialize communities we make use of the temporal local
Clustering Coefficient (tICC). Local clustering coefficient has been
defined for temporal graphs but in an ad-hoc manner based on
its use (e.g., [6]). We define tICC for node u in the query time
interval [#;, t;], as the sum of the observation ratios of all triangles
containing u divided by the maximum observation ratios that one
could get for u. This maximum is computed by keeping existing
edges between the neighbors of u with their current time intervals
and adding all possible non-existent edges during the query time
interval [t;, tj]. The time interval of these new edges is equal to
the query time interval [¢;, ¢;]; thus, the observation ratio of each
new edge is 1. We define ¢/ ; (x,V) similarly to t;;(x, V) but for the
graph that also contains these new edges. Then, tICC is defined as
follows:

tij(wV) .
tlfj-(u,V) lfdij(u) >0

thCl-j(u) = (9)
0 otherwise

where d;j(u) denotes the aggregate degree of node u within the
time interval [¢;, t;].

4 The Distributed Algorithm for Community
Detection

In what follows, we describe the three steps of the proposed dis-
tributed community detection algorithm for historical graphs: pre-
processing, community initialization, and community refinement
via the WCC;; iteration. This algorithm is based on the algorithms
presented in [21, 24].
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Community Refinement
WCC Iteration

Initial Partitioning
Initialize community ID to node’s ID

Preprocessing
Compute the part of the
routing table r;; that is valid in

Update community information
the query time interval [t;, £;]

Send node’s ID, community ID and }
! the local temporal clustering Send r;; to all neighbors in a
Send r;; to all neighbors in

coefficient to all neighbors in Ty
[t [r5) i
' —) v === Compute best move for improving
Compute observation ratios for Choose the neighbor that is a hub wcee;
triangles with respect to the and has the highest local temporal < |
whole graph clustering coefficient

Does WCC;j increase considerably
due to these moves?
NO
s

If community ID changed then send
the new community ID to
neighbors Terminate

Calculate the local temporal
clustering coefficient

If neighbor changed
community ID

Figure 1: A depiction of the method’s three phases: yellow
boxes show local computations, while blue boxes indicate
computations requiring inter-node communication.

Preprocessing. In the preprocessing phase, certain functions are
computed to obtain an initial partition of our historical graph
and facilitate the next phases. In this step, the functions ¢;;(x, V),
otjj(x,V) and Cy (x) are calculated Vx € V;;. vt;j(x, V) can be eas-
ily estimated based on t;;(x, V), since t;j(x, V) value supplement
the vt;;(x, v) value. These values are immutable throughout the
computation and therefore only need to be calculated once.

Via message passing, all vertices x communicate their r;;(x)
to their neighbors N;;(x). Then, each node calculates the nodes
with which it forms triangles by computing the intersection of
their neighborhoods. Due to the fact that the time intervals are
also communicated, we can use Equations (2) — (7) to compute the
function t;;(x, V), vt;j(x, V) and Cy (x) for all nodes x € Vj;.

When dealing with huge graphs, the communication of r;;(x)
of a node to all its neighbors in a single superstep, could result in
prolonged communication time or, in a worse scenario, memory
issues leading to worker failures. More precisely, when vertices
with high degrees transmit their routing tables, it leads to notably
greater communication costs in contrast to messages from vertices
with low degrees. To circumvent this scenario and improve the com-
munication cost, vertices exchange exclusively their routing tables
with adjacent vertices that have higher degrees. In this way, we
encourage only one-way communication, from low-degree vertices
to high-degree vertices. Consequently, all the adjacent high-degree
nodes of node u estimate the sum of the contributions of the edges
to triangles closed by u, and they respond by sending a message,
to u containing this information. Subsequently, all the values of
tij(x,V) and vt;j(x, V), Vx € Vij, are estimated.

Community Initialization. This phase involves the initialization of
the communities based on the local temporal clustering coefficient
tICCy;. This is based on the assumption that the higher the tICC;;
of a vertex, the more likely its neighbors are to belong to its commu-
nity, considering that a high local temporal clustering coefficient
shows how closely connected these vertices are.

To achieve this initial partitioning, we use a strategy that resem-
bles that of a distributed algorithm for Maximal Independent Set
(MIS) [10]. We impose the following rules for the initial partitioning:
a) Each initial community is a star network, where it consists of a
central node v (hub) and its periphery, that is, a subset of Nj;(v),
b) the hub is the node with the highest t/CC in the community.
and c) each node in the periphery is connected to the hub with the
highest tICC among all its neighbors. For initialization, one could
remove rules (b) and (c) and simply apply a distributed algorithm
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for MIS. Although this is faster, it may degrade the quality of the
initial partitioning.

Partition Optimization via WCC;;. In this phase, we use simple rules
to iteratively optimize the community partition by improving re-
peatedly the WCC;;(P) score for a partitioning P of communities.
A user-defined threshold 6 controls when the iterations will termi-
nate and provides a trade-off between quality of solution and speed.
In each iteration, each node has three different choices (moves)
as to what it will do concerning the current community partition.
The move that is chosen by the algorithm is the one that improves
WCC;j(P) the most. The allowed moves are the following:

(1) Stay: Vertex remains at the current community.

(2) Remove: Vertex is removed from the current community and
forms a new singleton community.

(3) Transfer: Vertex is removed from its current community and
joins another community.

To estimate the best move Vx € V, all computations are done in
parallel.

Given the new partition after one iteration, we check if the ter-
mination condition is met. If the improvement in global quality ex-
ceeds a predefined threshold 6, %W
a significant improvement in the community structure, the process
continues with another iteration. Otherwise, if the improvement
is less than 0, the process terminates, and each node retains the
community ID to which it belongs. This distributed termination ap-
proach ensures that the clustering algorithm converges efficiently
while accommodating the one-way communication nature of the
computation.

Details of WCC; (P) estimation: To determine the actual global
Weighted Clustering Coefficient (WCC;; (P)), it is necessary to com-
pute the values t;j(x,C) and ot;;j(x,C) for each vertex x and its
community C. Note that for each vertex w, the Cs(w) quantity is
calculated during the preprocessing phase. Then, we use Equation
(7) to calculate the quantity |S \ {x}|;;, for vertices x and their com-
munity S = C. This process is similar to the distributed approach
used in the preprocessing, but with the distinction that messages
are exclusively exchanged among vertices within the same com-
munity C. Consequently, this step is less computationally intensive
than the global procedure. The resultant local WCC;;(C) values
are then combined and averaged to derive the global WCC;;(P). In
the event of achieving a new best WCC;;(P), vertices store their
current communities. When the termination criterion is satisfied,
vertices output their current community ID that contributed to the
overall best WCC;; (P).

> 0, indicating

5 Conclusions

We address community detection in static networks with temporal
semantics, where nodes and edges have valid time intervals. This
is the first approach for Temporal Historical Graphs, introducing
temporal node/edge contributions and adapting existing metrics.
Future work includes analyzing time/message complexity and test-
ing heuristics to improve performance or quality, plan to support
nodes with multiple time intervals, like multi-interval edges, by
treating each interval as a separate instance, and extensive experi-
mentation.
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