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Abstract. Community detection is a prominent process on networks
and has been extensively studied on static networks the last 25 years.
This problem concerns the structural partitioning of networks into classes
of nodes that are more densely connected when compared to the rest of
the network. However, a plethora of real-world networks are highly dy-
namic, in the sense that entities (nodes) as well as relations between
them (edges) constantly change. As a result, many solutions have also
been applied in dynamic/temporal networks under various assumptions
concerning the modeling of time as well as the emerging communities.
The problem becomes quite harder when the notion of time is introduced,
since various unseen problems in the static case arise, like the identity
problem. In the last few years, a few surveys have been conducted re-
garding community detection in time-evolving networks. In this survey,
our objective is to give a rather condensed but up-to-date overview, when
compared to previous surveys, of the current state-of-the-art regarding
community detection in temporal networks. We also extend the previous
classification of the algorithmic approaches for the problem by discern-
ing between global and local dynamic community detection. The former
aims at identifying the evolution of all communities and the latter aims
at identifying the evolution of a partition around a set of seed nodes.
Keywords: Temporal Graphs/Networks, Community Detection

1 Introduction

Networks are widely used as a method for analyzing data in many scientific fields,
such as social sciences, transportation and biology. The prrocess of community
detection (henceforward also referred as CD) , that has its origins in graph par-
titioning, is concerned with node intra-connectivity and its goal is to identify
highly linked groups (communities) of nodes. For example, finding clusters of
users in social networks and functional protein complexes in bioinformatics net-
works are two widely used applications of this problem.

In general, a static network is represented as G = (V,E), where V is the set of
vertices (entities) and E is the set of edges (interactions/relations between enti-
ties). An edge can be directed, such as the connection between two people where
one sends an email to another or undirected, such as the connection between two
collaborating peers. Lastly, edges among nodes can be associated with weights
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(e.g., frequency of interactions) or nodes can be associated to weights (e.g., spe-
cific properties of nodes). In many cases, real-world networks are dynamic, in
the sense that new edges or nodes appear and existing edges or nodes disappear.
As a result, the communities themselves change because of the evolution of the
network. The appearance of a new community, the disappearance of an existing
and the split of an existing into two or more, are examples of changes in the
community structure.

For the purpose of representing a temporal network, it can be assumed as a
sequence of static graphs (snapshots) or as a network with time annotations on
its nodes/edges that represent its time evolution. The former approach requires
to specify the size of our time window that defines the time instances of snapshot
construction. The later, is related to events, like edge/node insertion or deletion
or its existence interval. The notion of a time annotation may have different as-
pects/interpretations depending on the application. The following three aspects
have been used in the literature [27]:

1. Point Networks: every link among two vertices x and y, which has been
created at certain time t, can be represented as a triplet e = (x, y, t).

2. Time Interval Networks: the time-interval connection of two nodes is repre-
sented as a quadruplet e = (x, y, t,∆t). ∆t is the duration of the link between
the vertices x and y.

3. Incremental Networks: edges/nodes can only be added and deletions are
forbidden.

In the last few years, many surveys in the field of CD in temporal networks
have been published. These are discussed briefly in Section 2. The main contri-
bution of this paper is in Section 3, which can be summarized as follows: 1) we
provide an updated overview of the current state-of-the-art methods for CD in
temporal networks since the last years there are quite a few new related results,
and 2) we further classify the approaches in global CD and local CD in tempo-
ral networks. The latter contribution concerns the discussion on new methods
related as to how a community around a given set of nodes evolves in time.
This approach is appropriate in cases where one is not interested at discovering
all communities, leading to large efficiency and effectiveness gains. Finally, we
conclude in Section 4.

2 Related Work

In this section are discussed existing surveys on CD in temporal networks. In
[4] a general classification of methods is proposed into two classes: 1) Online
(real time, incremental detection) and 2) Offline (prior knowledge of network
changes). Similarly, in [20], authors identify the same two classes but they focus
on online approaches dividing them into two sub-classes: 1) Temporal Smooth-
ness, where at each snapshot a static CD algorithm is run from scratch and 2)
Dynamic Update, where the communities are updated based on the differences
of two consecutive snapshots.
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A very good survey is [32], where the dynamic CD algorithms have been
classified based on the strategy they use for detecting meaning-full evolving
communities. They propose three classes of approaches: 1) Instant - optimal,
where the algorithms detect communities from scratch at each snapshot and
then match them between consecutive snapshots, 2) Temporal Trade - off, where
the algorithms detect communities comparing the topology of two consecutive
snapshots and 3) Cross - Time, where the algorithms discover communities us-
ing the information of all snapshots. Similarly in [2], the authors identify three
similar categories as well: 1) Two - Stage methods that detect the communities
from scratch at each snapshot and then match them across different snapshots,
2) Evolutionary Clustering, that detect communities based on the changes in
the topology between two consecutive snapshots and 3) Coupling Graph that
creates an aggregate network containing all snapshots and then uses a static CD
algorithm.

In [12] the authors classified the dynamic CD algorithms into four classes: 1)
Independent Detection, here the communities are detected from scratch at each
snapshot and then they are matched among consecutive snapshots, 2) Dependent
Detection, where communities are identified based on the changes of the topology
between two consecutive snapshots, 3) Simultaneous Detection, where commu-
nities are detected by using the information from all snapshots and 4) Dynamic
Detection, where the communities are updated based on the network updates.
Additionally, in [17] four classes of evolving clustering methods are provided
that are similar to the preceding classification: 1) Sequential mapping-driven, 2)
Temporal smoothing-driven, 3) Milestone detection-driven and 4) Incremental
adaptation-driven.

In [7], a survey is conducted exclusively for incremental (online) CD meth-
ods in temporal networks. The proposed classification contains two subcategories
of incremental methods: 1) Community Detection in Fully Temporal Networks,
where insertions and deletions of nodes and edges are permitted and 2) Commu-
nity Detection in Growing Temporal Networks, where only insertions of nodes
and edges are permitted.

Finally, it is worth mentioning that multilayer networks can be used for dy-
namic community detection [23]. In particular, a multilayer network is a network
made of multiple networks, called layers, where each layer has the same num-
ber of nodes, but different edge connections. The multilayer network model is
commonly employed in the study of temporal networks, in which each snapshot
is represented as a layer and all layers are interconnected based on their time
relationship.

3 Detecting Communities in Temporal Networks:
Classification

In this section, is provided a classification of dynamic CD methods. At first,
the different versions of the dynamic CD problem are discerned into two: Global
and Local. The former concerns the identification of all communities and their
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evolution in the temporal network, while the latter concerns the identification of
a community around a given set of seed nodes and its evolution in the temporal
network. This corresponds to the division between global and local CD in static
graphs. The main body of the literature concerns the global version of the prob-
lem, however there is recently an admittedly small number of publications on
the local version. Although the local version uses techniques especially from the
global online dynamic CD category we believe that it constitutes a class by itself
since there are many differences in terms of efficiency as well as effectiveness of
the methods. Thus we identify the following 5 classes of methods:

1. Global:
(a) Community Detection from scratch and match
(b) Dependent or Temporal Trade - off Community Detection
(c) Simultaneous or Offline Community Detection
(d) Online Community Detection in fully Temporal Networks and in growing

Temporal Networks
2. Local: Community Detection in Temporal Networks using Seed Nodes

Table 1. Overview of the proposed temporal community detection classification.

Global Temporal Community Detection
Class Description References
From Scratch and Match Static algorithm at each

snapshot and matching
[10] [30] [31], [24], [40]

Dependent or Temporal
Trade-off

Based on the topology of two
adjacent snapshots

[13], [34], [35] [43] [26] [36]
[18]

Simultaneous or Offline Creation of single graph -
run static algorithm on it

[16] [22] [29], [28], [39], [15]

Online Community Detec-
tion

Update in proportion to net-
work modifications

[46] [11] [19] [42] [41] [38] [6]
[33] [48], [1], [9], [47]

Local Temporal Community Detection
Class Description References
Using Seed Nodes Update only the area around

the seed node
[21] [44] [45] [14] [3]

In the following, we present in detail these five classes by discussing recent
representative methods.

3.1 Community Detection from Scratch and Match

In this class, a static CD algorithm is applied on each snapshot from scratch
and then the communities that have been found at snapshot t+ 1 are matched
(by using a similarity metric like Jaccard similarity) with the communities found
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at snapshot t. The advantage is that communities can be detected in parallel
and existing methods for static CD can be used. On the other hand, instability
(the communities may have a lot of changes between consecutive snapshots) and
inefficiency (in each snapshot a static community detection algorithm is invoked)
are its main two drawbacks. In the following, we discuss some representative
methods of this category (more such methods can be found in [31,24,40]).

In [10], given as input a sequence of snapshots of a network, they initially find
the network representatives based on the common nodes between two consecu-
tive snapshots and list the communities. Then, the community representatives
are identified and consequently, the relation of communities between different
snapshots (Gt, Gt+1, Gt+2) is established by finding the predecessor(s) and suc-
cessor(s) for each community. Finally, the dynamic CD is performed by looking
at six different events that may happen to a community (Grown, Merged, Split,
Shrunken, Born and Vanished). For all the events they track forward the network
sequence of snapshots with the exception of the shrunken and split communities
where a backtracking process is applied.

In [30] the authors use sliding windows to track the dynamics by computing
partitions for each time slice and by modifying the community description at
time t using the structures found at times t− 1 and t+ 1. More specifically, the
data set is divided into time windows and for each one a static CD algorithm is
used. Then, the similarity scores between communities at times t− 2, t− 1, t, t+
1, t+2 are computed. This information allows to easily distinguish noise from real
evolution. Consequently, this information is used to smooth out the communities
evolution. Then, communities which have been generated by unduly splits are
merged, while communities that have been generated by artificial merges are
separated. At the end of the procedure, a description of the network evolution
is obtained.

3.2 Dependent or Temporal Trade-off Community Detection

Methods in this class process repeatedly network changes. Initially, by using a
static CD algorithm they find partitions for the initial state (first snapshot) of
the network, and then they find communities at snapshot t by using information
from both the current snapshot (t) and previous snapshots (< t). Methods in this
subcategory don’t suffer from the instability problem and are faster than those
from the previous category. On the other hand, the avalanche effect 1 and the
fact that this method is not parallelizable are its two main drawbacks. Global
and multiobjective optimization methods are the most common subcategories
in this class. In the following, we discuss some representative methods of this
category (more such methods can be found in [13,34,35]).

In [18] they detect evolutionary community structure in a weighted dynamic
network. For each snapshot the follow process is iteratively applied: i) Firstly, the

1 The avalanche effect describes the phenomenon when communities can experience
substantial drifts compared to what a static algorithm would find on the static
network at a particular time instance.
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initial partition is detected (using the input matrix that describes the previous)
and then ii) the community is expanded based on the assumption that the nodes
are attached to the cluster that provides the highest modularity gain. Finally,
in the last phase, the merging process starts if and only if the modularity of
the merged community is higher than each partition separately. Another recent
dynamic community detection algorithm is proposed in [36]. This method utilizes
all the past information from the network and by using the algorithm C-Blondel,
which is a modification of the Louvain algorithm, manages to compress the
Network. Thus, the compressed network consists of all the historical snapshots
and the changes which have been occurred on the network.

In [26], a multi-objective optimization approach has been adopted. Initially,
the probability fusion method is adopted and two different approaches (neighbor
diversity and neighbor crowd) are used. In this way, suitable communities are
created in a fast and accurate way. Moreover, by utilizing a progression metric,
the authors can detect the similarities of formed communities between two suc-
cessive snapshots. The same approach has also been used by [43]. Their method,
called DYN-MODPSO, is suitable for large-scale dynamic CD. Like the previous
method, they use two different approaches optimizing NMI (Normalized Mutual
Information) and CS (Community Score) metrics.

3.3 Simultaneous or Offline Community Detection

Methods in this class discover partitions by considering all states of the tem-
poral network at the same time. A single multilayer network is created from
all snapshots using edges based on the relationship between nodes at the same
snapshot and at adjacent (preceding and succeeding) snapshots. Then, the com-
munities are detected by using an appropriately modified static algorithm on
the multilayer network. Methods in this category don’t suffer from instability
and the avalanche effect. On the other hand, they have certain limitations like a
requirement for a fixed number of communities, or lacking a mechanism to de-
termine operations between temporally successive partitions (like merge), etc..
In the following, we discuss some representative methods of this category (more
such methods can be found in [29,28,39,15]).

A significant study of the fundamental limits of discovering community struc-
ture in dynamic networks is done in [16]. The authors analyze the boundaries
of detectability for a Dynamic Stochastic Block Model (DSBM) that nodes af-
filiations can change over time (from one community to other), and edges are
created separately at each time step. The method exploits the powerful tools
of probabilistic generative models and Bayesian inference, and by utilizing the
cavity method, they obtain a clearly defined detectability threshold as a func-
tion of the rate of change and the communities strength. Below this threshold,
they claim that no efficient algorithm can identify the communities better than
chance. Then, they give two algorithms that are optimal in the sense that they
succeed in detecting the correct communities up to this up to this threshold.
The first algorithm utilizes belief propagation, which provides an asymptotically
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optimal accuracy, while the second is an efficient spectral algorithm, founded on
linearizing the belief propagation equations.

Another algorithm based on clique enumeration is proposed in [22]. They
use an adaptation for temporal networks of a well-known recursive static back-
tracking algorithm, Bron-Kerbosch [8]. The parameter “∆-slice degeneracy” is
introduced, which is a modification of the degeneracy parameter that is often
used in static graphs, and it is an easy way to measure the sparsity of the net-
work.

3.4 Online Community Detection

In these methods, the temporal network is not considered as a sequence of snap-
shots, but as a succession of network transformations instead. The methods are
initialized by discovering partitions at time 0 and then the community struc-
ture is updated in each update of nodes/edges. This class of methods is further
divided into two main subcategories of incremental methods: 1) Community De-
tection in Fully Temporal Networks, where insertions and deletions of nodes and
edges are allowed and 2) Community Detection in Growing Temporal Networks,
where only insertions of nodes and edges are allowed. In addition, the methods
of this class can either handle network updates in batches of arbitrary size (one
extreme is to consider batches of size 1, that is after each update the community
structure is updated). One advantage of this method is that algorithms for static
CD can be used with easy modifications. Moreover, this method does not suffer
from instability, and it is quite efficient since updates for the community struc-
ture are usually applied locally. In the following, we discuss some representative
methods of this category (more such methods can be found in [48,1,9,47]).

In [46], a filtering technique is introduced, which is called "∆-Screening".
The technique of ∆-Screening captures in each time step, new inserted/deleted
nodes (Vt) that impact the structure of the network. Initially, a static algorithm
discovers the communities at time t = 0. Then, for each time step, all the added
nodes are assigned a new community label. Then ∆-Screening captures a subset
Rt (Rt ⊆ Vt) of these nodes. Consequently, the static algorithm (mentioned
above) is invoked in order to detect the evolution of the communities, visiting
only the subset of nodes Rt, of the most significant changes.

An incremental, modified Louvain algorithm [5] is proposed in [11]. Nodes
and edges are inserted in or deleted from the network as time evolves, and
Louvain is implemented only for those communities that are affected. The local
modularity metric is applied only in a part of the network, where the changes are
taking place. As a result, stability and efficiency are the two main advantages
of the method. A dynamic CD algorithm, which is a modified version of the
static algorithm in [37], based on distance dynamics is proposed in [19]. By
utilizing the local interaction model, based on the Jaccard distance, the method
in [19] overcomes the well-known disadvantages of modularity-based algorithms
by detecting small communities or outliers. This is achieved regardless of the
processing order of the increment set and the algorithm can achieve the same
community partition results in near-linear time.



8 K. Christopoulos et al.

One recent, efficient and parameter-free incremental method, based on the
Matthew effect, is proposed in [42]. Unlike other incremental approaches, changes
are processed in batches. Between two consecutive snapshots, deletion and inser-
tion of nodes and edges are performed. The degree of nodes as well as node and
group attractiveness for the purpose of the changed sub-graph to be extracted are
used. Then, the affected and non-affected communities are calculated iteratively
between each pair of consecutive snapshots. The same dynamic CD framework,
based on information dynamics, is used in [41].

An online version of the Clique Percolation Method (CPM), combined with
the Label Propagation Algorithm (LPA) is presented in [6].The proposed algo-
rithm OLCPM (Online Label Propagation Clique Percolation Method) is a two
step framework which firstly uses the Dynamic CPM to update the communities
locally by utilizing a stream model, in order to improve the efficiency. Then, by
using LPA it solves the problem of nodes affiliation while a node can be allo-
cated to one or more communities. Finally, in [33], the algorithms named Tiles
is presented. Tiles is a a streaming algorithm, treating each topological pertur-
bation as a domino tile fall: whenever a new interaction emerges in the network,
Tiles first updates the communities locally, then propagates the changes to the
surrounding nodes modifying the neighbors’ partition memberships.

3.5 Local Community Detection in Temporal Networks

Given a set of seed nodes Z, our goal is to detect the community which includes
Z. The main assumption in this case is that Z is of high importance (e.g.,
high degree centrality) and act as the community reference point. This problem
differs from general temporal CD approaches since our objective is to discover
the community defined around the set of seed nodes. Notice that the online
methods described in 3.4 are global in the sense that they maintain a partition
of the network in communities. The algorithms in this class are very efficient
since it is required from them to maintain a single community.

In [21] a hierarchical algorithm is presented. This method discovers commu-
nities in temporal networks based on hubs (nodes of high degree centrality) by
grouping nodes in their vicinity. Each node carries hub information (e.g., dis-
tance between nodes, hub and parent nodes, threshold level, etc.) and the idea
is based on propagating this information through the network. Then, the intra-
node hubs transfer the information (message) to the outer nodes and in this way,
all non-hub nodes are assigned to the closest hub and the fuzzy membership of
each node is calculated. This method can be readily adopted for the case of a
set of seeds propagating the information only in their vicinity. An advantage of
this method is that only a small number of processing steps (adding or removing
edges) have to be performed too update the partitions while at the same time is
parameter-free.

A dynamic algorithm for local community detection using a set of seeds is
proposed in [44]. Initially, a greedy static algorithm is used in order to discover
the local community. During this process, the community initially contains only
the seed node and in each iteration one neighbor node is added maximizing a



State-of-the-art in Community Detection in Temporal Networks 9

chosen fitness score. At the end of this step there is a collection of sequences
(vertex,interior/border edge sum and fitness score), in increasing order of fitness
score. Then, the next phase start and in each network change, the algorithm
modify the collection of sequences. If after the modification the fitness score of
a position is higher than the fitness score of the next position, then the node
is removed and interior/border edges are modified as well. When this step is
finished, the collection of modified sequences is scanned and if in one position
the increasing order of the fitness score is violated then the set from this position
until its end is removed. Finally, the static algorithm is used one more time in
order to add new nodes to the local community. A full streaming version of the
seed set expansion method is described in [45].

Another approach is Evoleaders [14] that employs leader nodes with follow-
ers, in order to identify the evolution of the communities. The "Top leaders"
algorithm [25] initialize D leader nodes, one for each community, and associate
the nodes of the network to an appropriate leader. In this way, the communities
are constructed and, by utilizing the highest centrality node, a new leader is
picked and the old one is replaced. Then, in each time step, for the initialization
of the leader nodes, their common neighbors from the previous and the current
time step is taken into consideration and the Top leaders algorithm is used it-
eratively. Consequently, the process of community splitting starts and then all
small communities can be merged, in an appropriate manner, so that the quality
(in terms of modularity) of the communities is improved. Finally, very recently,
[3] described a framework that strengthens the vicinity of the seed set (called
anchors) exploiting the fact that the seed set is of central importance for the
evolving community.

4 Conclusion

Our aim in this survey is to reexamine all the recent surveys in the field of CD
in temporal networks and to propose a new category of methods based on local
community detection. Thus, we propose five classes of algorithms and discuss
some representative methods. The advantages and drawbacks of each class are
also discussed. In future work , it will be beneficial to delve into, in more detail,
the local community detection class and to enrich the current survey with more
recent literature.
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