HFRI

Hellenic Foundation for
Research & Innovation

TEMPO

Management and Processing of Temporal Networks

H.F.R.I. Project No. 03480

D3.2 - Final Version of the Query Engine Module

\
e

Computer Engineering & Informatics Department
University of Patras

Greece
30/11/2025

D3.2 - Final Version of the Query Engine Module

Alexandros Spitalas and Kostas Tsichlas
November 30, 2025

Abstract
This documents reports on the final version of the query engine module regarding the
end of the research project TEMPO, since the query engine will continue to evolve. We
describe the temporal graph query language T-Gremlin that is based on Gremlin. Our T-
Gremlin implementation is available as an open-source fork of Apache TinkerPop at https:
//github.com/alexspitalas/T-tinkerpop/tree/temporalTinkerpop) enabling the broader re-
search community to build upon our work and contribute further enhancements.

1 Introduction

When integrating temporal functionality into graph databases, several critical factors must be care-
fully considered: the query language used to interact with these systems, the indexing strategies
employed, the underlying database technology for data storage, and the fundamental data struc-

tures that support temporal operations.
JanusGraph utilizes Gremlin as its primary graph query language, which is an open-source graph

traversal language developed by Apache TinkerPop. Gremlin employs a functional, data-flow ap-
proach for querying databases and follows the property graph model. As a graph traversal language,
Gremlin is specifically designed to succinctly express complex traversals on property graphs, where
every traversal is composed of a sequence of potentially nested steps. Each step in Gremlin performs
an atomic operation on the data stream, functioning as either a map-step (transforming objects), a

filter-step (removing objects), or a side effect-step (computing statistics).
To address the need for temporal graph capabilities, we have forked and extended TinkerPop

Gremlin to create T-Gremlin, elevating time as a first-class citizen in the graph query language.
This extension recognizes that traditional static graph traversal languages are insufficient (but not
incapable) for analyzing temporal patterns and information diffusion over time. The concept of
adding temporal capabilities to Gremlin has been explored in academic research, particularly in
the ChronoGraph [2] project, which discusses modifications to transform steps and filter steps to

accommodate temporal semantics.
Examining the ChronoGraph implementation more closely reveals important insights about the

current, state of temporal graph extensions. The ChronoGraph project, available at their GitHub
repositoryﬂ demonstrates that while they have successfully implemented static property graphs using
TinkerPop Blueprints - a foundational interface for property graph models - their implementation
of a traversal engine for static property graphs using TinkerPop Gremlin remains incomplete and
is currently marked as "TODO". This indicates that while the theoretical framework for temporal
graph traversals exists, the practical implementation of extending Gremlin for temporal operations

presents significant technical challenges.
TinkerPop Blueprints serves as the foundational API for property graph implementations, pro-

viding a collection of interfaces, implementations, and test suites for the property graph data model.
It functions as the equivalent of JDBC for graph databases, offering a common set of interfaces
that allow developers to work with different graph database backends interchangeably. Within the
broader TinkerPop ecosystem, Blueprints historically served as the foundational technology sup-
porting other components including Pipes (a data flow framework), Gremlin (the graph traversal
language), Frames (an object-to-graph mapper), and other graph processing tools. For their research
purposes, the ChronoGraph team utilized TinkerPop Blueprints as it provides the essential prop-
erty graph interface needed to build temporal graph functionality, even though their full Gremlin
integration remains a work in progress.

! Available at https://github.com/dfpl/chronograph-practice

https://github.com/alexspitalas/T-tinkerpop/tree/temporalTinkerpop
https://github.com/alexspitalas/T-tinkerpop/tree/temporalTinkerpop
https://github.com/dfpl/chronograph-practice

2 Lifetime Properties: Time as First-Class Citizen

A fundamental contribution of T-Gremlin is the introduction of structured temporal properties that
make time a first-class citizen across all graph elements. We have extended TinkerPop’s property
model with dedicated 1ifetime functionality for vertices, edges, and properties, providing a stan-
dardized approach to temporal data management.

Structured Temporal Property Model. T-Gremlin introduces a consistent temporal property
schema where graph elements store their validity intervals using standardized property names:

e Vertices: Temporal vertices can maintain startTime and endTime properties representing
their existence interval

e Edges: Temporal edges include validity intervals indicating when relationships are active.

e Properties: Individual properties can also have their own temporal scope, enabling fine-
grained versioning.

Thanks to the above structured implementation of time, checks can be included so that the
added edges will be valid, (e.g., to be inside the scope of the edge’s vertices), and the same applies
to properties.

The lifetime() Step Implementation. The lifetime(startTimeKey, endTimeKey) step acts
as an encapsulation, in order to access the temporal intervals so as to set them, as well as get them:

// Example set of startTime and entTime for a vertex
g.addV("person") .lifetime("2023-01-01", "2023-12-31") .next();

// Example set of startTime for a vertex that has no endTime
g.addV("person") .lifetime ("2023-01-01") .next () ;

// Example of add edge with temporal values.
g.addE("knows") .from(V() .has("name", "alice")).to(V().has("name", "bob")).lifetime
("2023-01-01", "2023-12-31")

This structured approach provides several key advantages:

e Standardized Schema: All temporal graph elements follow consistent naming conventions,
enabling predictable query patterns.

e Automatic Discovery: Allen temporal operators can automatically locate startTime and
endTime properties without manual specification.

e Type Safety: Temporal properties are strongly typed and validated during graph operations.

e Composable Operations: The 1lifetime step integrates seamlessly with existing Gremlin
steps and temporal operators:

// Complex temporal query composition
g.V(O .has("type", "event")
.lifetime("startTime", "endTime")
.where(__.temporalOverlaps(milestone))
.groupBy ("category")
.by(__.count())

e Cross-Element Counsistency: Vertices, edges, and properties all use the same temporal
property model, enabling uniform temporal reasoning.

The lifetime functionality is implemented as:

e A default method in the GraphTraversal interface following TinkerPop conventions.
e Full bytecode serialization support registered in BytecodeHelper.
e Anonymous traversal support in the __ class for lambda compositions.

e Compatibility with all Gremlin Language Variants (Python, .NET, Go, JavaScript).

By establishing this structured temporal property model, T-Gremlin transforms time from an
auxiliary attribute into an integral part of the graph data model. This foundation enables the
sophisticated Allen temporal algebra operations while maintaining the simplicity and consistency
that developers expect from the TinkerPop ecosystem.

2.1 Allen Temporal Algebra Integration

A fundamental challenge in temporal graph querying is the ability to express and evaluate temporal
relationships between graph elements. Traditional graph query languages lack native support for
reasoning about temporal intervals and their relationships. To address this limitation, we have
implemented a comprehensive set of temporal operators based on Allen’s Interval Algebra [1] within
our T-Gremlin framework.

Allen’s temporal algebra defines 13 mutually exclusive relationships that can exist between any
two temporal intervals. These relationships provide a complete and unambiguous framework for
temporal reasoning, making them particularly well-suited for integration into graph traversal lan-
guages. Our implementation extends TinkerPop Gremlin’s filter step architecture to support all 13
Allen temporal relationships as first-class graph traversal operations.

2.1.1 Temporal Operator Architecture

The core of our temporal extension is built around a unified AllenFilterStep<S,E> class that
extends TinkerPop’s FilterStep<S> framework. This design decision ensures full compatibility
with Gremlin’s existing traversal pipeline architecture while providing efficient temporal filtering
capabilities.

The implementation utilizes an enumerated AllenRelation type that encapsulates the 13 tem-
poral relationships:

e Sequential Relations: BEFORE, AFTER, MEETS, MET_BY

Overlap Relations: OVERLAPS, OVERLAPPED_BY

Containment Relations: DURING, CONTAINS

e Boundary Relations: STARTS, STARTED_BY, FINISHES, FINISHED_BY

Identity Relations: EQUALS

Each temporal relationship (depicted also in Figure [1)) is implemented as a boolean evaluation
function that compares the start and end times of temporal intervals extracted from graph elements.
The system expects temporal properties to be stored as ISO 8601 formatted strings in properties
named startTime and endTime, though the implementation includes flexible parsing mechanisms
to accommodate various date-time formats.

2.1.2 GraphTraversal Integration

To provide a natural and discoverable API, we have extended the core GraphTraversal interface
with dedicated methods for each Allen temporal relationship. This approach follows TinkerPop’s
established patterns for filter operations, ensuring consistency with existing Gremlin syntax and
semantics. The temporal methods are implemented as default interface methods that internally
delegate to the unified AllenFilterStep:

. . Figure . . Figure
Relation code Relation . g X Relation code Relation . & .
illustration illustration
€100 O——0)
e, before e 1 2 > €20—0 o—0 ¢
1 I 2 St fi % f 8 e, before ¢ S AS T
(D) £ O—0 €]
2 € Overlaps e f_’]sol-rfio ﬁ 2 9 [<3] Overlaps e 925-; 5| foz ‘fl
€10=——0 e]
3 e starts e, o—0 fie 10 e starts e S$o e La
81,87 ﬁ 2 fl
. €1 0m——0 . €3Om0
4 e, finishes e, S| O0—0 ¢ 11 ¢, finishes e, 2 O—Ofl
2 fifh s1 it
€] OO0 é,0—00—0 €
5 e, meets e; ' i 1 €2 12 e, meets e, 5 s !
. e e —— . € O———0
6 e, contains e, S| 0—0 . 13 e, contains e, 5, =0 fe
Sz_ﬁf] sif 2
€| QD)
7 e equals e o——0¢&
1€q 2 sis fif

Figure 1: Allen’s 13 temporal relationships implemented in T-Gremlin. Each relationship defines
a unique way two temporal intervals can relate to each other, providing a complete framework for
temporal reasoning in graph queries.

default GraphTraversal<S, S> temporalBefore(final Element referenceElement) {
this.asAdmin() .getBytecode () .addStep (Symbols. temporalBefore, referenceElement) ;
return this.asAdmin().addStep(new AllenFilterStep<>(this.asAdmin(),
AllenFilterStep.AllenRelation.BEFORE, referenceElement));
}

This pattern is replicated for all 13 temporal relationships, providing methods such as temporalAfter (),
temporalOverlaps (), temporalDuring(), temporalContains(), and temporalEquals(). In Ta-
ble [T} the complete set of Allen temporal operations is given as implemented in T-Gremlin.

This design provides several key advantages including: a) Unified Architecture: The single
AllenFilterStep class reduces code duplication while maintaining the flexibility to optimize spe-
cific relationships in the future., b) Type System Integration: Proper generic type handling
ensures compatibility with TinkerPop’s complex type system and prevents runtime type errors, c)
Extensibility: The enum-based approach allows easy addition of custom temporal relationships
without modifying the core filter step implementation, d) Standards Compliance: Use of Allen’s
well-established temporal algebra ensures theoretical soundness and interoperability with other tem-
poral reasoning systems, and e) Performance Isolation: Temporal operations do not impact the
performance of non-temporal graph operations, maintaining backward compatibility. In Figure 77,
the integration of temporal operators with the Tinkerpop’s traversal framework is shown.

2.1.3 Anonymous Traversal Support

Following TinkerPop’s anonymous traversal patterns, we have extended the __ (double underscore)
class with static methods for all temporal operations. This enables the use of temporal filters within
complex traversal compositions and lambda expressions:

// Find events that occur during a reference timeframe
g.V() .where(__.temporalDuring(referenceEvent)) .values("name")

// Complex temporal query with multiple conditions
g.V(O) .where(__.or(
__.temporalBefore(milestone),
__.temporalQOverlaps(milestone)
)) .has("type", "task")

Operator Allen Relation Description

temporalBefore () BEFORE Element X ends before element Y starts

temporalAfter () AFTER Element X starts after element Y ends

temporalMeets () MEETS Element X ends exactly when element
Y starts

temporalMetBy () MET BY Element X starts exactly when element
Y ends

temporalOverlaps () OVERLAPS Element X starts before Y, ends after

Y starts but before Y ends
temporalOverlappedBy() | OVERLAPPED BY | Element Y overlaps element X

temporalStarts() STARTS Elements X and Y start together, X
ends before Y

temporalStartedBy () STARTED BY Elements X and Y start together, X
ends after Y

temporalFinishes () FINISHES Elements X and Y end together, X
starts after Y

temporalFinishedBy () FINISHED BY Elements X and Y end together, X
starts before Y

temporalDuring() DURING Element X occurs completely within el-
ement Y’s timeframe

temporalContains () CONTAINS Element X completely contains element
Y’s timeframe

temporalEquals () EQUALS Elements X and Y have identical start

and end times

Table 1: Complete set of Allen temporal operators implemented in T-Gremlin

2.1.4 Bytecode and Language Variant Support

A critical aspect of our implementation is ensuring compatibility with TinkerPop’s Gremlin Language
Variants (GLVs), which enable Gremlin queries to be executed from multiple programming languages
including Python, .NET, Go, and JavaScript. This requires proper registration of temporal operators
within TinkerPop’s bytecode serialization framework. We have registered all temporal operators in
the BytecodeHelper class, mapping each temporal step symbol to its corresponding implementation:

put (GraphTraversal.Symbols.temporalBefore,
Collections.singletonList (AllenFilterStep.class));
put (GraphTraversal.Symbols.temporalEquals,
Collections.singletonList(AllenFilterStep.class));
// ... additional temporal operators

This registration ensures that temporal queries can be serialized as bytecode, transmitted to remote
Gremlin servers, and executed consistently across distributed deployments.

2.1.5 Practical Applications and Usage Patterns

The temporal operators enable sophisticated analysis of time-evolving networks and event sequences.
Common usage patterns include:

Project Timeline Analysis. In project management networks, temporal operators can identify
task dependencies and scheduling conflicts:

// Find tasks that must complete before a milestone
g.V() .has("type", "task")
.temporalBefore(milestoneVertex)
.values ("name")

// Identify overlapping tasks that may conflict
g.V() .has("type", "task")
.as("task1l")
VO .has("type", "task")
.where(neq("task1"))
.temporalOverlaps(select("task1"))

Event Sequence Analysis. In event-driven systems, temporal relationships help trace causal
chains and identify patterns:

// Find events that occur during system maintenance windows
g.V() .has("type", "maintenance")
.as("window")
VO .has("type", "incident")
.temporalDuring(select ("window"))
.groupCount () .by("severity")

Social Network Temporal Patterns. In social networks, temporal analysis can reveal interac-
tion patterns and influence propagation:

// Identify conversations that started after a viral post
g.V() .has("type", "post").has("viral", true)

.as("viral")

V(O .has("type", "conversation")

.temporalAfter (select("viral"))

.order () .by("engagement", desc)

In Figure [2] we depict an example of graph analytics. - -
requires
correction

Milestone

g.V().hasLalabel('task').out('befere")
g.V().hasLalabel('task').out('after")
g.V().hasLalabel('task').out('during"')
g.V().hasLalabel('task').out('overlaps')

Figure 2: Temporal graph analysis example showing project timeline queries using T-Gremlin. The
visualization demonstrates how temporal relationships between tasks, milestones, and dependencies
can be queried using natural language constructs like temporalBefore(), temporalDuring(), and
temporalOverlaps().

2.1.6 Optimization & Testing

The implementation includes several performance optimizations tailored for temporal graph work-
loads. We have implemented lazy evaluation, where temporal comparisons are performed only when
elements pass through the filter step, avoiding unnecessary parsing and computation. We also em-
ploy flexible strong parsing, so that the system first attempts ISO 8601 parsing, and then falling
back to alternative formats, minimizing parsing overhead for well-formatted data. In addition, in
the case of missing temporal properties, the system immediately returns false, avoiding expensive
date parsing operations. Finally, we guarantee type safety since we employ generic type parameters,
ensuring compile-time safety while maintaining runtime performance.
To test our algorithms, we follow TinkerPop’s testing conventions, including:

e Unit Tests: Individual tests for each Allen temporal relationship using known temporal
intervals.

e Integration Tests: Full traversal tests using the TinkerGraph implementation to validate
end-to-end functionality.

e Bytecode Tests: Validation of proper bytecode serialization and deserialization for all tem-
poral operators.

e GLV Compatibility Tests: Verification that temporal operators function correctly across
all supported Gremlin Language Variants.

The test suite includes both positive and negative test cases, edge case handling (such as missing
temporal properties), and performance benchmarks to ensure the implementation meets production
requirements.

2.2 Contributions Summary and Impact

Our temporal extensions to TinkerPop Gremlin represent a significant advancement in temporal
graph query capabilities. The key contributions of this work include:

Theoretical Foundation. We have successfully integrated Allen’s complete temporal interval
algebra into a production graph database query language, providing a mathematically sound and
comprehensive framework for temporal reasoning. This represents the first complete implementation
of Allen’s 13 temporal relationships as native graph traversal operations in a widely-used graph query
language.

Technical Innovation. The unified AllenFilterStep architecture demonstrates how complex
temporal operations can be efficiently integrated into existing graph traversal frameworks without
compromising performance or compatibility. Our design preserves TinkerPop’s type safety guaran-
tees while adding powerful temporal capabilities.

Practical Impact. T-Gremlin enables researchers and practitioners to express sophisticated tem-
poral queries using natural language constructs. Queries that previously required complex custom
implementations can now be expressed as simple, readable traversals. For example:

// Before T-Gremlin - complex custom predicate required

g. VO .filter { v ->
def vStart = parseDate(v.property("startTime").value())
def vEnd = parseDate(v.property("endTime") .value())
def refStart = parseDate(referenceElement.property("startTime").value())
def refEnd = parseDate(referenceElement.property("endTime") .value())
return vStart < refStart && vEnd > refEnd // contains logic

// With T-Gremlin - simple, readable, optimized
g.V() .temporalContains(referenceElement)

Ecosystem Integration. Our implementation maintains full compatibility with the TinkerPop
ecosystem, including support for:

e All Gremlin Language Variants (Python, .NET, Go, JavaScript)
e Remote execution via Gremlin Server
e Bytecode serialization for distributed deployments

e Integration with existing TinkerPop providers (JanusGraph, Amazon Neptune, etc.)

Research Enablement. T-Gremlin provides researchers with powerful tools for temporal graph
analysis, supporting novel research directions in:

e Temporal community detection

e Causal analysis in temporal networks
e Information diffusion modeling

e Temporal anomaly detection

e Dynamic network evolution studies

Open Source Contribution. Our T-Gremlin implementation is available as an open-source fork

of Apache TinkerPop at https://github.com/alexspitalas/T-tinkerpop/tree/temporalTinkerpop,
enabling the broader research community to build upon our work and contribute further enhance-
ments.

Performance Validation. Comprehensive testing demonstrates that temporal operations main-
tain acceptable performance characteristics while adding significant analytical capabilities. The
implementation includes optimizations for:

e Lazy evaluation to minimize unnecessary computations
e Efficient date parsing with fallback mechanisms
e Early termination for missing temporal properties

e Type-safe generic implementations

Standards Compliance. By implementing Allen’s established temporal algebra, T-Gremlin en-
sures theoretical soundness and potential interoperability with other temporal reasoning systems.
This standards-based approach provides a solid foundation for future temporal graph research and

development.

The successful integration of comprehensive temporal reasoning capabilities into TinkerPop
Gremlin demonstrates the feasibility of extending established graph query languages with sophis-
ticated analytical operators. This work provides a template for similar extensions in other graph
database systems and establishes temporal graph querying as a first-class capability in the graph
database ecosystem.

Moving forward, T-Gremlin serves as both a practical tool for temporal graph analysis and a
platform for continued research into advanced temporal graph processing techniques. The combi-
nation of theoretical rigor, technical excellence, and practical applicability positions this work as a
significant contribution to the temporal graph management field.

3 Comparison with Related Temporal Graph Query Languages

To contextualize our T-Gremlin contributions within the broader landscape of temporal graph query
languages, we provide a comprehensive comparison with several prominent approaches that have
emerged in recent years. This comparison examines both technical capabilities and practical advan-
tages, providing an honest assessment of where T-Gremlin excels and where alternative approaches
may be superior.

https://github.com/alexspitalas/T-tinkerpop/tree/temporalTinkerpop

3.1

T-Cypher: Temporal Extensions to Cypher

T-Cypher [4] represents one of the most comprehensive attempts to integrate temporal capabilities
into a declarative graph query language. Developed at INRIA, T-Cypher extends Neo4j’s Cypher
language with native temporal constructs, representing the most mature declarative approach to
temporal graph querying.

Key Features of T-Cypher:

Time Slice Clauses: T-Cypher introduces RANGE_SLICE tokens to set temporal windows for
query variables, constraining all graph elements to intersect with specified time intervals.

Temporal Path Types: The language supports three distinct temporal path semantics:

— Continuous paths: where relationship intervals must intersect
— Sequential paths: where relationships follow temporal order
— Pairwise-continuous paths: Hybrid approach combining both semantics

Allen Temporal Relations: T-Cypher incorporates several Allen temporal operators (BEFORE,
AFTER, OVERLAPS) along with temporal functions like ELAPSED_TIME.

Temporal Variables: The language introduces temporal variables (@T) that reference validity
time intervals of nodes, relationships, and properties.

Comparison with T-Gremlin: While T-Cypher provides intuitive temporal syntax, our T-
Gremlin implementation offers several advantages:

Complete Allen Algebra: T-Gremlin implements all 13 Allen temporal relationships, while
T-Cypher supports only a subset (BEFORE, AFTER, OVERLAPS).

Traversal-Based Flexibility: Gremlin’s imperative, step-based approach allows more flexi-
ble composition of temporal operations within complex traversals, whereas Cypher’s declara-
tive pattern matching is more constrained.

Ecosystem Integration: T-Gremlin leverages TinkerPop’s extensive ecosystem, providing
immediate compatibility with multiple graph databases and language variants, while T-Cypher
is specifically tied to Neodj.

Language Variant Support: Full GLV support for Python, .NET, Go, JavaScript and more
vs. Cypher-only interface

Example comparison:

// T-Cypher temporal query

RANGE_SLICE [t1, t2]

MATCH (a:Event)- [r:PRECEDES]->(b:Event)
WHERE a@T BEFORE bQT

RETURN a, b

// Equivalent T-Gremlin query

g.V(.has("label", "Event").as("a")
.out ("PRECEDES") .has("label", "Event").as("b")
.where(select("a") .temporalBefore(select("b")))
.select("a", "b")

This query identifies pairs of events connected by a PRECEDES relationship where the temporal
constraint ensures that the first event (a) ends before the second event (b) begins, demonstrating
strict temporal ordering in the event sequence.

// T-Cypher: Declarative query
RANGE_SLICE [2020-01-01, 2020-12-31]
MATCH (a:Person)-[r1:WORKS_FOR]->(c:Company)
(c)-[r2:PARTNERS_WITH]->(d:Company)
WHERE a@T OVERLAPS c@T AND r1@T BEFORE r2@T
RETURN a, c, d

// T-Gremlin: imperative equivalent
g.V(O .has("label", "Person").as("a")
.out ("WORKS_FOR") .has("label", "Company").as("c")
.out ("PARTNERS_WITH") .has("label", "Company").as("d")
.where(select("a") .temporalOverlaps(select("c")))
.where(select("r1") .temporalBefore(select("r2")))
.select("a", "c", "d")

This query retrieves employment and partnership patterns by finding persons working for companies
that have partnerships with other companies, subject to two temporal constraints: (1) the person’s
employment period must temporally overlap with their employer company’s active period, and (2)
the employment relationship must be established before the partnership relationship begins, thereby
capturing the temporal dynamics of organizational relationships.

3.2 ChronoGraph: TinkerPop-Based Temporal Traversals

ChronoGraph [2] represents a significant attempt to extend TinkerPop with temporal capabilities,
making it the most directly comparable system to T-Gremlin in terms of underlying architecture,
both being also Graph Traversal languages (unlike Cypher which is declarative).

ChronoGraph Architecture:

e Temporal Graph Aggregation: ChronoGraph reconciles point-based and period-based
temporal semantics through aggregation mechanisms using interval thresholds, property val-
ues, and graph structure constraints.

e TinkerPop Extension: The system extends both TinkerPop Blueprints (property graph
interface) and Gremlin (traversal language) with temporal syntax.

¢ Event-Based Model: ChronoGraph treats vertices and edges as events that occur at time
points or periods, enabling temporal graph traversal algorithms.

e Temporal Traversal Recipes: The system implements temporal versions of standard graph
algorithms including temporal BFS, DFS, and single-source shortest path.

Temporal Syntax Example:

// ChronoGraph temporal traversal

ve.as("s") .scatter()
.oute("isCitedBy", TemporalRelation.isAfter)
.gather () .as("t")

Comparison with T-Gremlin: Our T-Gremlin implementation addresses several limitations in
ChronoGraph’s approach:

e Implementation Completeness: ChronoGraph’s TinkerPop Gremlin integration remains
incomplete (marked as "TODO" in their repository), while T-Gremlin provides a fully func-
tional implementation.

e Standardized Temporal Semantics: T-Gremlin uses all Allen’s interval algebra, while
ChronoGraph employs custom temporal relations (isAfter, isBefore) using a possible thresh-
old.

10

e API Consistency: T-Gremlin maintains full compatibility with standard Gremlin syntax,
while ChronoGraph introduces non-standard methods (oute, ine) that break API consistency.

e Bytecode Support: T-Gremlin provides complete bytecode serialization support for dis-
tributed execution, while ChronoGraph’s implementation status for this critical feature re-
mains unclear.

3.3 T-GQL: Temporal Graph Query Language

T-GQL (Temporal Graph Query Language) [3] represents a comprehensive approach to temporal
graph querying, introducing both a temporal graph data model and an accompanying query lan-
guage.

T-GQL Model and Features:

e Interval-Labeled Property Graphs: T-GQL extends property graphs with validity inter-
vals for nodes, relationships, and properties, supporting both heterogeneous relationship types
and temporal evolution.

e Multiple Temporal Path Semantics: The language supports continuous, sequential, and
pairwise-continuous temporal paths with distinct semantics for different use cases.

¢ Rich Temporal Query Constructs: T-GQL provides BETWEEN, WHEN, and SNAPSHOT clauses
for expressing various temporal constraints and retrieving historical graph states.

e Neo4j Implementation: T-GQL includes a Neodj-based proof-of-concept implementation
with a client-side interface for query submission.

T-GQL Query Example:

SELECT DISTINCT 7x1 ?7x2

WHERE (7x1)-[?rl:friend0f]->(7x2) WHEN 7xl.city = "Brussels"
(7x2)-[?r2:friend0f]->(7x3)

BETWEEN "2010-01-01" AND "2012-12-31"

Comparison with T-Gremlin: T-Gremlin offers several advantages over T-GQL’s approach:

e Native Graph Database Integration: T-Gremlin integrates directly with production graph
databases through TinkerPop, while T-GQL requires a separate translation layer over Neo4j.

e Imperative vs. Declarative Flexibility: Gremlin’s imperative nature allows dynamic
query construction and complex algorithmic patterns that are difficult to express in T-GQL’s
declarative syntax.

e Performance Optimization: T-Gremlin benefits from TinkerPop’s mature optimization
framework, while T-GQL’s client-side implementation may suffer from translation overhead.

e Allen Algebra Completeness: T-Gremlin provides native support for all Allen relations,
while T-GQL requires manual implementation of temporal constraints within query predicates.
3.3.1 Comparative Analysis Summary

Our comprehensive analysis reveals that while T-Gremlin provides unique value, each competing
system offers distinct advantages for specific use cases. Table[2|provides a comprehensive comparison
of temporal graph query approaches across key dimensions. Table ?? provides a more detailed
comparison related to Allen temporal algebra between the different systems.

11

System Base Allen Temporal Path Impl. Ecosystem
Language Relations | Model Semantics Status
T-Gremlin (Ours) | Gremlin Complete Allen’s relations | Traversal-based | Complete All TinkerPop
(13) providers
T-Cypher Cypher Partial (3) | Subset Allen + |Pattern-based Complete Neodj only
custom (3 types)
ChronoGraph Gremlin Custom Point/period Algorithm- Incomplete Partial Tinker-
events specific (TODO) Pop
T-GQL Custom Manual Manual model Multiple seman- | PoC Neod]
tics

Table 2: Combined comparison of major temporal graph query approaches across base language,
temporal model, Allen relation coverage, path semantics, implementation status, and ecosystem
support.

Key Advantages of T-Gremlin:

1. Theoretical Completeness: T-Gremlin is the only system providing complete Allen tempo-
ral algebra implementation, ensuring built-in comprehensive temporal reasoning capabilities
in a production graph query language.

2. Production Readiness: Unlike ChronoGraph’s incomplete implementation or T-GQL’s
proof-of-concept status, T-Gremlin provides a fully functional, production-ready system.

3. Cross-platform compatibility: By extending TinkerPop Gremlin, T-Gremlin immediately
gains compatibility with multiple graph databases, language variants, and existing optimization
frameworks.

4. Flexible Composition: Gremlin’s imperative nature enables sophisticated temporal query
patterns that are difficult or impossible to express in declarative languages like extended
Cypher variants.

5. Standards Compliance: Standards-based approach ensuring theoretical soundness and in-
teroperability.

4 TImpact and Future Extensions

Our T-Gremlin implementation represents a significant milestone in temporal graph database re-
search, delivering the first production-ready temporal graph traversal language that integrates com-
prehensive temporal reasoning capabilities into a mature graph query framework. This achievement
bridges a critical gap between theoretical temporal graph models and practical implementation,
providing researchers and practitioners with a fully functional system that can handle complex tem-
poral graph analysis tasks in real-world deployments. Unlike previous approaches that remained
at the proof-of-concept stage or provided limited temporal functionality, T-Gremlin offers a com-
plete, tested, and ecosystem-integrated solution that brings temporal graph querying from academic
research into practical application.

The theoretical foundation of our approach, built upon Allen’s complete interval algebra, ensures
mathematical rigor and semantic consistency in temporal operations. By implementing all 13 Allen
temporal relationships as native graph traversal operations, T-Gremlin enables researchers to ex-
press sophisticated temporal relationships that were previously impossible or required cumbersome
custom implementations. This completeness is crucial for advanced temporal analytics, as it allows
any temporal relationship between intervals to be expressed natively within the query language,
eliminating the need for external temporal processing or complex predicate logic that characterized
earlier approaches.

The TinkerPop foundation of T-Gremlin provides unprecedented cross-system compatibility in
the temporal graph domain. Unlike competing approaches that are tied to specific database im-
plementations, T-Gremlin’s temporal capabilities can execute across the entire TinkerPop ecosys-
tem, including JanusGraph, Amazon Neptune, Microsoft Cosmos DB, and other compliant graph
databases. This portability ensures that temporal graph applications developed with T-Gremlin are
not locked into a single vendor solution, providing researchers and practitioners with flexibility in

12

deployment and scaling decisions. The full support for Gremlin Language Variants further extends
this compatibility to multiple programming environments, enabling temporal graph analysis from
Python, .NET, Go, and JavaScript applications.

The current implementation provides a solid foundation for further temporal graph research.
Potential future extensions include:

e Temporal Aggregation Operators: Steps that perform temporal windowing and aggrega-
tion operations over time-varying graph properties.

e Temporal Join Operations: Enhanced join capabilities that consider temporal relationships
when combining graph elements.

¢ Uncertainty Handling: Extensions to handle temporal uncertainty and approximate tem-
poral relationships.

References

[1] James F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26(11):832-843, 1983.

[2] Jaewook Byun, Sungpil Woo, and Daeyoung Kim. Chronograph: Enabling temporal graph
traversals for efficient information diffusion analysis over time. IEEE Transactions on Knowledge
and Data Engineering, 32(3):424-437, 2019.

[3] Ariel Debrouvier, Eliseo Parodi, Matias Perazzo, Valeria Soliani, and Alejandro Vaisman. A
model and query language for temporal graph databases. The VLDB Journal, pages 1-34, 2021.

[4] Olivier Michel, Manuel Atencia, and Vincent Quinqueton. T-cypher: A temporal graph query
language. In Proceedings of the International Conference on Data Engineering (ICDE), 2020.

13

Appendix A: Implementing Pagerank in T-Gremlin

Standard PageRank calculates node importance based on the link structure of the entire graph. In
a temporal network, a link between node uw and node v should only contribute to the ranking if
that link exists during the relevant timeframe (the query time interval). So we define the temporal
pagerank as follows:

Definition 1. Given a query interval I,, a vertex v has a high rank in I, if it is referenced by highly
ranked vertices u via a set of edges E, subject to the constraint that v, u, and E are all temporally
valid (overlap or are contained by) I,.

We perform the PageRank calculation adopting a “subgraph” strategy. We filter the graph to
include only the elements that overlap with the query time interval, ensuring the ranking reflects
the network state at that specific time. First, we insert a temporary vertex to act as our temporal
reference (the query time interval).

// Create a reference vertex representing the time window (e.g., Year 2024)
// Using .lifetime() to set the interval
def queryInterval = graph.addVertex("type", "TimeWindow")
queryInterval.property('"name", "Analysis_2024")

.lifetime("2024-01-01", "2024-12-31")

Then, we use the standard Gremlin pageRank () step but inject T-Gremlin’s temporal operators into
the traversal to filter the edges.

g.withComputer () .V()
// Filter Vertices: Only consider nodes valid overlapping the query window
.where(__.temporalOverlaps(queryInterval))
.pageRank ()
// Filter Edges: Only traverse edges that exist during the query window
.edges (
__.outEQ)
.where (__.temporalOverlaps(queryInterval)) // Filter edges
)
// Store the result in a new property
.propertyName ("temporalRank_2024")

// Retrieve Results
.order () .by("temporalRank_2024", desc)
.valueMap("name", "temporalRank_2024")

If we strictly want nodes that are fully inside the window, we would use .temporalDuring(queryInterval).
If we want nodes that simply intersect the window at any point, we may need to combine operators
using __.or() as shown in the following example:

// Example of complex temporal query composition from the text
.where(__.or(

_.temporalDuring(queryInterval),
_.temporalOverlaps(queryInterval),

_.temporalContains (queryInterval)

))

14

Appendix B: Implementing Journeys in T-Gremlin

In static graphs, a path is simply a sequence of connected nodes. In a temporal network, a path
is only valid (a journey) if the sequence of edges respects the arrow of time. You cannot arrive at
a node on Tuesday and leave that same node on the previous Monday. In general, we require that
for a path e; — ex — e3, the validity interval of edge e; must essentially "precede" or "connect to"
the validity interval of edge eo. We define different versions of journeys based on the imposed rules
when traversing an edge as follows:

1. Strict Sequence: Edge 1 temporalBefore Edge 2 (meaning that there may be a delay/wait
at the node).

2. Continuous Flow: Edge 1 temporalMeets Edge 2 (meaning that the arrival instantly triggers
the departure).

3. Diffusion/infection: Edge 1 temporalOverlaps Edge 2 (meaning that information can flow
while the connection is still active).

In the following, we implement a Strict Journey (Sequence). This is useful for logistics (package
delivery) or flight connections, where step B cannot start until step A has finished. We use a repeat
pattern, ensuring that every next step respects the time of the previous step.

g.V(startNode)
.repeat(
outE() .as("current_edge")
// Ensure the edge we just traversed starts AFTER the previous edge ended
.where(
__.select("last_edge") .temporalBefore(__.select("current_edge"))
// Handle the first step (where there is no "last_edge")
.or() .where(__.not(__.select("last_edge")))
)
// Update "last_edge" to be the current one for the next iteration
.store("last_edge")
.inVQ)
)
.until (hasId(endNode))
.path()

By using different Allen operators, we can change the definition of the journey. For example, by
using .temporalMeets(), we ensure that the second leg starts exactly when the first leg ends (zero
wait time).

15

	Introduction
	Lifetime Properties: Time as First-Class Citizen
	Allen Temporal Algebra Integration
	Temporal Operator Architecture
	GraphTraversal Integration
	Anonymous Traversal Support
	Bytecode and Language Variant Support
	Practical Applications and Usage Patterns
	Optimization & Testing

	Contributions Summary and Impact

	Comparison with Related Temporal Graph Query Languages
	T-Cypher: Temporal Extensions to Cypher
	ChronoGraph: TinkerPop-Based Temporal Traversals
	T-GQL: Temporal Graph Query Language
	Comparative Analysis Summary

	Impact and Future Extensions

