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Abstract

Community detection in dynamic networks is a challenging research problem. One of the
main obstacles is the stability issues that arise during the evolution of communities. In dynamic
networks, new communities may emerge and existing communities may disappear, grow, or
shrink. As a result, a community can evolve into a completely di�erent one, making it di�cult
to track its evolution (this is known as the drifting/identity problem). In this paper, we focused
on the evolution of a single community. Our aim was to identify the community that contains a
particularly important node, called the anchor, and to track its evolution over time. In this way,
we circumvented the identity problem by allowing the anchor to de�ne the core of the relevant
community. We proposed a framework that tracks the evolution of the community de�ned by
the anchor and veri�ed its e�ciency and e�ectiveness through experimental evaluation.

1 Introduction

Complex systems are very often represented by networks, since they can successfully demonstrate
the natural structures and functions of various �elds such as communication, biology, and the World
Wide Web, where huge amounts of data are constantly being generated. Community detection, a
fundamental task of network analysis, focuses on revealing group of nodes that are densely con-
nected to each other and loosely connected to the nodes in the other groups in the network and
has attracted the attention of many researchers. For decades, great e�orts have been made to de-
tect global communities, i.e., the partitioning of an entire network into communities [1]. However,
there are many cases in which researchers are only interested in the communities of speci�c nodes.
Therefore, in recent years, there has been an increased interest in exploring local communities based
on a few query nodes [2, 3, 4]. From the computational cost point of view, the local community
discovery problem is better suited to uncovering the community structure for nodes of interest in
large networks, considering real-world scenarios such as purchase or social networks [5].

Most existing work on community detection, whether global or local, aims to uncover the commu-
nity structure of static networks. Static networks have an unchanging structure over time. However,
most real-world networks change over time. Such networks are called temporal or dynamic. A very
recent survey of local community detection in both dynamic and static networks was presented in
[6]. Furthermore, there are cases where relations between nodes are established only instantaneously
and the structure of the networks changes rapidly, e.g., in email communication. The most common
approach to handling such data networks is the (graph) streaming model. A graph stream consists
of a sequence of updates on the edges of a graph. Time is de�ned in terms of the order of the updates
within this sequence. The lifetime of an edge is de�ned as the time between its insertion and removal
[7, 8], which in fact de�nes the notion of time with respect to these transactions (transaction time).
Compare this notion to the valid time notion, where each edge update carries its valid interval, that
is, the time during which the update is in e�ect.

In most local community detection approaches in the literature, communities are uncovered
starting from seed nodes with particular topological importance according to a speci�c metric, such
as node degree. As one can deduce, such nodes can be the most important according to the chosen
measure, but this does not mean that they are always the right seeds for local community detection
approaches. In the present work, we focused on local community detection of particular nodes in
graph streams by extending the theoretical framework of [9]. More speci�cally, our goal was to
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uncover the evolution of the community of a node (or a set of nodes) of particular interest, called
the anchor. The anchor has a special meaning for its community. This importance may or may not
be re�ected in the topological properties of the nodes and is based on knowledge from the external
environment of the network. This node de�nes the evolving community and acts as an anchor for
the community, thus circumventing the identity problem.

As a toy example, one could imagine a football team in a social network. This community
evolves as new fans join or existing fans may stop supporting the team. However, the core fans
(e.g., the Ultras) of the team are more stable and in a way act as an anchor for this community.
Imagine a �rst-class player of the team that has a large degree of centrality (much larger than the
Ultras). This player is topologically central in the community referring to this team. However, when
he decides to leave the team then all his connections within this community are severed but the
community continues to exist due to its more permanent members (any of them can be chosen as
an anchor). Another motivating example could be an IoT network. The IoT is de�ned as a network
of connected devices and end systems that directly interact with each other to collect, share, and
analyze important data via the cloud [10]. In such networks, the connections between nodes are
not stable, but change over time. Thus, as an example, someone might be interested in uncovering
the evolution of the community to which a particular switch device node belongs. The former node
would act as an anchor for this community.

Another motivating example comes from social networking platforms. TikTok is an example of a
network-based social platform, in which people every day express their opinions about many topics.
A reaction of a user (node) to the challenge of another user constitutes an edge between both users in
a reaction network model. In this case, the anchor node can be a person that issued such a challenge
that may have a certain number of reactions. Applying local community detection with the anchor
being the person that issued the challenge, we can discover not only the people that reacted to this
challenge but also the people that reacted to such reactions and further see how this temporary
community evolved over time from the time it started until the time people lost their interest. As
a result, researchers can further analyze the dynamics of the community that, for example, may be
used in the evolution of the sentiments within this community [11]. Additionally, sometimes such
challenges may be characterized as dangerous, and discovering the evolution of the community may
lead to the identi�cation of evolutionary patterns that allow them to distinguish the communities of
users who participate in dangerous and non-dangerous challenges [12].

Another motivating example is related to tracking potential COVID-19 cases emanating from a
single infected person who recently traveled from overseas. This person could act as an anchor for
identifying a community that potentially has been infected either directly or indirectly by her/him.
We assume the existence of a contact temporal network. This could be constructed by using ap-
propriate mobile apps (e.g., [13]). The identi�cation of this community allows the application of
preventive policies, such as suggesting that all people in this community should check for infection.
However, we must highlight ethical issues related not only to the construction of such a contact
network but also to the process of identifying the community. This is because the identi�cation of
the community may lead unaware people to be subjected to unnecessary actions and at the same
time reveal personal information. The ethics of shared COVID-19 risks are discussed in [14], while
issues related to shared responsibility in health policy can be found in [15].

Contributions

Our present work focused on identifying the community of a particular node, called an anchor, which
is assumed to be of particular importance to that community due to external knowledge related to
the network. To achieve this, we proposed a multi-stage framework in a graph streaming setting that
updates the community whenever an edge is updated (inserted or deleted) �near� the anchor. We
experimentally showed how promising the proposed framework is when compared to other methods
in both synthetic and real datasets. Our contribution is twofold:

� From a modeling perspective, our contribution lies in introducing the notion of the anchor
node in the local community detection problem into time-evolving networks.

� From an algorithmic perspective, a general multi-step framework was proposed that can
be used to detect stable communities of an important node in time-evolving networks.
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The remaining sections are organized as follows. In Section 2, we review the literature on local
community detection in dynamic networks. The proposed framework is described in Section 3. In
Section 4, we present experimental results illustrating our algorithmic framework. Finally, we discuss
future expansions of the suggested framework in Section 5 and conclude in Section 6.

2 Related Work

Local community detection, also known as the seed set expansion problem, has attracted the atten-
tion of researchers because only a small part of the network is processed. This is either because the
network is so large that it is impossible to look for all communities or because the user is interested
only in communities in a small part of the network. A striking characteristic of local community
detection is that the choice of the seed(s) de�nes the detected local community that can be quite
di�erent from the one that the seed would belong to in the case of global community detection.
Many di�erent approaches have been proposed for this problem. However, the literature on dy-
namic networks and especially on graph streams is much smaller than that on static networks. In
the following, we discuss algorithms for local community detection in a streaming setting that are
closely related to our work.

Ref. [16] used an online approach to �nd communities in data streams, where at each given
moment they maintain the current graph of interactions in main memory and store previous graphs
of interactions on the disk. In [17], an incremental method, to update the communities of a graph
segment when a new incoming graph is added, was proposed. Random walks with restart were used
and the suggested approach requires the maintenance of the whole graph structure. In addition,
the authors of [18] adopted the static L-metric approach [19] to �nd dynamic communities in an
incremental way. The L-metric is a measure expressing the observation that a community has a
lower number of edges to other communities than to nodes within the community. At each snapshot,
communities are discovered using information from previous snapshots. At the end, communities
found in di�erent snapshots are matched based on their similarity (L-metric). Experiments have
shown that this method leads to meaningful communities. Additionally, in [20], the authors studied
the problem of community detection in a streaming environment where the rows of the graph's
adjacency matrix are revealed one by one, as they believe that maintaining the entire graph is
prohibitively expensive. They proposed an online algorithm with a space complexity that grows
sub-linearly with the size of the graph. Furthermore, in [21, 22], a dynamic method of expanding
the seed set was proposed, where the authors proposed to incrementally update the �tness score of
each snapshot. To center the community around the seed, their method ensures that the order of
�tness scores remains monotonically increasing by tracking the order of added nodes. Experiments
have shown that the proposed method is quite fast and the performance is better when low latency
updates are required. The authors of [23] suggested an incremental community detection approach
for high-volume graph streams based on a batch-oriented algorithm named DEMON [24]. The
suggested algorithm considers only adding edges in an incremental way and requires maintaining
the entire graph structure. Moreover, in [25], a method called PHASR was proposed to �nd the
temporal community with the lowest conductance. This work aimed to �nd communities with stable
membership over time. Experiments have shown that the proposed method has a low running time
and manages to �nd high quality communities. In [26], a metric called local �tness was used to
�rst �nd the starting nodes of a community and run a static algorithm to de�ne the communities in
the �rst snapshot. In subsequent snapshots, they used a metric for node contribution to gradually
reveal the communities. Their experiments showed that the proposed method reveals communities
with high accuracy. Despite the fact that the work in [27] pertains to static networks, we mention
the importance of this research while the authors deal with the problem of the maximal a- quasi-
clique; from a local community perspective, detecting the communities of a speci�c node of interest.
Furthermore, the authors of [28] proposed the HqsMLCD algorithm in order to detect multiple
overlapping communities for a given starting node. The notion of high quality seeds was introduced,
which are obtained by the embedded candidate subgraph. Their motivation was to de�ne a local
community detection method that is sensitive to the local structure of the seed node. Experiments in
real datasets showed that the aforementioned approach detects high quality communities. Finally, a
method named CoEuS [29] has been proposed for local community detection in graph streams. The
method works in a rather restricted setting where only a single access to the stream is assumed and
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the working memory is limited. Experiments with networks have shown that the algorithm is able
to discover local communities with high accuracy. In contrast to existing work on local community
detection in a streaming setting, our proposed multilevel framework focuses on community detection
of a particular important node, called anchor. This work is the �rst to propose the notion of �anchor�
in graph streams.

3 Problem Formulation and Methodology

In this section, we introduce some basic terms and state our research problem more formally. Then,
we discuss the framework for local community detection with anchors in stream graphs.

3.1 Preliminaries

The network is denoted as G = (V,Et) and consists of a static node set V = {1, ..., n}, where n = |V |
is the number of nodes, and Et ⊆ V 2 is the set of edges at time t. Given the de�nition of network G,
a community can be de�ned as a subset of nodes in G such that the density of connections within the
subset is greater than the density of connections between the subset and the rest of the network G.
That is to say, a community can be thought of as a group of nodes that have stronger relationships
with each other than with nodes in other parts of the network.

In this work, we considered a streaming model of computation on the graph in the sense that
edges are processed in a continuous and incremental manner, as they arrive in a stream, instead
of processing the entire graph structure in bulk. Thus, let t be a discrete time domain with time
steps 1, 2, . . .. A streaming source for edges in G can be de�ned as a function s : t→ P (V 2), where
s(t) = Et represents the set of edges in the graph at time t, and δs(t) = {e(t)} represents the single
edge update at time t, with e(t) being an edge in the graph. In other words, the streaming source
s(t) generates one edge update δs(t) per time unit in the graph G. The update can be an addition,
a deletion, or a modi�cation of an edge in V 2. The result of this update on the stream graph is
that the communities of the corresponding network may change. Dynamic community detection
is the process by which we can observe the evolution of communities in a network subject to such
edge updates.

A Local Community (LC) is de�ned as the community to which the seed nodes belong. Seed
nodes are the nodes that de�ne the community to be discovered. Thus, a network G can be divided
into LC and the rest of the network G−LC = U . Figure 1 shows the commonly accepted de�nition
of the local community in a network G. Based on Figure 1, we can de�ne three types of edges of
LC: internal, boundary and external. Internal edges are the edges between nodes in LC. Boundary
edges are those between nodes in LC and U . Lastly, edges between nodes in U , are called external.
We also de�ne the internal and boundary degree of LC as the number of internal and boundary
edges of LC, respectively. In Table 1 we summarize the notation used throughout the paper.

Figure 1: The shape of a community. Black nodes are the seed nodes. Blue nodes are nodes within
the community while red nodes are outside of the community.
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Table 1: List of basic symbols and abbreviations used in the present work.

Symbol/Abbreviation Description

Gt The network at time instance t�if no time index is given
(G) then time is irrelevant

V The node set of G
N The total number of nodes in G (= |V |)
Et The edge set of network G at time t
w(e) Weight of edge e
A The anchor node
Ct The community of the anchor at time t

kCi
in The total internal degree of LC, when the i-th node is in-

serted to the community

kCi
out The total boundary degree of LC, when the i-th node is

inserted to the community C
N(u) The set of neighbors of node u
R The radius of the ball centered around the anchor A
AR The set of nodes, called in�uence range, in distance at most

R from anchor A.
s(t) The streaming source
b The size of the batch in the streaming algorithm
LCDS-A The proposed General framework of Local Community de-

tection in graph streams with Anchors
DWR The Dynamic With Rewards algorithm. It is an instance of

LCDS-A for a particular reward scheme and quality metric.
DOR The Dynamic WithOut Rewards algorithm [22]
SWR The Static With Rewards algorithm
SOR The Static withOut Rewards algorithm

3.2 Problem Formulation

In the following, we discuss more formally the problem of local community detection in graph streams
with anchors. Given a node A called the anchor, the network G and the streaming source s(t), our
aim is to discover the community C which includes A. As the network evolves, the community C
may also change. Our goal is to uncover the community of the anchor during the evolution process.
We assume that the anchor is of particular importance to the community to which it belongs, due
to external knowledge. Thus, it acts as a reference point for this community, i.e., the anchor in a
sense de�nes the community to which it belongs.

To minimize the avalanche e�ect (the avalanche e�ect corresponds to the phenomenon where
communities can experience signi�cant deviations compared to what a static algorithm would com-
pute in each instance of time) [30], we proposed to limit the community update only to a region of
in�uence around the anchor. The in�uence range AR of anchor A, is the set of nodes in the ball
of radius R with the anchor A being the center of the ball. This means that within the in�uence
range all nodes with shortest paths to the anchor A of length ≤ R are included. For example, A1

contains the anchor as well as all its adjacent nodes. In general, a high value for the in�uence range
would increase the requirements for the process, as a larger network area is explored. Internal,
boundary and external edges with respect to the in�uence range are similarly de�ned to the case of
the community.

Moreover, to identify the most stable anchor community, we applied a node reward method.
That is, for each update, we rewarded the edges in the anchor's in�uence range by increasing their
weight. For example, in the case where R = 1, all edges of the anchor as well as all edges between
nodes in N(A) are rewarded a weight in order to strengthen the ties of the anchor to its adjacent
nodes. This procedure leads to the identi�cation of a community that is �more� centered around
the anchor. In the case of A1, we may choose a very simple rewarding scheme that simply sets the
weights of the edges of the anchor to be equal to a constant larger than 1. For instance, in case
we choose this reward to be 2 then all incident edges of the anchor get a weight equal to 2 (recall
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that graph is unweighted, that is, it is assumed that all edges have weight 1). In addition, all the
edges between nodes that are adjacent to the anchor receive the same reward, creating in this way
weighted triangles around the anchor. An example of this process is shown in Figure 2.

Figure 2: Applying rewards for local community detection with anchors in case R = 1: (a) The
initial rewards around anchor is 2. (b) The edge (2, 3) appears in the streaming source within
the in�uence range of the anchor. The rewards are updated accordingly. (c) The deletion of edge
(2, 4) appears in the streaming source within the in�uence range of the anchor and the rewards are
updated accordingly.

Our proposed framework uses a quality metric to guide the incremental construction of the
anchor's community. The one we chose based on its simplicity and performance was the fmonc,
which is de�ned as the ratio of intra-community edges to all edges with at least one endpoint in
community C [31]:

f(C)monc =
2kCin + 1

(2kCin + kCout)
α
,

where kCin and kCout are the internal and boundary degree of community C, and α is a positive real-
valued parameter, controlling the size of the communities, i.e., lower α values allow larger community
sizes.

A part of the proposed algorithm uses a static algorithm as suggested in [22], (see Algorithm
1). This greedy algorithm searches for new community members in the neighborhood of the current
community. Each time, utilizing the corresponding quality measure, the �tness score fCi is estimated
using the internal and boundary degree of the community. The node that produces the largest
increase in the �tness score is chosen for addition in the community. When a new node u is added to
Ci−1, a new community Ci is assigned to the node ui, for i > 0, and as a consequence, regarding the
size of the new community it holds that |Ci| = |Ci−1|+ 1. For each node ui, the pointer i declares
the order in which the node u was added to the community. For example, C0 is the community
that contains only the anchor A with �tness score fC0 , while C1 is the community that results from
the addition of the chosen node u1 to community C0. Lastly, the corresponding �tness score will be
fC1 , with fC1 > fC0 . Table 2 depicts this process. The �nal community C identi�ed through the
preceding process is the community Cn, n ≥ 0, such that no node can be added to Cn resulting in the
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increase of its �tness score. This incremental construction of C de�nes a sequence of communities
C0, C1, . . . , C = Cn, termed incremental community sequence henceforth.

Algorithm 1 Static algorithm [22].

Input: G(V,E), A

C ← {A}
fitnessmax = 0
nodemax = 0
while add new nodes in C do

for u ∈ N(C) do
if fitnessscore(C ∪ {u}) ≥ fitnessscore(C) then

fitnessmax← fitnessscore(C ∪ {u})
nodemax← u

end if
end for
C ← C ∪ {nodemax}

end while

Table 2: The incremental community sequence.

Sequence of added nodes A u1 u2 ... un

Incremental Community Sequence C0 C1 C2 ... Cn

Internal edges of Ci kC0
in kC1

in kC2
in ... kCn

in

Boundary edges of Ci kC0
out kC1

out kC2
out ... kCn

out

Fitness scores in ascending order fC0 fC1 fC2 ... fCn

3.3 Local Community Detection in Graph Streams with Anchors

In this section, we propose the Local Community Detection in graph Streams with Anchors (LCDS-
A) framework. From a bird's eye view, this framework �rst applies a reward scheme in the in�uence
range of the anchor and then Algorithm 1 is used. When an edge is inserted/deleted that falls in
AR or C, then the rewards and/or the �tness scores are updated accordingly. At the next step, we
check if some nodes should be removed from C and the �tness scores are further updated. In the
last step, we check if the batch b of the inserted/deleted edges is completed. If yes, then we scan the
�tness score sequence and apply Algorithm 1, otherwise, the next stream update is processed. The
basic (�ve) steps of LCDS-A, given an initial graph G0, are shown in Figure 3. In case the initial
graph G0 is empty (no edges), the �rst two steps are irrelevant. In this case, the initial community
contains only the anchor A at t = 0.

Figure 3: The general framework of the proposed approach LCDS-A for graph streams, using an
initial graph G0.

Since the anchor A is by de�nition of great importance to its community C, the goal of LCDS-
A is to further strengthen its participation in C. In this way, we expected that local community

7



detection algorithms would provide better results. In the following, we make the convention for
internal edges (u, v) in the community C, that u has been inserted in the incremental community
sequence of C earlier than v based on their �tness scores. Similarly, for a boundary edge (u, v) of
community C, we make the convention that u ∈ C while v /∈ C. The proposed framework is divided
into two phases; the initialization phase and the streaming phase.

Initialization phase: Initially, in Step 1, we attach the rewards in the in�uence range AR of
the anchor by using a simple BFS traversal of all nodes at distance R. Then, in Step 2 we apply
the static local community detection algorithm to �nd the community C that contains the anchor
A. In case G is initially empty, community C consists only of the anchor while Ki,in , Ki,out and f
are initialized to 0. In this case, Steps 1 and 2 are omitted.

Streaming phase: In Step 3 of the framework, a stream update a is applied. This update can
be either an insertion or a deletion of an edge. If a occurs in the anchor's in�uence range then:
(1) the in�uence range must be recalculated and (2) the edge rewards are updated according to
the reward method. If the updated rewards a�ect the internal and/or the boundary edges of the
community, then the �tness scores in the incremental community sequence must be updated by
recalculating the internal kCi

in and boundary kCi
out values used in the computation of the �tness score

(see Section 3.2). We considered two cases based on how the weight of the a�ected edges has changed
due to the stream update a. In the �rst case, the weight of the a�ected edge (u, v) is decreased. In
this case, if the a�ected edge is internal, we keep node v in the list nd (This is a list of candidate
nodes for removal from C), becoming a candidate node for removal from community C. Node u is
not selected as a candidate because after the weight decrease all kCi

out will be decreased, from the
moment where u was inserted in the incremental community sequence up until v is also inserted
in this sequence. As a consequence, all the F1 scores will be increased and the ascending order of
�tness scores in the incremental community sequence will be maintained up until v. Thus, node v
is selected as a candidate because after weight decrease all kCi

in will be decreased, from the moment
where v is inserted in the incremental community sequence, meaning that the order of �tness scores
of Ci−1 and Ci may be violated (this means that in the sequence of nodes in increasing order based
on the �tness score, if the candidate node was inserted in i-th order then the �tness score of Ci−1 has
become larger than the �tness score of Ci, which is a clear violation of the imposed increasing order
in �tness scores), e.g., fCi−1 ≥ fCi , and needs to be checked. If the a�ected edge is boundary, then
for the same reason as mentioned above, the increasing order of �tness scores will be maintained
and we do not need to insert the internal node u in nd list as a candidate node for removal from C.

In the second case, if the weight is increased, regardless of whether the a�ected edge (u, v) is
internal or boundary, we insert node u in the list nd, unless u is the anchor A, in which case nothing
happens. u is selected as candidate node because after the weight increase in (u, v), from the time u
was inserted in the incremental community sequence up until v was also inserted in the sequence (in
case (u, v) is an internal edge), all kCi

out will be increased. As a consequence, the sequence of �tness
scores of Ci−1 and Ci communities may be violated, e.g., fCi−1 ≥ fCi , and they need to be checked.

Irrespective of whether a occurs or not in the anchor's in�uence range, we should also check if a
occurs in the community of the anchor and update the �tness scores of communities of the a�ected
nodes, fCi for i ≥ 1, since C may extend beyond the in�uence range. If a corresponds to a deletion
of an internal edge (u, v) of C, we insert node v in the list nd. If a corresponds to an insertion of
an internal or boundary edge (u, v), we insert node u in the list nd, unless u is the anchor A, in
which case nothing happens. The way we select the candidate nodes for removal from C is exactly
the same as mentioned previously in Step 3.

In Step 4, we check for each candidate node uj in nd whether the community Cj has a �tness
score that violates the increasing order, that is fCj−1 ≥ fCj . In this case, the node uj is removed
from community C and Cj is also removed from the incremental community sequence. Then, we
update the �tness scores of all succeeding communities fCi , for i > j. We insert in the list nd all the
neighbours of the removed node uj that belong to community C and that have been inserted in the
incremental community sequence later than uj . We do not need to check neighbours that have been
added earlier than uj because they were added to C without taking into account uj . The whole
process is repeated until there are no neighbors a�ected by these changes and the list nd is empty.

Finally, in Step 5, we check whether a batch of b stream updates has been processed. b counts
the total number of stream updates that have occurred in the in�uence range of the anchor or in
its community. Thus, stream updates that do not a�ect the community of the in�uence range are
discarded and not counted within the batch. When a batch of stream updates has been completed,
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we �rst check whether the incremental community sequence is valid, that is the �tness scores are in
ascending order. If not, then we remove all nodes from this sequence from the leftmost violation to
the end. For instance, given the sequence fC1 ≤ fC2 ≤ fC3 ≥ fC4 ≤ fC5 , we observe a violation
between i = 3 and i = 4, and thus all nodes from u3 to u5 should be removed from C. After the
removal of nodes, the community C contains only three nodes, the anchor A, u1 and u2. Then
Algorithm 1 is applied to the current community of the anchor, in order to add new node members
in the community by extending the incremental community sequence. We must note at this point
that the more frequent we run the static algorithm, the more accurate the result. However, the
computational cost is also higher. Assuming that G0 is empty (Steps 1 and 2 are not shown), the
pseudo-code of LCDS-A is presented in Algorithm 2.
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Algorithm 2 The pseudo-code of the proposed LCDS-A framework.

Input: G(V,Et), A,R, b

C ← {A}
AR ← set of nodes within distance R from A
k0,in ← 0
k0,out ← 0
fC0 ← 0
for (u, v) ∈ Et do

Step 3:
if (u ∈ AR) ∨ (v ∈ AR) then

update AR and w(u, v) according to RW ▷ RW : ReWard scheme
for e = (uI , vI) ∈ C and (uI , vI) ̸= (u, v) do

if w(e) a�ected by RW then
update ki,in, ki,out and fCi

if w(e) is decreased and vI ∈ C then
nd ← vI

else if w(e) is increased and uI ̸= A then
nd ← uI

end if
end if

end for
end if
if (u ∈ C) then

if (u, v) is deleted and (v ∈ C) then
update ki,in, ki,out and fCi

nd ← v
else if (u, v) is inserted and u ̸= A then

update ki,in, ki,out and fCi

nd ← u
end if

end if

Step 4:
while nd ̸= ∅ do

uj ← extract a node from nd

if (fCj−1 ≥ fCj ) then ▷ f : the �tness score
C ← C − {uj}
update ki,in, ki,out and fCi

for vℓ ∈ N(uj) do
if (vℓ ∈ C) ∧ (ℓ > j) then ▷ Check if vℓ added to C later than uj

nd ← vℓ
end if

end for
end if

end while

Step 5:
if # of stream updates that belong to C or AR is equal to b then

Remove all nodes from the leftmost violation to the end in the incremental community
sequence

end if
Run the static Algorithm 1 to add new nodes in C

end for
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Time Complexity

The complexity of the DOR method, based on the analysis of [22], is O(n2d), where d is the mean
degree of the nodes in graph G and n is the size of the community of the anchor. Initially, we
provide a very crude worst-case analysis of LCDS-A based on N and M , which are the number
of nodes and edges of the graph respectively (M , n and d are quantities that change as the graph
evolves�we have assumed that nodes do not change although many of them can have zero degree.
However, asymptotic notation allows us to be more relaxed with these values assuming that they do
not change much during a period of time. Indeed, we can safely assume that during a period of one
batch the mean degree d as well as the number of edges M change only by a multiplicative constant.
The size of the community n can only drop between two successive calls to the static algorithm
(Step 5 of LCDS-A) and as such, n is an upper bound). DOR has a worst-case complexity of
O(N3), since d, n ≤ N . For each stream update (edge insertion/deletion) in the anchor's in�uence
range/community, we update all rewards in time O(M), since in the worst-case we will have to
update the rewards of all edges in the graph. Then, we update the new �tness scores in time O(N2),
since for each node in the community we need to calculate the internal and the boundary edges. For
each update of a �tness score, if the node remains in the community then no other node is a�ected.
If, on the other hand, the node is removed from the community then all its neighbors must have
their �tness score recalculated. If a node is removed, then it is not inserted again in the community
unless we are at Step 5. This implies an O(N + M) step for these recalculations of �tness scores.
This means that a crude upper bound of the complexity of each update that does not evoke Step
5, is O(M +N2). In case, Step 5 is evoked, then the cost of the update is increased by an additive
O(N3) since the bottleneck in this step is the use of the DOR algorithm. Thus, in total, we get a
complexity of O(bN2 +N3) for a batch of b stream updates, since M < N2.

The above analysis is very pessimistic since the size of the community is expected to be much
less than the size of the graph (n << N) and the internal computation of the LCDS-A algorithm
is also expected to be less intense than the one implied above. A better estimation (although still
pessimistic) can be achieved by using more graph-related parameters in the time complexity of each
update. To this end, as already stated, during a batch of b updates, Algorithm 1 is executed in
O(n2d) time. Moreover, the time we need in order to calculate the rewards of the a�ected edges
in the in�uence range of the anchor A, in the worst case, is O(bdR). This is because during the b
updates, the rewards will change in a ball of radius R around the anchor of size at most dR�for
R > 1 this is a clearly pessimistic upper bound since it assumes no common neighbors between nodes.
In addition, the endpoints of some edges that belong to C will be a�ected and the corresponding
�tness scores should be recalculated, as well. This can be achieved in O(bd), since for each of the b
stream updates, we need O(d) time to recalculate the �tness scores of the neighbors of the a�ected
nodes. Assuming that the average number of violations per update is 1 (This implies that during a
batch, the community will lose b nodes. Of course, in the worst-case, in one stream update all nodes
may be removed from the community. However, our experimental results imply that the average
number of violations per stream update is lower than 1), then, for each node removal from C, d new
neighbours of the removed node should be inserted in the nd list, and for each one the �tness score
will be estimated in O(d). Thus, for d neighbours, the total time is O(d2), and for all b updates
in a batch, the time we need is O(bd2). In total, the time complexity is O(b(dR + d2) + n2d) given
the plausible assumptions we made. This means that a rather pessimistic upper bound per stream

update is O
(
dR + d2 + n2d

b

)
.

Regarding the other three baseline algorithms, the static without rewards scheme requiresO(bn2d)
for a batch of stream updates, since the static algorithm is applied for each stream update. The
static with rewards scheme requires O(bd(n2 + dR−1)), since besides the time required for applying
the static algorithm, it requires O(bdR) additional time to calculate the rewards after each update.
Finally, the dynamic without rewards requires O(d(bd+n2)) with a reasoning similar to the analysis
of LCDS-A. Apparently, LCDS-A is faster than the static baseline algorithms as it is expected but
slower than the dynamic algorithm without rewards due to the maintenance of the rewards in the
in�uence range.
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4 Experiments

4.1 Experiment Design

In this section, we experimentally compared di�erent baseline approaches with the proposed frame-
work LCDS-A, on both synthetic and real datasets. The baseline approaches are (a) DOR (Dynamic
withOut Reward), as proposed by Zakrzewska and Bader [22], (b) SOR (Static withOut Reward)
and (c) SWR (Static With Reward). Regarding the approaches SOR and SWR, each time a stream
update arrives, then Algorithm 1 is applied, incurring a rather large computational cost. In addition,
for the SWR method, before we applied Algorithm 1, the weights of the edges in the in�uence range
were recalculated.

LCDS-A is a general framework where we can apply various reward schemes and quality metrics.
In our experiments, we used a speci�c instance of the general framework in terms of reward and
quality metric. In order to di�erentiate this instance from the framework LCDS-A, we used the
term DWR (Dynamic With Reward). First, we experimented with synthetic datasets. We used
a representative node as an anchor A for each experiment with the synthetic datasets, which was
determined by its degree. We experimented with di�erent anchors of low, medium, and high degree
when compared to the average degree of the network when the streaming process was ended (the
last instance of the graph). Thus, a high degree node is a node that has degree considerably larger
than the average degree at the last instance. Second, with respect to the real datasets, we gave an
average F1 score for several important nodes and, consequently, certain anchor nodes A were chosen
based on external knowledge about each dataset.

In the experimental evaluation of DWR, we assumed that the radius of the in�uence range was
R = 1. We chose this value as a good compromise between e�ciency and e�ectiveness. The anchor
A was a single node and the reward scheme was very simple since we only assigned a chosen reward
to all edges in A1.

Finally, regarding the size b of the batch of stream updates, after extensive experimental eval-
uation we concluded that b should be analogous to the current size of the community or in�uence
range. More precisely, the static algorithm was executed only when the size of stream updates b that
belong to AR or C were greater than a percentage of the current size of C or AR. In this way, we
gave an advantage to the community that suddenly loses a lot of members after a stream update.

4.2 Datasets

4.2.1 Synthetic Datasets

The synthetic datasets we used in our experiments were generated by RDyn [32], which is capa-
ble of generating dynamic networks that respect known real-world network properties, along with
time-dependent ground truth communities with adjustable quality. Both merging and splitting of
communities is allowed. The generator contains two important user-de�ned parameters. The �rst is
the number of nodes of the generated dynamic network and the second is the number of iterations.
Each iteration consists of a batch of stream updates (insertion/deletion of edges) and the number of
these updates is not necessary the same for each iteration. For our experiments, we used only the
anchor as the initial graph, followed by a full streaming procedure. Moreover, we used three di�erent
datasets generated by the RDyn generator. The basic properties of these datasets are described in
Table 3.

Table 3: The basic properties of the synthetic datasets used.

Dataset Nodes Mean Degree Iterations Final Edges Stream Updates

SD1 500 64 1000 1680 41,433
SD2 1000 54 1000 6226 50,871
SD3 5000 55 1000 25,590 251,107

4.2.2 Real Datasets

The real datasets we used for our experiments are datasets that can provide us with side information
in the form of metadata about the meaning of certain entities. More speci�cally, the �rst dataset
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we used in our experiments [33] consists of nodes representing employees of a company, while edges
represent email communications between them. As side information, we already knew to which
department each employee belongs and what position they hold there. We were interested in un-
derstanding the communication patterns of a speci�c node, e.g., a manager, based on the company
email communication. We could apply local community detection for that node (manager), as the
seed node, to identify the di�erent groups of people she communicates with most frequently. This
could reveal which departments or teams the manager interacts with most often, as well as any
individuals who may be particularly in�uential or well-connected within those groups.

For example, we might �nd that the manager is part of a local community that includes other
managers and executives within the company, as well as members of their direct team. Alternatively,
we might discover that the manager is more closely connected to employees in certain departments,
indicating that they may have a more specialized or targeted role within the organization. Based on
these insights, we could develop strategies to improve communication and collaboration within the
company, such as encouraging the manager to build stronger relationships with certain individuals
or groups, or facilitating more cross-functional collaboration between departments or teams.

The second real-world dataset we used in our experiments is a terrorism dataset [34]. More
speci�cally, the nodes represent terrorists and the edges between them represent attacks involving
both endpoint nodes of each edge. As side information, we obtained the position of each terrorist in
a terrorist group, e.g., the bomber, and the possible relationships between them. For instance, in the
context of a dataset that describes terrorism in the last decades, if we chose a speci�c node such as
�bomber� and applied local community detection, it could help us identify the di�erent groups and
networks that the bombers belong to, as well as the key players and in�uencers within those groups.
This could potentially reveal important insights about the organization, structure, and tactics of
terrorist groups. For example, by identifying the local communities that include bombers, we may
be able to determine which groups are most active in carrying out bombings and whether there are
any patterns or trends in their activities (such as targeting speci�c locations or types of targets).

Additionally, by analyzing the connections between bombers and other members of their com-
munities, we may be able to identify potential collaborators, recruiters, or facilitators, which could
be useful for law enforcement and counter-terrorism e�orts. The basic properties of these datasets
are described in Table 4.

Table 4: The basic properties of the real datasets.

Dataset Nodes Actions

terrorism 271 756
email − Eu− core 1006 16,706

4.3 Evaluation Metrics

To evaluate our proposed framework, we compared the results of our community detection with the
ground truth communities generated by the synthetic dataset generator, in di�erent time instances.
However, a valid argument (to some extent) against using the synthetic generator's ground truth
communities is that the detected community is in�uenced by the anchor. To this end, on the one
hand, we tried to set up the generator so that the communities were not as intertwined, and on the
other hand, we were more interested in comparing the methods to each other than in looking at the
values of the metrics compared to the ground truth. Regarding the real networks, we compared our
results, in each timestamp, with the same ground truth community as given from our dataset. The
evaluation metrics that we used were the standard precision, recall, and F1 score [35]. Precision is
the ratio of elements found correctly to the total number of elements found. Recall is the proportion
of relevant elements that were successfully retrieved. The F1 score is the harmonic mean of precision
and recall. The harmonic mean is used instead of the simple average because this way the extreme
values are penalised. The F1 score has been used extensively in the context of clustering and
community detection. This is achieved by comparing to the ground truth communities, to measure
how well the algorithm has grouped together items that share common characteristics or features.
The F1 score is utilized as an evaluation metric in a lot of research regarding local and global
community detection algorithms [36, 37, 38, 28, 39, 40] and has also been used in large related
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surveys [30] as a low computational cost evaluation metric. The Jaccard coe�cient [41] is another
metric that could also be used in order to evaluate the detected communities. However, since the
F1 score is linearly related [42] to the Jaccard coe�cient, we chose the former for simplicity in
presenting the results.

4.4 Experiment Results

4.4.1 Experiments on Synthetic Datasets

Our experiments were conducted on an Intel Core 2, 9 GHz i7 processor with 16 GB memory. In
addition, we used Python to implement the methods and we made use of the NetworkX, igraph,
and numpy libraries. To begin with, for all datasets, experiments were conducted using several
nodes (low, average and high-degree) and we present the most representative results. Regarding the
�gures, the values on the x-axis represent the number of iterations. The graph generator returns the
graph partition after one or more iterations, and in each iteration the number of stream updates is
not the same. As a result, each interval on the x-axis consists of the same number of iterations but
a di�erent number of stream updates. In the �rst experiment, we compare DWR (Dynamic With
Rewards), with DOR using several nodes and six di�erent rewards (1.2, 1.5, 2, 3, 5 and 10). In each
experiment, the static algorithm was activated when the size of the batch of stream updates b that
occur in the in�uence range or the community C was greater than b = 30, 50, 70 or 90 percent of
their current size.

Analyzing the experimental results of SD1 dataset, in Table 5, we observe that all six rewards
outperform DOR [22]. More precisely, while we increase the reward, we observe that the F1 score
is increased as well, and the maximum di�erence is achieved when the reward is equal to 3. On the
other hand, when the reward value is greater than 3, we see that the average F1 score is decreased.
This happens because the weight di�erence between the in�uence range area and the rest of the
graph is too high and as a result, when the static algorithm runs, it does not add any new nodes
to the community. In addition, with respect to the batch size b, we do not observe any signi�cant
changes in the results. We realise some �uctuations regarding the rewards and a slight increase for
DOR until batch is equal to 70%.

Having shown that DWR is better than DOR as far as F1-score is concerned, in Table 5 we
also report results concerning execution time. In the third column, we represent the average execu-
tion time of DOR for each batch. Moreover, the last column shows the average execution time of
DWR with multiple rewards for each batch. It is obvious that in both methods, while the batches
are increasing the execution time is decreasing. This occurs because when the batch is low, then
Algorithm 1 is called more times and this is time consuming. Comparing the third with the last
column of Table 5, we observe that the average execution time of DWR with multiple rewards is
slightly higher than DOR, and the percentage di�erence between these two methods is almost 13.5%.
However, the F1-score results of DWR is almost 5.5% better in average than DOR and for certain
reward and batch choices, the results of DWR are much better than DOR. Similar experiments were
conducted for the next datasets and for this reason we used a batch equal to 30%, since it is the
value that provides the best results.

Table 5: Average F1 scores and execution time of SD1 for multiple rewards (1.2, 1.5, 2, 3, 5 and 10)
and batches. For the batch, we provide only the percentage.

DOR
Time 1.2 1.5 2 3 5 10 Time

b = 30% 0.709 37.2 s 0.736 0.748 0.764 0.777 0.767 0.733 44.7 s

b = 50% 0.71 32.8 s 0.73 0.742 0.76 0.776 0.767 0.73 39.5 s

b = 70% 0.714 31.9 s 0.725 0.741 0.761 0.771 0.76 0.731 35.6 s

b = 90% 0.705 30.8 s 0.723 0.741 0.755 0.767 0.756 0.725 33.6 s

For the second synthetic dataset, SD2, we used a reward equal to 2, because for values greater
than 2 our F1 score was decreased, and we utilized the static algorithm when b is 30%. Figures 4
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and 5 present our results using nodes with high and average-degree respectively as anchors. In this
experiment, we compared DWR with DOR and two baselines, SWR and SOR. The F1 score in
Figure 4 exempli�es the superiority of our method. The average F1 score shows that using rewards
is better by an additive 8% when compared to DOR. In addition, SWR is better than SOR by 8%
as well. It is remarkable that our method outperforms SOR, and this result shows the signi�cant
outcome we can achieve by utilizing rewards.

DOR DWR SWR SOR

b = 30% 0.731 0.814 0.845 0.764

Figure 4: Using a node with high degree as an anchor in the synthetic dataset SD2. The tuple at
the bottom presents the average F1 score for the di�erent methods.
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DOR DWR SWR SOR

b = 30% 0.512 0.652 0.677 0.465

Figure 5: Using a node with medium degree as an anchor in the synthetic dataset SD2. The tuple
at the bottom presents the average F1 score for the di�erent methods.

Looking in more detail at the results of recall and precision in Figures 6 and 7, respectively,
we realise that the �uctuations in F1 score are due to the low recall. More precisely, the DOR
algorithm, on average, has low recall because the detected community contains fewer nodes than
those from the ground truth. Conversely, when we utilized rewards with either the Dynamic or the
Static algorithm, the detected community contains an average of 81% of nodes of the ground truth
community. In addition, we see that precision is almost equal to 1 for all methods, after the �rst
few iterations. In Figure 5, working with an average-degree node, we observe a lot of ups and downs
in the F1 score in all methods, except for in the proposed one. This happens because in the �rst
third of the graph stream, the recall for DOR and SOR is very low and, at the same time, precision
�uctuates wildly. At the beginning of the graph stream, until iteration 541, only a few edges are
connected to the anchor and for this reason the values of the evaluation metrics are low, except SWR
and DWR, which give better results from iterations 335 and 411, respectively. To summarize, the
proposed method, as well as the static method with reward, both outperform the other two because
on average the recall value is much better.

In the third synthetic dataset, SD3, (Figure 8) a low-degree node was used and, for this reason,
until iteration 600, we get low F1 scores because there are a few edges connected to the anchor.
Beyond iteration 600, we observe a signi�cant increase in the F1 score for almost all methods,
except SOR, and at the end DWR again outperforms the DOR method. At this point we need to
make two observations. First of all, after iteration 600, our proposed method reaches an F1 score of
nearly 98%, which is much better than the other three approaches. Secondly, the average F1 score for
the SOR method is only 28.5%, and this occurs because without reward and with the combination
of many edge deletions, the SWR method cannot reach the performance of the other three methods.
Looking more carefully at the Figures 8 and 9, we observe the di�erences when we use nodes that
have few and many connections respectively, from the beginning of the experiment. For instance,
in Figure 9, the F1 score is quite high for all methods. The observed �uctuations for DOR, and
especially for SOR, occur due to the extremely low recall. In these two methods, communities
suddenly lose a lot of members and, as a consequence, recall is decreased. Regarding the precision
of the DWR method, there are a lot of �uctuations in the �rst half of the stream updates. On
the other hand, in the second half, precision is consistently higher than 90% and for this reason F1
shows a spectacular improvement. The most remarkable result in all the above experiments is that
the proposed method outperforms the other three. Last but not least, on average, the SOR method
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produces the worst results in recall in all the experiments. As a consequence, the F1 score is low
and, comparing it with the SWR method, it gives us an obvious explanation about the prominence
of the reward method.

Figure 6: Using a node with high degree as an anchor in the synthetic dataset SD2.

Figure 7: Using a node with high degree as an anchor in the synthetic dataset SD2.
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DOR DWR SWR SOR

b = 30% 0.441 0.541 0.546 0.285

Figure 8: Using a node with low degree as an anchor in the synthetic dataset SD3. The tuple at the
bottom presents the average F1 score for the di�erent methods.

DOR DWR SWR SOR

b = 30% 0.765 0.783 0.774 0.774

Figure 9: Using a node with high degree as an anchor in the synthetic dataset SD3. The tuple at
the bottom presents the average F1 score for the di�erent methods.

18



4.4.2 Experiments on Real Datasets

The experiments on real datasets using our proposed framework are quite promising. For these
datasets, as stream updates we considered only insertions of edges. Moreover, both real datasets
contain multiple edges and, in addition, the email dataset is directed. For our experiments, we
pre-processed these datasets in order to remove multiple edges and make all edges undirected.

In this case, we have two types of experiments. First, we compared the DWR with the DOW
method, for rewards 1.5 and 2 and for several di�erent nodes. We did not use other rewards, as in
synthetic datasets, because for rewards greater than 2 we did not observe signi�cant changes. Second,
we compared four di�erent approaches to include as many alternatives as possible to identify the
community of anchors. These approaches are: (1) SOR, (2) SWR, (3) DOR, and (4) DWR, which
is our proposed method. We present the results of all these approaches in terms of the F1 score
from experiments with real datasets considering di�erent anchor nodes. When metadata about
speci�c nodes was given, we used these nodes as anchors. In addition to these nodes, we also used
low-degree nodes, average-degree nodes, and high-degree nodes in each dataset to test the behavior
of our framework. Regarding the �gures, the values on the x-axis represent the number of stream
updates (inserted edges) while the y-axis corresponds to the quality metric used for the detected
community when compared to the ground truth.

In the �rst experiment (Figure 10), using the email-EU-core network, we compared our proposed
method with DOR and we applied the static algorithm when the batch was 30% of the current size
of the community or in�uence range area. In this case, we gave the average of several nodes and for
rewards equal to 1.5 and 2. As we can see, we achieved the best F1 score results when the reward
was equal to 2. There is more than a 10% di�erence between DOR and DWR. Based on the analysis
of the email-EU-core network, the chosen nodes for the experiments are the high, average, and low
degree nodes.

DOR 1.5 2

b = 30% 0.493 0.57 0.60

Figure 10: Average F1 score of several nodes as anchors, for high, average and low node degree, in
the email dataset. The tuple present the average F1 score of the Dynamic, the Dynamic with reward
1.5 and the Dynamic with reward 2.

In Figure 11, the anchor is retrieved from metadata [43], which is the manager of a department
that is of high importance. On average, DWR outperforms DOR and in addition, both static
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methods work better. Analyzing the dataset, we observe that our anchor (manager) sometimes
sends emails in several departments (other communities) and as a consequence, DOR and DWR lose
the community coherence while a lot of nodes leave the community. Furthermore, when the batch
is reached and the static algorithm is called, the above methods cannot add any new nodes because
the �tness score of the already-existing community cannot be increased. For this reason, we have
some �uctuations in recall and, as a consequence, in F1 score. On the other hand, the two static
algorithms, SOR and SWR, due to the fact that they run from scratch, can add many nodes in C.
Thus, the F1 score for the static methods is consistently higher with an average of 91.5%.

DOR DWR SWR SOR

b = 30% 0.736 0.780 0.915 0.915

Figure 11: Using a node of high importance from metadata of the email dataset as an anchor. The
tuple at the bottom presents the average F1 score for the di�erent methods.

Regarding the experiments in the terrorism dataset, �rst we present the average of several nodes
(terrorists) that have the most important role in a terrorism action (e.g., bomber, foot soldier). In
addition, we use a reward equal to 2. In Figure 12 we clearly observe that the proposed method
outperforms DOR with almost 14% di�erence. Furthermore, the results are almost the same when
comparing the two static methods. In Figure 13, we used as an anchor a terrorist that had the
role of the foot soldier. A foot soldier, e.g., suicide bomber [44], has one of the most important
roles in a terrorism organisation. One more time we see that the proposed method produces the
best results. More precisely, DWR outperforms the other three methods. Both static methods work
better than DOR, and SOR is slightly better than SWR. In this case, we need to point out that, in
real networks, the SOR method gives at least the same results with SWR, compared to synthetic
graphs where SWR is always better than SOR. The reason is, as mentioned above, that in synthetic
datasets there are both insertions and deletions. The rewarding scheme, when a deletion cause the
break of the community coherence, helps the static algorithm to add nodes in C and as consequence
to improve the recall and the F1 scores.
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DOR DWR SWR SOR

b = 30% 0.582 0.725 0.742 0.743

Figure 12: Average of several nodes of high importance as anchors in the terrorism dataset. The
tuple at the bottom present the average F1 score for the di�erent methods.

DOR DWR SWR SOR

b = 30% 0.657 0.741 0.684 0.696

Figure 13: Using a node of high importance from metadata of the terrorism dataset as an anchor.
The tuple at the bottom presents the average F1 score for the di�erent methods.

5 Discussion

The experimental results of Section 4.4 generally show that the LCDS-A framework improves commu-
nity detection results aggravating slightly the time e�ciency. More speci�cally, several experiments
were conducted with di�erent rewards and batch sizes. Our goal was to present the most signi�cant
results in terms of the F1 score. More precisely, we focused on the di�erences in F1 score between
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DOR and DWR methods. However, in most of the cases, for both synthetic and real datasets, the
proposed framework outperforms even the static algorithms, in terms of the F1 score. On the one
hand, these results indicate the importance of giving an extra reward around the anchor's area. On
the other hand, it seems that when the community changes slightly between successive updates, it is
better to incrementally update the community rather than recomputing it from scratch. Of course,
this is not the case when large changes happen at the vicinity of the anchor.

Fmonc is the metric we used in order to measure the quality of community C and the one that
was presented in our experiments. However, for comparison purposes we also used conductance as
a quality metric [45]. The results of the experiments with conductance were the same as Fmonc in
the best case. For this reason, only the experiments with Fmonc are shown in this paper.

Furthermore, di�erent batches and rewards were used. However, the most signi�cant results in
F1 score for our datasets were obtained with a batch equal to 30% of the size of the community and a
reward equal to 2. Indeed, on the one hand, due to the fact that the static algorithm is triggered less
times when the batch size is increased, the resulted communities exhibit low percentages in terms of
precision, recall and F1-score. On the other hand, our algorithm is not so time consuming because
the static algorithm is called smaller number of times. In addition, in our experimental evaluation,
the in�uence range was set to 1, since otherwise, the process becomes more time consuming combined
with lower F1 scores in most of the cases. Better F1 scores were obtained for larger in�uence ranges
in the case when the anchor was in the periphery of a sparse network. In this case, the larger
in�uence range did not have a considerable impact on the time e�ciency since the network is sparse
and at the same time it identi�ed a non-trivial community around the anchor.

6 Conclusions

Dynamic local community detection is an area of research that has attracted the interest of scientists
in recent years. In the present work, we focused on the discovery of local communities that contain
important nodes called anchors. Our goal was not only to identify such communities but also to
track their evolution over time as new edges are inserted and/or deleted in a network. To achieve
this, we proposed a multi-step framework that updates the anchor's community for each incoming
edge change in the anchor's in�uence range or community area. The in�uence range was used to
minimize the avalanche e�ect. To determine the most stable anchor community, we proposed a node
reward method. That is, at each update, we suggested rewarding the edges closer to the anchor by
increasing their weight.

An experimental evaluation of the proposed framework was performed on three di�erent synthetic
and two real datasets. We used a rather simple but quite e�cient reward scheme and we compared
the results with the case where no reward method was used. Our results show that our method
outperforms the dynamic method without rewards in terms of recall, precision, and F1 score.

From a practical perspective, the proposed approach can help researchers discover useful features
of the networks they study. For instance, the suggested approach can be applied to co-purchase
networks in order to uncover buying habits. This could lead to smarter advertising techniques
and improved targeted marketing. Another example of the practical application of the suggested
approach could be politics. For instance, the LCD-A framework could reveal the trends in a network
of politics collaborations. Apart from these, another type of network that our proposed approach
could be useful for is that of medicine co-prescription. Having patients' demographics and medical
history as side information, our framework could uncover the future medical problems of speci�c
anchor patients.

We intend to further extend this work along the following axis: (1) extended experimental
evaluation of more rewarding schemes that take into account the edge history, possibly using ageing
mechanisms; and (2) extensive tuning of the di�erent parameters of the reward schemes.
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