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Abstract

This report contains the description of our distributed community detection for static his-

torical graphs. They are static, in the sense that the history of the graph is given to us in

advance and there is no way to change it. The proposed algorithms are implemented in Scala,

and have been tested thorougly on a SPARK platform over a small cluster. The algorithms can

be straightforwardly be applied to a dynamic historical graph, provided that they are stored

and maintained on our proposed distributed graph database system. We still (until the time of

writing) do not have any related experimental results on dynamic historical graphs. Currently,

the Computer Engineering and Informatics Department of University of Patras builds a clus-

ter of 28 high-end PCs that will be used for extensive experimentation of the distributed graph

database and community detection (as well as, for other algorithms). The library for distributed

community detection can be found in 1. The material of this report is currently under review

in a journal.

1 Introduction

Networks are widely used as a powerful tool for data analysis across numerous scienti�c �elds,
including social sciences, transportation, and biology. A static network is typically represented as
G = (V,E), where V denotes the set of vertices (entities) and E denotes the set of edges (relationships
or interactions between entities). Edges may be either directed � such as one person sending an
email to another � or undirected � like a collaborative relationship between two colleagues. By
incorporating the element of time, we arrive at the concept of static historical graphs, where each
node, edge, or attribute is associated with a set of valid time intervals. These graphs are considered
static because their structure remains �xed � no nodes or edges are added or removed over time
� but the activity of nodes and edges is constrained to speci�c temporal intervals, hence the term
historical. On the other hand, dynamic historical graphs support changes of nodes and edges and
their respective time intervals.

Community Detection (hereafter referred to as CD) is a process rooted in graph partitioning [24,
12], aimed at identifying groups of nodes that exhibit high internal connectivity � commonly referred
to as communities. The goal is to uncover tightly-knit clusters within a network, with prominent
examples including the discovery of user groups in social networks or functional protein complexes
in biological networks. Most existing community detection algorithms have been developed for
networks consisting of only a few million nodes and edges [28]. However, in recent years, there
has been a steady surge in data generated across various sectors such as social media, the Internet
of Things (IoT), healthcare, and retail [27]. Representing such vast datasets as networks leads to
extremely large-scale graphs, often comprising billions of nodes and connections. For example, as of
January 2024, Facebook reported approximately 3 billion active users worldwide2. As data volumes
continue to grow, so does the demand for scalable computational resources capable of handling these
large-scale networks.

Most of the existing community detection algorithms are designed to be used on a single machine.
This means that they cannot �nd communities in large-scale networks, as such networks demand
high processing power and memory in order to be analyzed. To deal with these issues, centralized

1https://github.com/kostasada7/Community-Detection-in-Historical-Graphs
2https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
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systems are shifted to distributed, decentralized systems, e.g., a peer-to-peer network. An apparent
advantage of adopting a distributed system is eradicating the single point of failure compared to a
centralized system. For instance, a peer can fail while the service is still available. This means that
other peers can inform the requesting entities that a particular peer failed and/or take over the task
of the failed peer. One more advantage of utilizing distributed systems is that we can add extra
computational resources to the entities in the system in order to scale-up and/or add new entities
in order to provide new services in the system.

In many real-world applications, it has often been observed that communities in large networks
evolve over time, such that nodes (or communities) exhibit relatively high interaction probabilities
during speci�c time intervals, while interactions across di�erent periods are much less frequent. One
such example is the airline route network, which contains �ight connections among airports across the
globe. Instead of focusing on geographical regions, we consider temporal patterns � such as seasonal
schedules or global events � that cause dense connections between certain airports during speci�c
intervals (e.g., holidays, summer travel season). Within each interval, airports may form temporal
communities based on synchronized �ight schedules, demand surges, or airline partnerships. These
time-sensitive communities can change in di�erent periods due to shifts in demand or policy.

One more motivating example could be an IoT network. The IoT is de�ned as a network of
connected devices and end systems that directly interact with each other to collect, share, and
analyze important data via the cloud [40]. In such networks, the connections between nodes are
not stable but change over time due to factors like mobility, energy constraints, or usage patterns.
Community detection over de�ned time intervals (e.g., hourly, daily) can help uncover persistent
communication patterns or emerging structures. For instance, analyzing community membership
across time can highlight how clusters of devices collaborate during peak hours or adapt in response
to failures or updates. Applying temporal community detection in this way supports better resource
management, fault detection, and adaptive routing strategies. Another motivating example is related
to tracking potential COVID-19 cases emanating from a single infected person who recently traveled
from overseas. In this scenario, community detection can be used to identify a group of individuals
who may have been exposed, either directly or indirectly, based on their interactions. We assume
the existence of a contact temporal network, which can be constructed using appropriate mobile
applications [18]. By applying community detection over speci�c time intervals � such as daily or
hourly contact logs � one can trace how the exposure risk propagates through the network and
identify evolving clusters of potential cases.

1.1 Contributions

In this work, we propose distributed methods for community detection in large-scale static historical
graphs, focusing on the identi�cation of communities within a user-de�ned query time interval 3. Our
methods improve upon existing approaches by incorporating temporal information from historical
graphs, where each edge is annotated with a validity interval. Below, we summarize the main
contributions of our work:

� We are the �rst to consider the community detection problem in a static historical graph
setting, where the history of nodes/edges is represented by time intervals.

� We introduce a temporal extension of the Weighted Clustering Coe�cient (WCC) method [29],
where key graph concepts are rede�ned to account for time-dependent activity. A central
concept in this extension is the local temporal Clustering Coe�cient (ltCC), which generalizes
the classical clustering coe�cient to capture dynamic neighborhood connectivity.

� Additional graph metrics are revised to maintain consistency with the semantics of temporal
graphs.

� We propose two WCC-based variants: One variant explicitly preserves the time intervals of
edges (t-iWCC). The other encodes time intervals as edge weights (t-wWCC).

� We develop a second method based on the distributed Label Propagation Algorithm (LPA) [3],
with two analogous variants: one that directly processes edge time intervals (t-iLPA), and
another that incorporates temporal information through edge weights (t-wLPA).

3Code available at https://github.com/kostasada7/Community-Detection-in-Historical-Graphs
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� We experimentally explore the e�ciency and the e�ectiveness of the proposed methods.

These four algorithms (two WCC-based and two LPA-based) combine structural and temporal
information in complementary ways. We also include an existing distributed implementation of the
Louvain method [26], which supports weighted edges. All four algorithms are designed to scale
e�ciently and are capable of processing large-scale temporal graphs, making them suitable for time-
aware community detection in both synthetic and real-world datasets.

The structure of the paper is as follows. Section 2 reviews the literature on distributed community
detection algorithms while Section 3 introduces de�nitions and preliminaries. Section 4 presents a
temporal CD method based on counting triangles, while Section 5 presents another method for
temporal CD based on label propagation. In Section 6 we present and discuss the experimental
evaluation of these algorithms.

2 Related Work

We discuss separately distributed community detection algorithms and distributed triangle count-
ing/reporting, since the latter is a crucial component of the algorithms in this paper.

Large-Scale Community Detection The existing literature contains only a few references con-
cerning the distributed detection of communities in dynamic or static graphs. Notably, in the �eld of
historical graphs, a temporal or historical graph is conceptualized as a structure wherein the identi�-
cation of communities necessitates the discernment of snapshots at speci�c temporal instances. More
precisely, the process of CD in historical graphs is more closely related to what is described in [33] as
instant optimal. In this case, the scope of algorithms includes those that apply community detection
on individual snapshots and strive to identify corresponding communities across these snapshots.
Subsequently, we proceed to present literature addressing the distributed aspect and methodologies
closely aligned with historical graphs, whether distributed or not.

In [34], a distributed CD method is proposed based on the WCC metric [29]. This method
consists of three phases: 1) Preprocessing, which computes the number of triangles for each vertex
and removes the edges that do not participate in any triangle, 2) Community Initialization, which
resembles a decentralized process of computing the maximal independent set, and 3) WCC Iteration,
that iterates over all nodes deciding whether to stay in their current community, transfer to another
community or remove themselves from the community creating a singleton community. Iteration
ends after a pre-speci�ed number of iterations or when there is no signi�cant change in the WCC
score. They implemented the algorithm in Giraph with Hadoop. These results were enhanced in
[13], by providing heuristics to count the triangles faster. An extension of this approach concerned
an incremental CD algorithm in a distributed environment [1]. They implemented their algorithm
using Apache Spark and GraphX in Scala on a multi-cluster environment.

In [25], the authors present an alternative version of the PHASR (Prune-Hash-Re�ne) method, in
a way that is consistent with known distributed models. For this reason, the algorithm is executed
using the big data analysis engine Apache Spark. Although most distributed local community
detection algorithms aim to discover a subset of edges within the network using some metric, the
technique presented in this paper attempts to discover local communities that have the lowest
temporal conductivity in a distributed way. The algorithm uses notions like temporal conductivity
in order to identify the local communities. Then, they use the Personalized PageRank metric in
the re�nement step of the algorithm, which is based on random interactions between the nodes.
The study in [21] introduces the novel concept of isolated sets to partition graph networks and
proposes a parallel version of the Louvain algorithm based on these sets. The approach enables
vertex updates and parallel computation without incurring synchronization delays or requiring the
exchange of community labels. Another distributed approach is discussed in [16], where they apply
static and dynamic community detection on combined datasets, aiming at identifying noteworthy
clusters and tracking their evolution over time. To achieve this goal, they examine community
detection algorithms speci�cally tailored for heterogeneous information networks. The historical data
undergoes conversion (in snapshots), and the algorithms are subsequently applied to the dataset.
More information about the conversion of a temporal graph into a series of snapshots can be found
in [2].
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An approach that uses local modularity in the LOCAL model is presented in [23]. The main steps
of the method are the following: 1) Create a one-node �rst community, 2) create multiple single-node
communities 3) iteratively and distributively extend each community, 4) create new communities for
unassigned nodes, and 5) repeat steps (3) and (4) until all nodes have been assigned to a community.
A very interesting TLAV (Thinking-Like-A-Vertex) approach is shown in [11]. This is a random walk
approach that in a nutshell works as follows: given a node s, it �nds its community with local random
walks and then iterates over all nodes. They claim that this is a lightweight algorithm. A similar
spectral algorithm can be found in [38]. A distributed memory implementation with message passing
between processes is given in [15]. Heuristics are provided to speed up the execution time. Label
propagation is also used for distributed CD [31]. An example of dynamics that resembles label
propagation for distributed community detection is presented in [5]. Finally, DyG-DPCD [35] is a
very recent parallel algorithm designed for community detection in dynamic networks, implemented
within the Message Passing Interface (MPI) framework. It adopts a vertex-centric model that
enables community discovery through local optimization at each node. In addition to the core
method, the authors introduce three heuristic enhancements that signi�cantly boost performance
without compromising the quality of the detected communities.

A recent survey that contains distributed algorithms can be found in [4]. Based on their taxon-
omy, the focus of this paper is on self-aggregation and self-organization CD algorithms. An example
of such an algorithm is given in [9]. Each node iteratively computes locally an entropy metric and
changes its community based on this metric.

Large-Scale Triangle Counting We review relevant literature on triangle counting in both
distributed and temporal graph settings. This is particularly important, as one of our methods
rely on triangle counting as a core component of its design. By examining prior work in this area,
we aim to highlight the challenges and advancements in e�ciently counting triangles across large-
scale, dynamic, and temporally-evolving networks.

In [17], the authors propose a cloud-edge collaborative framework for distributed triangle counting
in graph streams that gathers edges from multiple domains and tags each edge with its respective
domain. The master node then performs clustering based on the collected edges and, using the
clustering results, distributes the edges to di�erent workers. This enables triangle counting to be
carried out in a distributed manner. In [41], a Locally Di�erentially Private (LDP) method for real-
time counting of k-triangles in dynamic social graphs is proposed, marking the �rst approach to o�er
edge-level LDP while also ensuring a provably tight upper bound on the estimation error. To further
reduce this error, they introduce two enhanced variants that operate without requiring extensive user
coordination or synchronization. The core idea behind these methods is to sample one or two disjoint
users in the real-time social graph to form wedge structures � key components of k-triangles. This
strategy enables accurate triangle estimation while e�ectively preserving user privacy. Authors in
[37] present STEP, a scalable and e�cient algorithm designed to approximate temporal triangle
counts from a stream of temporal edges. Each temporal edge is valid in a single time instance.
STEP integrates a predictive model � estimating the number of triangles each incoming edge may
participate in � with a lightweight sampling strategy. This combination enables high scalability and
accuracy while e�ciently approximating all eight types of temporal triangles in a uni�ed manner.

Finally, the authors of this paper [7] present a distributed algorithm for triangle-based community
analysis in historical graphs, focusing on counting triangles within a speci�ed query time interval.
Temporal edges are characterized by time intervals (not single time instances). The proposed method
introduces a novel approach by incorporating temporal information into triangle counting, enabling
the detection of time-aware interaction patterns in dynamic networks. Unlike previous methods, it
speci�cally targets the temporal dimension by counting only those triangles that are active within
user-de�ned time windows. Experimental results on real-world historical datasets demonstrate the
algorithm's e�ectiveness in capturing temporal structures, highlighting its potential to advance tem-
poral graph analysis.

3 De�nitions

Let G = (VT , ET ) be a static historical network. The set of historical nodes VT consists of nodes
paired with their corresponding time intervals, that is, VT ⊂ V × N2. Similarly, the set of histor-

4



ical edges ET contains edges together with their time intervals, ET ⊂ E × N2, where E includes
all possible

( |V |
2

)
undirected edges. We consider the case where each node and each edge has a

single valid time interval, although it is straightforward to extend this to multiple valid time in-
tervals. Speci�cally, every node v ∈ V (and every edge e ∈ E) has an associated time interval

[t
(s)
v , t

(f)
v ] and similarly [t

(s)
e , t

(f)
e ], where (s) and (f) denote the start and �nish times, respec-

tively. This interval speci�es the exact time range during which the node v (or the edge e) exists.

Consequently, if t /∈ [t
(s)
v , t

(f)
v ], then v does not exist at time t.

The set Vij ⊆ V contains all nodes whose time interval spans the query interval [ti, tj ] (anal-
ogously, Eij can be de�ned for edges). By de�nition, the time interval of each edge is contained
within the time intervals of its incident vertices. In cases where multiple time intervals are used,
the boundaries of each interval must be de�ned carefully to avoid overlaps. A common approach is
to make intervals open on the left and closed on the right. Following our convention, a single time
point t is represented by (t, t].

Assume that Nij(v) denotes the neighborhood of node v within the query time interval [ti, tj ].
It is possible that Nij(v) is the empty set for certain query intervals. The routing table r(v) of a
node v contains all historical edges from v to other nodes in G. We de�ne rij(v) as the subset of
this routing table that includes only those historical edges whose time intervals intersect the query
time interval [ti, tj ]. Equivalently, rij(v) contains all edges connecting v to nodes that are members
of Nij(v).

Our algorithms are designed having in mind the Bulk Synchronous Parallel (BSP) model, which is
a model for designing parallel algorithms that structures computation into a sequence of supersteps.
Each superstep consists of three phases: local computation performed independently by each proces-
sor (corresponding to any computational entity), communication where processors exchange data,
and a global synchronization barrier that ensures all processors have completed their work before the
next superstep begins. The model abstracts away low-level details of parallel/distributed hardware,
enabling portable and predictable performance analysis based on parameters such as computation
time, communication cost, and synchronization overhead.

3.1 Problem Formulation - Methods

We consider the historical graph to be stored in a vertex-centric system [19], which o�ers space
e�ciency and enables improvements in both update and query operations. Thus, the complete
history of each node, together with its adjacent edges, is maintained within the node itself. Our
objective is to support the following query:

CD(G, [ti, tj ]): Identify the aggregate communities in graph G in the time interval [ti, tj ]. If ti = tj ,
then identify the communities in this time instance.

In case the query is about a particular time instance ti, then the community detection degenerates
to a distributed community detection algorithm [34] on a single instance (snapshot). When an edge
or a node is not valid at ti, then it does not exist in the retrieved snapshot.

Given a query time interval [ti, tj ] with ti < tj , one possible approach is to detect aggregated
communities within this interval. Alternatively, one may track the evolution of all (or a subset of)
these communities over the same period. In the latter case, in addition to identifying the communities
and their temporal changes, further challenges emerge regarding the e�cient reporting of both the
communities and their evolution. Focusing on aggregated communities, which is the scope of this
paper, it is essential to account for the contribution of each node and edge according to its overlap
with the query time interval. In other words, we must consider that certain nodes or edges may not
be valid throughout the entire duration of [ti, tj ].

For instance, consider a user query requesting the graph partition for the time interval T = [2, 6].
This interval contains 5 discrete time instances: {2, 3, 4, 5, 6}. Within this range, some nodes or
edges may be valid for only 1, 2, 3, or 4 of these instances, rather than for the entire interval. More
speci�cally, suppose an edge e is valid during the time interval [1, 5]. Since e is active for 4 out of the
5 time instances in T , we assign it a weight of 4

5 . One of the methods proposed in this paper focuses
on how such weight de�nitions are incorporated when partitioning the graph into communities for
the given query interval4. The above discussion leads to the following de�nition.

4Our de�nitions and methods apply also straightforwardly in the case of continuous time intervals.
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Figure 1: Illustration of graph transformation for a certain time interval. We show only the edges,
and we omit the nodes. a) The initial networkG with time intervals for each edge, b) The transformed
graph G for the query time interval [2, 6], with the corresponding weights on each active edge. If
edge weight is equal to 0, then the edge is not shown, e.g., e(v5, v6).

De�nition 1. The observed interval of a node/edge is the intersection between the query time
interval and the valid time interval of this node/edge.

If a node or edge is not valid at any time instance within the query time interval, it is considered
non-existent for that interval. Under this approach, the unweighted historical graph is converted into
a weighted static graph corresponding to the speci�c query interval. In this weighted representation,
the weight assigned to each node or edge is given by the ratio between the length of its observed
interval and the length of the query interval.

De�nition 2. The observation ratio of an object (node/edge/triangle) is the ratio between the
size of the observed interval of the object and the size of the query time interval de�ned by the user.

The observation ratio (weight) reaches its highest value of 1 when the temporal span of a node
or edge completely overlaps with the query interval. In contrast, the ratio is 0 when the temporal
span of the object does not intersect the query interval at all. Figure 1 presents a temporal network
together with the associated observation ratios, only for its edges.

In this work, we propose two variants for modeling and evaluating community structures in tem-
poral graphs: the Interval-based Temporal graph approach and the Weighted-based Temporal Graph
approach. The Interval-based Temporal Graph variant is grounded in estimating the contribution of
edges and nodes, based on the observed intervals. On the other hand, the Weighted-based Temporal
Graph variant is based on the observation ratio by assigning to each edge a weight that re�ects
its relative importance or strength within the temporal context. Initially, the edge intervals are
�ltered by checking whether an edge is active within the query time interval. Thus, each edge in the
Interval-based approach retains its observed interval, and each edge in the Weighted-based approach
retains its observation ratio. If the observed intervals are null, or the observation ratio is equal to
0, then the edge is not considered for community detection. In what follows, we provide necessary
metrics for the two proposed variants of the triangle based community detection: the interval-based
approach t-iWCC, and the weight-based approach t-wWCC.

Preliminary �ndings related to the approaches in Sections 3.2 and 4 have been accepted, as short
paper, at an upcoming conference [8]; however, the work has not yet been published. The current
article substantially extends and formalizes that preliminary version, providing a comprehensive
description, analysis, and evaluation.

3.2 Metrics for t-iWCC Variant for Interval-based Temporal-Historical

Graphs

The Weighted Clustering Coe�cient (hereafter WCC) metric [34] is based on the principle that,
within a community, vertices tend to form a denser concentration of triangles among themselves than
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with vertices outside the community. In this study, we modify and generalize this metric to operate
on temporal-historical graphs rather than unweighted static ones. For a given query time interval,
the adapted WCC accounts for the speci�c contribution of each vertex and edge of the historical
graph within that period. In other words, we quantify how much each node and edge contributes
in the WCC calculation for the speci�ed interval. Following this concept, for a historical graph
G(VT , ET ), we de�ne the cohesion of a vertex x with respect to a set of vertices S over the query
interval [ti, tj ] as follows:

WCCij(x, S) =

{
tij(x,S)
tij(x,V ) ×

vtij(x,V )
|S\{x}|ij+vtij(x,V \S) if tij(x, V ) ̸= 0

0 if tij(x, V ) = 0
(1)

The function tij(x, S) represents the total contribution of edges involved in triangles formed
by vertex x with vertices from the set S during the time interval [ti, tj ]. Speci�cally, consider a

triangle consisting of vertices u, v, and x, with edges e1 =
(
x, u, t

(s)
e1 , t

(f)
e1

)
, e2 =

(
x, v, t

(s)
e2 , t

(f)
e2

)
, and

e3 =
(
u, v, t

(s)
e3 , t

(f)
e3

)
. The observation ratio for the triangle involving x is de�ned in Equation (2)

as:

Ce(x, u, v) =

 |
[t(s)e1

,t(f)
e1

]∩[t(s)e2
,t(f)

e2
]∩[t(s)e3

,t(f)
e3

]∩[ti,tj ]|
|[ti,tj ]| if x, u, v forms triangles

0 otherwise
(2)

tij(x, S) =
∑

u,v∈S

Ce(x, u, v) (3)

This ratio corresponds to the number of time instances in which the intersection of the edges'
temporal intervals and the query interval occurs, divided by the total number of time instances in
the query interval. The term tij(x, V ) is de�ned in the same manner as tij(x, S). Furthermore,
the function vtij(x, S) measures the total contribution of vertices participating in all such triangles
within S. The speci�c contribution of a vertex u to triangles formed by x in S is given by:

Cvert(x, u, S) =

∣∣∣∣∣∣∣[ti, tj ] ∩
⋃
v∈S

(x,u,v) is a triangle

(
[t
(s)
(x,v), t

(f)
(x,v)] ∩ [t

(s)
(x,u), t

(f)
(x,u)] ∩ [t

(s)
(u,v), t

(f)
(u,v)]

)∣∣∣∣∣∣∣
|[ti, tj ]|

(4)

vtij(x, S) =
∑
u∈S

Cvert(x, u) (5)

This value represents the ratio between the size of the union of the time intervals for all trian-
gles�where each triangle's interval is obtained from the intersection of the temporal intervals of
its three edges�formed by x and u with vertices v ∈ S and the query interval, and the size of the
query interval itself. Equation (5) then speci�es the overall contribution vtij(x, S) of each vertex in
triangles closed by x. The quantity vtij(x, V \ S) is de�ned in an analogous manner.

Finally, |S \ {x}|ij is computed using the observation ratio of each vertex in S except x. For a

vertex w ∈ S with valid time interval [t
(s)
w , t

(f)
w ], the contribution of w is de�ned as:

CS(w) =

∣∣∣[t(s)w , t
(f)
w ] ∩ [ti, tj ]

∣∣∣
|[ti, tj ]|

(6)

|Sij \ {x}| =
∑
w∈S

CS(w) (7)

Equation (7) computes the sum of the observation ratios of all nodes in S, except from x.
In this way, the proposed WCC cohesion metric assigns a higher score when the proportion of

closed triangles within the community is large compared to those spanning outside the community
(left-hand term), while penalizing vertices in the community that fail to participate in any closed
triangle within it (right-hand term).

7



For a given partition Pij = {C1, C2, . . . , Cn} of the vertex set V in G over the query interval
[ti, tj ], the overall WCCij score corresponding to this partition P is de�ned as:

WCCij(P ) =
1

|Vij |
∑
C∈P

∑
x∈C

WCCij(x,C) (8)

Here, Vij denotes the set of nodes whose time intervals overlap with the query interval. For
a given partition P , the WCCij(P ) score is computed as the weighted average of the WCCij(C)
scores across all communities C within the partition.

For the purpose of community initialization, we employ the temporal local Clustering Coe�cient
(tlCC). Although local clustering coe�cients have been proposed for temporal graphs, these de�ni-
tions are often tailored to speci�c applications (e.g., [10]). We de�ne the tlCC of a node u over the
query interval [ti, tj ] as the ratio of the sum of observation ratios of all triangles involving u to the
maximum possible sum of observation ratios that u could achieve. This maximum is determined by
retaining all existing edges among u's neighbors with their original temporal intervals, while adding
every possible missing edge among these neighbors with a time interval equal to the query interval
[ti, tj ]. Since these newly added edges span the entire query interval, their observation ratios are
set to 1. The function t′ij(x, V ) is de�ned similarly to tij(x, V ) but refers to this augmented graph
including the additional edges. Consequently, the tlCC is formally de�ned as:

tlCCij(u) =


tij(u,V )
t′ij(u,V ) if dij(u) > 0

0 otherwise

(9)

where dij(u) represents the weighted degree of node u within the time interval [ti, tj ], de�ned as the
sum of the observation ratios in Nij(u).

3.3 Metrics for t-wWCCVariant for Weighted-based Temporal-Historical

Graphs

The weighted-based approach is a simpli�ed alternative to the interval-based method. Rather than
computing explicit time interval intersections, this method assumes that each edge is annotated with
a scalar score and is valid during a speci�c time interval. For a given query interval [ti, tj ], we �rst
�lter the set of active edges (i.e., those whose validity intervals intersect [ti, tj ]) and then use their
associated scores to estimate triangle and vertex contributions in community cohesion.

Let G(VT , ET ) be a static historical graph, and let se be the score associated with edge e ∈ ET

(se is the observation ratio of edge e for the query time interval). The cohesion of a node x to a set
of nodes S is de�ned as:

ŴCCij(x, S) =

{
t̂ij(x,S)

t̂ij(x,V )
× v̂tij(x,V )

|S\{x}|ij+v̂tij(x,V \S)
if t̂ij(x, V ) ̸= 0

0 otherwise
(10)

The function t̂ij(x, S) denotes the sum of the average scores of the edges to triangles closed by
x, with vertices in S in the time interval [ti, tj ]. More precisely, given a triangle with vertices u, v, x,
and their edges e1 = (x, u, se1), e2 = (x, v, se2) and e3 = (u, v, se3), the score of the triangle closed
by x is de�ned in Equation (11) as follows:

Ĉe(x, u, v) =

{
se1+se2+se3

3 if x, u, v forms triangles

0 otherwise
(11)

t̂ij(x, S) =
∑

u,v∈S

Ĉe(x, u, v) (12)

t̂ij(x, V ) is de�ned accordingly to t̂ij(x, S). The function v̂tij(x, S) estimates the sum of the scores
of the vertices contained in all such triangles in S. The score of a vertex u to triangles closed by x
in S, is de�ned in Equation (13) as follows:
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Ĉvert(x, u, S) =
∑
v∈S

(x,u,v) is a triangle

(
se1 + se2 + se3

3

)
(13)

v̂tij(x, S) =
∑
u∈S

Ĉvert(x, u, S) (14)

This is the sum of the average scores of all triangles of x and u with nodes v ∈ S. Then, in
Equation (14), the total score v̂tij(x, S) of each vertex in triangles closed by x is given. The function
v̂tij(x, V \ S) is de�ned similarly.

Similarly, the |Ŝ \ {x}|ij is estimated based on the score of each vertex excluding x, in S. Thus,
given the vertex v ∈ S, the total score ∀v ∈ S is de�ned as follows:

|Ŝ \ {x}|ij =
∑
v∈S

Wv, where Wv is the score of vertex v (15)

In the same manner, the ŴCCij of a partition P is de�ned as follows:

ŴCCij(P ) =
1

|V |
∑
C∈P

∑
x∈C

ŴCCij(x,C), V is the sum of all score vertices in G (16)

In this case, the temporal local Clustering Coe�cient is de�ned as follows:

t̂lCCij(u) =


t̂ij(u,V )

t̂′ij(u,V )
if dij(u) > 0

0 otherwise
(17)

t̂′ij(u, V ) denotes the maximum triangle score of node u, where all existing edges retain their actual
scores, and all missing edges are assigned a score of 1. This score-based variant provides a natural
generalization of temporal clustering and cohesion that accommodates weighted or scored historical
graphs, where edge scores may encode strength, frequency, trust, or other relevance metrics over
time.

In the following two sections, we present our two proposed methods and their variants. Without
loss of generality and for the simplicity of the exposition of the algorithms, we assume that nodes
do not carry time intervals. Thus, in what follows, we consider that nodes are active in the entire
query time interval, and in this case, the contribution of each node is equal to 1. This is justi�ed,
since the valid interval of a node must contain the valid intervals of all adjacent edges.

4 The Distributed Algorithm for Triangle-based Community

Detection

In this section, we discuss the two variants of the triangle-based CD method for temporal-historical
graphs, t-wWCC and t-iWCC, corresponding to weight-based and interval intersection based seman-
tics, respectively. As the steps are identical for both variants, we present only the interval-based
variant. In what follows, we describe the three steps of the proposed distributed community de-
tection algorithms: preprocessing, community initialization, and community re�nement via WCCij

iteration. This algorithm is based on the algorithms presented in [30, 34]. In the pre-processing
step, we calculate tij(x, V ), vtij(x, V ) and CV (x) ∀x ∈ Vij , since these quantities do not change
throughout the whole computation. In the next step, an initial graph partition is formed, estimat-
ing the local temporal Clustering Coe�cient (tlCC) ∀u ∈ Vij . Based on the initial partition, we
improve the WCCij metric repeatedly in order to �nd the best vertex movements that can optimize
the initial communities. A depiction of the distributed algorithm is shown in Figure 2.

4.1 Preprocessing

During the preprocessing phase, several functions are computed to generate an initial partition of
the historical graph and support subsequent steps. Speci�cally, the functions tij(x, V ), vtij(x, V ),
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Figure 2: A depiction of the three phases of the triangle-based CD method. Yellow boxes correspond
to local computation within each box, while blue boxes require some sort of communication between
nodes to carry out the related computation.

and CV (x) are evaluated for every node x ∈ Vij . The value of vtij(x, V ) can be e�ciently derived
from tij(x, V ), as the latter provides the necessary information to estimate utij(x, v). Since these
quantities remain constant throughout the process, they only need to be computed once. It is also
worth mentioning that prior to preprocessing, the graph is �ltered according to the query time
interval. This �ltering step is necessary to compute either the observation ratio (used in t-wWCC)
or the observed interval (used t-iWCC), depending on the speci�c variant of the algorithm being
applied.

Through message passing, every vertex x shares its value rij(x) with its neighbors in the set
Nij(x). Subsequently, each node determines the intersection of these neighborhoods to identify
which nodes form triangles with it. Since the corresponding time intervals are also exchanged,
Equations (2) � (5) can be applied to calculate tij(x, V ), vtij(x, V ), and CV (x) for all nodes x ∈ Vij .

Algorithm 1 Preprocessing Phase. Computation of tij(v, V ), vtij(v, V ) and tlCCij(v) at node v.

1: Communication 1:
2: for all u ∈ Nij(v) do
3: if deg(v) < deg(u) then
4: Send rij(v) to neighbor u
5: end if
6: end for
7: Computation 1:

8: Compute tij(v, V ), vtij(v, V ) and tlCCij(v)

In the case of large-scale graphs, transmitting rij(x) from a node to all its neighbors in a single
superstep can cause signi�cant delays in communication or even memory overloads that may lead to
worker failures. Speci�cally, vertices with high degrees generate substantially higher communication
overheads when sharing their routing tables compared to those with lower degrees. To address
this challenge and reduce communication costs, nodes send their routing tables only to neighboring
vertices that have a higher degree. This strategy promotes one-way communication from lower-
degree vertices to higher-degree ones. As a result, all high-degree neighbors of a node u calculate
the total contribution of edges to triangles involving u and then send this aggregated information
back to u. Using this approach, the values of tij(x, V ) and vtij(x, V ) for all x ∈ Vij are e�ciently
computed.

Algorithm 1 �rst makes each node send its routing table for the time interval [ti, tj ] to all its
neighbors. As soon as node v has all routing tables of its neighbors, it computes tij(v, V ), vtij(v, V )
and tlCCij(v).
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Algorithm 2 Community initialization process.

1: Initialization:
2: S ← V ▷ S is used for explanatory purposes to test the termination condition

3: Communication 1:
4: Each node v ∈ S sends its {ID, community ID, tlCCij} to its neighbors in S

5: Computation 1:

6: if v has the greatest tlCCij among its neighbors in S then
7: v becomes the hub of a new community C
8: S ← S \ {v}
9: else

10: v joins the community C of the neighbor with the highest tlCCij

11: end if
12: while S ̸= ∅ do
13: Communication 2:
14: Each node v ∈ S sends its {community ID} to neighbors in S with lower tlCCij

15: Computation 2:

16: if v has neighbors in C and v is not a hub then
17: if v has higher tlCCij than its neighbors in C then
18: v remains in C
19: S ← S \ {v}
20: else
21: v leaves C ▷ v starts a new singleton community
22: end if
23: end if
24: end while

4.2 Community Initialization

In this stage, we focus on initializing communities using the local temporal clustering coe�cient,
tlCCij . The underlying assumption is that a vertex with a higher tlCCij indicates a stronger
likelihood that its neighbors belong to the same community, re�ecting the tight connectivity among
these nodes.

To obtain the initial partitioning, we adopt an approach inspired by a distributed Maximal
Independent Set (MIS) algorithm [14]. The initial partitioning follows these criteria: (a) each
community forms a star structure, composed of a central node v (the hub) and a subset of its
neighbors Nij(v) as the periphery; (b) the hub is selected as the node with the highest tlCC within
the community; and (c) every peripheral node is linked to the hub with the highest tlCC among its
neighbors. Alternatively, one might simplify initialization by omitting conditions (b) and (c) and
directly applying the distributed MIS algorithm. Although this reduces computation time, it can
negatively a�ect the quality of the resulting initial partition.

Initially, each vertex forms its own community using as community ID its own node ID (hub ID).
Then, each node sends via message passing its ID, its temporal local clustering coe�cient, and its
community ID to its neighbors. Consequently, vertices with lower tlCCij change their community
ID and adopt the ID from a vertex that is a hub and has the highest tlCCij among all its neighbors.
To check that a neighbor is a hub, each node simply compares the particular vertex ID with its
community ID, and if they are the same then the node is a hub. To impose rule (c), in the next
steps, the nodes that changed community ID send their new community ID only to neighbors with
lower tlCCij . When adjacent nodes receive the new community ID, they de�ne their communities
again based on which of their neighbors have become hubs or belong to the periphery of a hub.
For example, suppose that a vertex u changed its community ID in step i − 1. In step i, node u
communicates its updated community ID to its neighbor v, whose tlCCij is lower. At step i− 1, v
identi�ed its community using the node ID of u. However, by step i, node u no longer belongs to
this community, as it resides on the periphery of another community. Consequently, vertex v adjusts
its community ID to match its own ID, acknowledging this change. This iterative process persists
until no further community adjustments occur within a step.
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4.3 Partition Optimization via WCCij

During this phase, the community partition is re�ned through an iterative process aimed at max-
imizing the WCCij(P ) score for a given partition P . The process continues until a user-speci�ed
threshold θ is reached, balancing solution quality against computational e�ciency. At each itera-
tion, every node evaluates three possible moves regarding its membership in the current community
structure. It selects the move that leads to an increase in the overall WCCij(P ) score. The possible
moves include:

1. Stay: Vertex remains at the current community.

2. Remove: Vertex is removed from the current community and forms a new singleton community.

3. Transfer: Vertex is removed from its current community and joins another community.

To determine the optimal move for every node x ∈ V , all calculations are performed in parallel.
Below, we outline the three scenarios that must be examined to identify the best move for each
vertex. Equations (18) to (20), originally established and validated in [30], have been adapted here
to suit the speci�c requirements of temporal (historical) graphs.

1. Case 1: Let P = {C1, ..., Cn, {x}} and P ′ = {C ′
1, C2, ....Cn−1, Cn}, be two partitions of the

historical graph G = (VT , ET ), and let C ′
1 = C1 ∪ {x}.

If WCCij(P
′) − WCCij(P ) > 0, then the vertex x leaves its singleton community and is

inserted into C1, creating the new community C ′
1. Otherwise, vertex x remains isolated, as a

singleton community. The equation presented above can be expressed in the following manner:

WCCij(P
′)−WCCij(P ) =

1

|Vij |

∑
y∈C′

1

WCCij(y, C
′
1)−

∑
y∈C1

WCCij(y, C1)

 =

=
1

|Vij |

∑
y∈C1

WCCij(y, C
′
1) +WCCij(x,C

′
1)−

(∑
y∈C1

WCCij(y, C1) +��������:0
WCCij(x, {x})

) =

=
1

|Vij |

∑
y∈C1

WCCij(y, C
′
1) +WCCij(x,C

′
1)−

∑
y∈C1

WCCij(y, C1)

 = Wiso(x,C1)

(18)

where Wiso(x,C1) represents the change in the score when node x that constituted a one-node
community moves to community C1. Analogously to the preceding proof, the subsequent two
cases are established in a similar manner. Therefore, for the sake of brevity, we state only the
results.

2. Case 2: Let P = {C1, ..., Cn} and P ′ = {C ′
1, C2, ....Cn−1, Cn, {x}}, be two partitions of the

historical graph G = (VT , ET ), and C1 = C ′
1 ∪ {x}.

If WCCij(P
′)−WCCij(P ) > 0, then the vertex x is removed from its current community and

forms its own singleton community. Otherwise, vertex x remains at its current community C1.
The equation presented above can be expressed in the following manner:

WCCij(P
′)−WCCij(P ) = −Wiso(x,C

′
1) (19)

3. Case 3: Let P = {C1, ...Cn−1, Cn} and P ′ = {C ′
1, C2, ....Cn−1, C

′
n}, be two partitions of the

historical graph G = (VT , ET ), where C1 = C ′
1 ∪ {x} and C ′

n = Cn ∪ {x}
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If WCCij(P
′)−WCCij(P ) > 0, then the vertex x is moved from community C1 to community

Cn. Otherwise, vertex x remains in the current community. In a manner analogous to Cases
1 and 2, we have:

WCCij(P
′)−WCCij(P ) = −Wiso(x,C

′
1) +Wiso(x,Cn) (20)

Algorithm 3 Partition optimization process. Note: Any global aggregation (e.g., WCCij(P
′)) is

described using a conceptual master for explanatory purposes and as a termination check; the process
is otherwise fully distributed. We assume a termination threshold θ. In Line 4, the mixed step is
an abstract description of the process of each node for choosing the best movement. It contains a
communication step and a computation step (mixed step).

1: Initialization:
2: Initialize converged← false

3: while not converged do
4: Mixed 1: Local movement selection
5: Each node evaluates possible movements: Stay, Remove, or Transfer , stores its best

movement in b_move and update community memberships.
6: Each node computes WCCij(y, C) for its (best movement) current community C

7: Communication 2: Local community quality

8: Each node sends WCCij(y, C) to the workers responsible for C

9: Computation 2: Community aggregation

10: For each community C, aggregate
∑

y∈C WCCij(y, C)

11: Communication 3: Global quality estimation

12: Aggregated community values are exchanged to compute WCCij(P
′) for the entire graph

partition

13: Computation 3: Termination check

14: if
WCCij(P

′)−WCCij(P )
WCCij(P ) < θ then

15: converged← true
16: else
17: Update P ← P ′ and continue
18: end if
19: end while

As can be easily inferred from the above cases, we do not compute WCCij(P
′) and WCCij(P )

from scratch. In contrast, we should calculate the WCCij(y, C) and WCCij(y, C
′) (utilizing Algo-

rithm 1) for a limited number of communities, focusing on those communities to which the neighbors
of y belong but di�er from the community of y. In addition, all the above cases must be calculated
for all nodes in Vij , and all the best moves for all vertices are stored within each node and ap-
plied simultaneously. Given the new partition after one iteration, we should check whether the
termination condition is valid. If the improvement in global quality exceeds a prede�ned thresh-

old θ,
WCCij(P

′)−WCCij(P )
WCCij(P ) ≥ θ, indicating a signi�cant change in the community structure, the

process continues with another iteration. Otherwise, if the improvement is less than θ, the process
terminates, and each node retains the community ID to which it belongs.

Calculating the exact value ofWCCij is computationally intensive, as it requires triangle counting
for every vertex � an especially costly operation for high-degree nodes. Since this computation
is repeatedly performed during the algorithm's iterations, it becomes a signi�cant performance
bottleneck. To mitigate this, we adopt an approximation proposed in [30] (see Equation 21), which
estimates the WCCij gain in constant time using simple community-level statistics: size (r), density
(δ), boundary edges (b), and a �xed global clustering coe�cient (ω). This approach signi�cantly
reduces computation time without sacri�cing accuracy.

WCCij(P
′)−WCCij(P ) = WCC ′

ijI(v, C) =
1

V
· (din ·Θ1 + (r − din) ·Θ2 +Θ3) , (21)
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where,

Θ1 =

(
(r − 1) δ + 1 + q

)
(din − 1) δ

(r + q)
(
(r − 1)(r − 2) δ3 + (din − 1) δ + q(q − 1) δ ω + q(q − 1)ω + dout ω

) , (22)

Θ2 = − (r − 1)(r − 2) δ3

(r − 1)(r − 2) δ3 + q(q − 1)ω + q(r − 1) δ ω
· (r − 1) δ + q

(r + q) (r − 1 + q)
, (23)

Θ3 =
din (din − 1) δ

din (din − 1) δ + dout (dout − 1)ω + dout din ω
· din + dout

r + dout
, (24)

q =
b− din

r
. (25)

In this context, the variables have been adapted to accommodate both the interval-based and
weighted-based variants. As previously mentioned, in the interval-based approach each edge's con-
tribution score is obtained by dividing its valid interval by the query time interval, whereas in the
weighted-based approach, each edge has a score. Accordingly, the internal and external degrees, din
and dout, are computed for each node based on the edge scores. Speci�cally, din refers to the number
(or total score) of edges that connect the node to other nodes within the same community, while
dout represents the edges that connect the node to nodes outside its community.

The parameter b denotes the community's total external-edge weight score (i.e. edges connecting
community members to nodes outside the community). When a vertex v is removed, its outgoing-
edge weight score is subtracted from b and its internal-edge weight score is reclassi�ed, since they
no longer contribute to the internal total.

Since we do not assume time intervals on the graph nodes, r denotes the total number of nodes
in the current community. The edge-density δ measures how tightly the nodes with total score r
are interconnected by normalizing the total internal-edge weight a against the maximum possible
number of ordered node pairs δ = 2 a

r2 . Finally, after computing the temporal local clustering
coe�cient tlCC(v) for each vertex v, the global clustering coe�cient ω is obtained as the average of
these values.

4.4 Discussion on the E�ciency

Regarding the e�ciency of the three-phase distributed algorithm, we provide a crude estimate in the
BSP model, aiming at highlighting its bottlenecks. In [30], although the method is not inherently
centralized, the authors provide a rough estimate of its e�ciency by assuming a centralized setting.
Assume that n = |VT | and m = |ET | are the total number of nodes and edges, respectively, in G.
Let nij = |Vij | be the number of nodes that have at least one edge active in the query time interval
[ti, tj ], and similarly, mij = |Eij | be the number of edges in this interval. Assume that dij = mij/nij

is the average degree of each vertex in Gij . Assume also that the number of processors (executors)
is p. The graph G is partitioned into p processors. For the query time interval [ti, tj ], assume that
the edge cut imposed by this partitioning of Gij between the p processors is cij and its size (in
terms of number of edges) is kij = |cij |. Finally, assume that g is the cost for sending or receiving
a message. For simplicity, we assume, similarly to the LOCAL distributed model, that g is the cost
for communicating a message irrespective of its size. g is larger than 1 and is de�ned in terms of
the unit computation time. This may cause some considerations regarding the communication of
routing tables, which are not of constant size, but it will be enough for our crude analysis. We
will not consider the cost of the barrier synchronization that depends on various parameters of the
network.

The �ltering phase is performed in a single computation superstep and takes O
(

n+m
p

)
time, as it

does not involve any communication between processes. In the preprocessing phase, we calculate the
contribution of each edge and vertex to the formed triangles. Initially, all nodes v communicate their
routing tables rij(v). Summing over all nodes in Vij , the total communication cost is proportional
to the edge cut of the partitioning of Gij of the p processors, which is O(kij). The local computation
per node needed to intersect the sorted routing tables in order to �nd the triangles is O(dij · dij),
since each node has an average degree of dij and its routing table has this size as well. Thus,

the aggregate local computation cost per processor is O
(
d2ij

nij

p

)
. Consequently, we need O(nij/p)
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per processor to estimate the contribution of edges and vertices for each triangle and compute all
quantities. Thus, the total complexity for the preprocessing phase, consisting of a single superstep,

is O
(
kij + d2ij

nij

p

)
.

For the community initialization, the number of supersteps required is O(log nij), assuming that
the e�ciency of the proposed initialization method resembles that of MIS. In fact, the proposed
method is a biased MIS that tends to choose higher weight (ltCC) nodes for the independent set.
Initially, we need O(dij) time to compute ltCCij ∀v ∈ Vij , since at the preprocessing step all
necessary calculations have been made. This contributes an O(mij/p) local computation cost per
processor only once at the �rst iteration. Then, in each iteration, each node sends its community
ID along with other O(1) information to all neighbors, which contributes a communication cost
of O(kijg) since it depends on the edge cut between the subgraphs stored in each processor. The
local computation within each node is then equal to O(dij), since the community ID with the
largest ltCC must be chosen. Thus, the aggregate cost of the community initialization phase is

O
(
log nij

(
mij

p + kijg
))

.

Lastly, in the partition re�nement phase, we assume that the number of iterations is a complexity
parameter ℓ � it doesn't seem easy to express ℓ as a function of properties of the graph, and it has
not been done even in a centralized setting. A similar assumption was made also by [30], which was
experimentally backed up as it is in our case. In each iteration, WCCij(C) must be computed for all
possible movements and for all nodes in Vij . In the worst case, for a vertex v, the WCCij(C) could
be estimated for 3dij(v) potential movements, assuming that each of its incident edges connects to
di�erent communities. Thus, for nij vertices we need O(kijg) total communication in the worst case
between processors, and O(mij) local computation distributed to the p processors, leading to a total

complexity of O
(
ℓ
(

mij

p + kijg
))

.

These rather informal but informative arguments lead to a total complexity of

O

(
n+m

p
+ kij + d2ij

nij

p
+ log nij

(
mij

p
+ kijg

)
+ ℓ

(
mij

p
+ kijg

))
simpli�ed based on the de�nition of dij to O

(
m2

ij

pnij
+ (log nij + ℓ)

(
mij

p + kijg
))

. The main di�erence

between the two variants is located in the �rst term, where in the case of t-wWCC it is O(mij/p).

5 Temporal Label Propagation Algorithm

The temporal Label Propagation Algorithm is an e�cient, distributed method for detecting com-
munity structures in graphs. Similarly to the previous section, we present two variants, one based
on weights and one based on the intersections of the intervals. The former generates edge weights
that re�ect the temporal overlap, guiding the propagation process based on total weights. The latter
preserves and uses the overlapping intervals by employing their intersection to guide the propagation
process.

5.1 temporal weighted LPA: t-wLPA

In this temporal label propagation variant, we �rst �lter the edges based on the query time interval

[ti, tj ]. For each edge e with valid time interval [t
(s)
e , t

(f)
e ], we compute its observation ratio, and

only edges with a non-zero observation ratio are retained. Then, the algorithm follows the standard
process of a label propagation algorithm. Initially, each node in the graph is assigned a unique label,
typically its own identi�er. These labels represent tentative community memberships. After initial-
ization, we move to the iterative process of label propagation. Based on experimental evaluation, we
determined a �xed number of iterations that provides stable label assignments while maintaining low
computational cost. Over this �xed number of iterations, labels are updated in parallel according a
simple rule applied on the observation ratio of the edges as discussed below.

In each communication round, nodes exchange only their current labels. However, the label is
transmitted together with the corresponding edge weight to explicitly associate the received label
with the speci�c edge-weight it came from. This ensures correct computation during label updates.
In this way, each node collects its incoming messages and sums the weights per received label. Let
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wv(l) denote the total weight contributed by neighbors of v holding label l. Node v updates its label
to the one with the maximum weight. In case of a tie, the label is selected randomly.

This process leverages a Pregel-style bulk-synchronous parallel model: at each superstep, nodes
exchange messages, aggregate them, and update labels simultaneously. After the �nal iteration,
nodes sharing the same label form a community. While LPA does not guarantee convergence to a
unique partition, in practice, it rapidly identi�es dense subgraphs.

5.2 temporal LPA with Interval Intersection: t-iLPA

In this variant of temporal Label Propagation, rather than collapsing all edge intervals into a single
score (the observation ratio), we retain the full set of edge intervals that overlap with a user-
speci�ed query time window [ti, tj ]. More precisely, we keep only the edges whose observed interval
(De�nition 1) is non-empty; that is, there exists a non-zero intersection between the edge's active
lifespan and the query interval. This constitutes the �ltering phase of the algorithm.

After preprocessing, the label propagation proceeds for a �xed number of iterations. Initially,
each node is assigned a unique community label, typically equal to its own vertex ID. During each
iteration, each node sends its current label to all neighbors, along with the observed interval that
corresponds to the edge over which the label is being propagated. This allows the recipient to
associate the label not only with its identity but also with the speci�c time span in which the
relationship was active.

Upon receiving label-interval pairs from its neighbors, each node aggregates the incoming mes-
sages by community label and collects the list of corresponding observed intervals for each label. The
aggregation step collects these messages by grouping the received time intervals according to each
community label. In other words, for each vertex, we create a map where the keys are the di�erent
labels observed among its neighbors, and the values are the lists of time intervals corresponding to
edges connecting to vertices in those labels. Thus, for each distinct label received, the node com-
putes the sum of the sizes of all pairwise intersections among the associated intervals. That is, for a
given label, all pairs of intervals are considered. This pairwise intersection sum serves as the label's
temporal score.

The node then updates its own label to the one with the highest total pairwise intersection
score. In case of a tie between multiple labels, a random tie-breaking rule is applied. This process
is repeated for a �xed number of iterations. After thorough experimentation, in both LPA variants,
and evaluation of the trade-o� between computational cost and e�ciency, the optimal number of
iterations was determined to be four.

Algorithm 4 Label propagation with interval intersection (t-iLPA).

1: Initialization:
2: Assign each node v ∈ V an initial community ID cv ← v
3: Set iteration counter iter ← 0
4: while iter < ℓ do
5: iter ← iter + 1
6: Communication 1: Label messages

7: Each node v sends to each neighbor u the pair (cv, Ivu), where Ivu is the interval of edge
(v, u)

8: Computation 1: Interval-based label scoring

9: Each node v groups received intervals by label: {(ck, [I1, I2, . . . ])}
10: for all labels ck do
11: Compute total pairwise intersection score(ck)
12: end for
13: Computation 2: Label update

14: cv ← argmaxck score(ck) ▷ Each node v updates its label breaking ties randomly

15: end while

16



5.3 Comparison of LPA Variants

The foundational paper [31] introduced the label propagation method for community detection,
claiming a near-linear time complexity based only on extensive experimental evaluation. We are
going to discuss succinctly the complexity of the proposed variants of LPA in the BSP model using
the same de�nitions as in 4.4.

Initially, the �ltering step requires one computation superstep, which is carried out in O
(

n+m
p

)
time, since no communication is necessary. The following supersteps correspond to iterations of the
LPA algorithm. In our case, the number of iterations is �xed; assume it is equal to ℓ. In each
iteration, each node sends its label to all its neighbors along with the weight or the interval of the
corresponding edge. The cost of this is equal to the size kij of the edge cut cij of the graph Gij ,
which is O(kijg). During each iteration, each processor computes the new labels of its assigned
nodes. t-iLPA has a di�erent behavior than t-wLPA in the worst case. In t-wLPA, the sum of
all weights related to each label is required. This is carried out in time proportional to the degree
of each node, contributing a total of O(mij/p). For t-iLPA, all pairwise overlaps of the intervals
corresponding to the same label must be computed within each node. This means that each node
v with degree dij(v), requires O(d2ij(v)) computation time. In the worst case, this may lead to
O(m2

ij/p) local computation time.

In total, the worst-case complexity of t-wLPA is O
(

n+m+ℓmij

p + ℓkijg
)
, while for t-iLPA is

O
(

n+m+ℓm2
ij

p + ℓkijg
)
. The two variants di�er asymptotically only on the computation side, while

the communication cost is similar. Finally, regarding the �xed number ℓ of iterations, it is well
known that LPA may never converge to a steady state since periodicity may come up (e.g., in the
case of bipartite graphs). Analysis related to the number of iterations, require assumptions that are
beyond the scope and aim of this paper.

6 Experiments

We conducted three sets of experiments to evaluate our methods for di�erent scenarios. In the
�rst set, we imposed a uniform, �xed time interval on the edges of four real-world networks � each
lacking native temporal annotations � and assessed community detection accuracy against available
ground-truth partitions. Our goal in this set was to assess the quality of the results of the algorithms
and, at the same time, look at their e�ciency in an extreme scenario where the whole graph is
queried. The second set augmented a single large real graph dataset with synthetic timestamps to
create meaningful intervals and focused exclusively on measuring runtime, as no ground truth existed
for the simulated temporal graph. Our goal was to showcase that although the graph is massive,
a small query time interval allows the e�cient identi�cation of communities. Finally, the third set
employed a synthetic graph generator to produce three networks with known community assignments
at discrete snapshots (but without continuous intervals); here, we applied some modi�cations and
evaluated their performance on these instantaneous views, aiming at evaluating the e�ectiveness of
our methods.

To evaluate how good the community detection results are, we use the Normalized Mutual Infor-
mation (NMI) [20], which is grounded in information theory. NMI quanti�es the similarity between
two partitions of a dataset and yields a value in the range [0, 1], where a score of 1 indicates perfect
alignment between the two partitions. It has been extensively used in the community detection
literature [22, 33, 36].

The experimental platform consisted of an Apache Spark 3.5.3 environment deployed on a small-
scale Kubernetes cluster [6]. To create a robust and challenging test-bed, the cluster's hardware was
intentionally heterogeneous, comprising several smaller commodity PCs alongside a single, more
powerful machine with server-grade components. For processing, the Spark application was con-
�gured with 4 executor pods, to which Kubernetes allocated 6 CPU cores and 30 GB of RAM
each. This mixed-hardware architecture leveraged Kubernetes for dynamic resource orchestration,
load balancing, and fault tolerance, thereby enabling a thorough assessment of the performance and
adaptability of both Spark and the implemented algorithms in a non-uniform environment.
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6.1 Description of Datasets

We describe the generation process of the temporal graph datasets. As previously mentioned, there
are no available temporal graph datasets with time intervals that also contain ground truth temporal
communities. This is also true for synthetic generators.

Real Datasets

Four real-world datasets [39] were utilized to evaluate the e�ectiveness of distributed community
detection algorithms. Due to the absence of temporal information, all edges in the datasets were
assigned the same time interval. This means that the query time interval spans all edges. As a
result, this set of experiments involves the whole graph, meaning that the results of our algorithms
do not di�er when compared to a CD algorithm on the initial static graph. In this manner, we are
able to test the e�ectiveness of our algorithms regarding the quality of the community partition since
we know the ground truth communities of the static graph. Additionally, we look at the e�ciency
of our methods related to a worst-case scenario where the whole graph must go through the whole
pipeline of our methods, and the �ltering is useless.

� com-Amazon: This dataset captures the Amazon product network, containing 334, 863 nodes
and 925, 872 edges. Nodes represent products, and edges indicate co-purchase relationships,
o�ering a scenario with a retail-based network structure.

� com-DBLP: The DBLP collaboration network dataset consists of 317, 080 nodes and 1, 049, 866
edges. This graph represents a collaboration network where researchers are linked through co-
authorship, making it ideal for testing triangle counting in academic and professional networks
with a moderate community structure.

� com-Youtube: Representing the YouTube online social network; this dataset has 1, 134, 890
nodes and 2, 987, 624 edges. This dataset allows us to explore the algorithms' e�ciency in
sparse networks.

� com-LiveJournal: Representing the LiveJournal blogging and friendship network; this dataset
contains 3, 997, 962 nodes and 34, 681, 189 edges. All nodes and edges belong to the largest
connected component.

Orkut Synthetic Datasets

Our second set of experiments employs Orkut [39] extended with time intervals on edges based
on dynamics that resemble its genesis, development, and decline. We �rst introduce the underlying
network data and then detail our temporal modeling procedure. The Orkut dataset captures a snap-
shot from the early years of Orkut (around 2005), encompassing 3, 072, 441 nodes and 117, 185, 083
edges in its largest connected component. Ground-truth communities are derived from user-de�ned
groups, with each connected component within a group treated as a distinct community. However,
we cannot use it to argue about the community quality due to the temporal augmentation of the
dataset. Building on this static structure, we partition the network's lifecycle into three phases and
apply phase-speci�c rules for edge creation and dissolution, thereby transforming the snapshot into a
(as much as possible) realistically evolving temporal graph. Regarding the timeline, we use discrete
time that is based on weeks, spanning 11 years for a total of 11 × 52 = 572 time steps. The goal
of this set of experiments is to explore how the query time interval impacts the e�ciency of the
methods.

Phase 1: Genesis and Viral Growth (2004− 2006) The initial phase covers Orkut's launch by
Google and its explosive, invitation-driven growth, particularly in Brazil and India. The network was
expanding rapidly as early adopters brought their social circles onto the platform. New friendships
during this era were primarily driven by in�uence and existing social structures. We simulate this
phase by considering only edge creation rules:

� Preferential Attachment (60% probability): New users are most likely to connect with exist-
ing, popular users (early adopters). This "rich-get-richer" mechanism accurately models the
in�uence of initial hubs in a growing network.
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� Triadic Closure (40% probability): The "friend-of-a-friend" e�ect is crucial. This is where a
user befriends someone they have a mutual connection with, forming a triangular relationship.
This mechanism is responsible for building dense local clusters.

Phase 2: The Community Era and Peak Maturity (2007− 2010) During this period, Orkut
was the dominant social network in its key markets. The "Communities" feature was a central part
of the user experience, driving interactions and new connections based on shared interests (hobbies,
alumni groups, etc.). The drivers for new friendships shift from pure growth to deepening connections
within established social spheres. In this case, we need both edge creation and dissolution rules:

� Community-Driven Closure (50% probability): This is the most important and Orkut-speci�c
mechanism. It simulates users meeting and befriending each other through shared communi-
ties. Since the dataset doesn't explicitly de�ne communities, we can approximate them. A
"community" can be de�ned as the ego-network of a high-degree, high-clustering node. The
rule is: (1) Select one of these "community hubs", (2) pick two random, unconnected nodes
within that hub's neighborhood, and (3) form a friendship edge between them.

� Triadic Closure (30% probability): The standard "friend-of-a-friend" mechanism continues to
operate for connections made outside of speci�c community contexts.

� Preferential Attachment (20% probability): The in�uence of global hubs diminishes as the
network becomes more saturated and activity becomes more localized within communities.

During this mature phase, friendships also begin to dissolve. We can model their duration
(lifespan) with a skewed distribution, as not all online friendships are equal, as follows:

� Short-Lived Ties (60% of newly formed edges): Lifespans are drawn from an exponential
distribution (mean 1.5�2 years), modeling the transient nature of casual acquaintances.

� Stable Ties (40% of newly formed edges): Lifespans are sampled from a normal distribution
with mean 4�5 years and low variance, re�ecting durable, meaningful friendships.

Phase 3: The Great Migration and Decline (2011− 2014) This �nal phase captures Orkut's
decline as its user base migrated to Facebook, which o�ered a more global reach and a di�erent user
experience. Engagement dropped, leading to the eventual shutdown of the service in 2014. The
rate of new friendship formation slows to a trickle. The probabilities for the creation mechanisms
remain, but the overall frequency of new edge creation is drastically reduced compared to the peak
phase. The rate of dissolving edges accelerates signi�cantly as users abandon the platform. Edges
created during this phase are assigned considerably shorter lifespans compared to earlier phases. We
explicitly model two categories of ties:

� Short-Lived Ties (60% of edges): Lifespans drawn from a normal distribution with a mean of
75 ticks (corresponding to roughly 6�9 months).

� Stable Ties (40% of edges): Lifespans drawn from a normal distribution with a mean of 240
ticks (approximately 2 years). This captures the increasing instability of connections as users
began to leave the platform.

Synthetic Datasets

In our experiments, we employ synthetic datasets generated using RDyn [32], a framework designed
to create dynamic networks that re�ect key structural properties of real-world graphs. RDyn also
provides time-evolving ground-truth communities with con�gurable quality, supporting events such
as community merging and splitting. The generator relies on three main user-de�ned parameters:
the total number of nodes, the number of iterations, and the average degree of nodes. Each iteration
represents a set of edge actions, insertions, and deletions, where the number of actions may vary
across iterations.

Each action in the RDyn-generated stream carries a timestamp indicating either an edge insertion
or deletion. We record the insertion timestamp and the deletion timestamp for each edge; since edges
are inserted and removed exactly once by the generator, these two values de�ne each edge's active
interval. As a result, we obtain edges alongside their corresponding active time intervals.
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Table 1: Amazon Network

Method NMI

Louvain 0.527
t-iLPA 0.685
t-wLPA 0.685
t-wWCC 0.697
t-iWCC 0.697

Figure 3: Execution Time on Amazon
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6.2 Experimental Results

We �rst consider the experimental evaluation of the four real-world datasets. In each case, every
edge was assigned the same �xed time interval, and we assessed the detected communities both
in terms of quality � using the Normalized Mutual Information (NMI) metric against the ground
truth � and computational e�ciency, as measured by end-to-end runtime. We �rst report the results
obtained on the Amazon network dataset.

Analysis of the Amazon Network. In Table 1 and Figure 3, we observe a clear trade-o�
between detection quality (NMI) and computational cost. More precisely, Louvain achieves the
lowest alignment with ground truth (NMI= 0.527) and is the slowest method, requiring nearly
488s. Label-Propagation variants (t-iLPA and t-wLPA) both reach an NMI of 0.685, with t-wLPA
converging faster (16.8s vs. 22s) due to the use of edge weights. WCC-based methods (t-wWCC and
t-iWCC) attain the highest NMI (0.697); t-wWCC completes in 70.1s, while t-iWCC takes 74.6s.
Overall, t-wWCC delivers the highest NMI at moderate cost (0.697 at 70.1s), t-wLPA o�ers the
fastest runtime with a small drop in NMI (0.685 at 16.8s), and Louvain is dominated on both fronts.

Analysis of the DBLP Network. Table 2 and Figure 4 jointly present the noteworthy
performance of all methods applied to the DBLP dataset. Louvain produces a modest NMI of
0.31 yet demands 545s, underscoring its substantial computation and relatively poor �t. Label-
Propagation variants (t-iLPA and t-wLPA) both register an NMI of 0.65. By incorporating edge
weights, t-wLPA slashes the execution time from 38s down to 28.2s. WCC-based methods (t-wWCC
and t-iWCC) attain the highest NMI of 0.70. Among them, t-wWCC completes in 74.5s, while t-
iWCC requires 79.7s. In brief, t-wWCC delivers the strongest alignment in a moderate timespan,
W-LPA achieves the quickest turnaround with only a minor dip in NMI, and Louvain is surpassed
on both fronts under our �xed-interval setup.

Analysis of the YouTube Network. Table 3 together with Figure 5 highlights the way var-
ious algorithms trade o� between detection accuracy and computational e�ciency. Louvain records
the lowest NMI (0.473) and is the slowest method, taking over 1139s, re�ecting its heavy modularity
optimization on this large graph. Label-Propagation methods (t-iLPA and t-wLPA) achieve an NMI
of 0.76. Moreover, t-wLPA cuts runtime to 120.7s from t-iLPA's 142.3s. WCC-based approaches,
(t-wWCC and t-iWCC) reach the highest NMI of 0.86. Between them, t-wWCC completes in 256.8s,
while t-iWCC requires 278.3s. t-wWCC attains the strongest concordance in approximately 257s,
t-wLPA o�ers the quickest turnaround at 120.7s with only a modest NMI reduction, and Louvain
trails on both fronts under the �xed-interval framework.
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Table 2: DBLP Network

Method NMI

Louvain 0.31
t-iLPA 0.65
t-wLPA 0.65
t-wWCC 0.7
t-iWCC 0.7

Figure 4: Execution Time on DBLP
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Table 3: YouTube Network

Method NMI

Louvain 0.473
t-iLPA 0.76
t-wLPA 0.76
t-wWCC 0.86
t-iWCC 0.86

Figure 5: Execution Time on YouTube
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Table 4: Live Journal Network

Method NMI

Louvain 0.338
t-iLPA 0.653
t-wLPA 0.653
t-wWCC 0.716
t-iWCC 0.716

Figure 6: Execution Time on Live Journal
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Analysis of the Live Journal Network. Table 4 and Figure 6 collectively illustrate the
relationship between the accuracy of community detection and the time required for computation.
Louvain yields the lowest NMI (0.338) and incurs the greatest cost in time (6312.8s), highlighting
its extensive computation with limited correspondence to the ground truth. Label-Propagation
approaches (t-iLPA and t-wLPA) both reach an NMI of 0.653. In addition, t-wLPA trims the
runtime from 969.8s down to 792.4s. WCC-based techniques (t-wWCC and t-iWCC) achieve the
top NMI of 0.716. t-wWCC completes in 2354.1s, compared to 2756.3s for t-iWCC. t-wWCC thus
secures the strongest match to the ground truth in a moderate timeframe, t-wLPA o�ers the quickest
completion with only a slight drop in NMI, and Louvain falls short on both measures under the �xed-
interval con�guration.

Discussion on the Results of the Real-World Datasets. In this series of experiments, the full
network was utilized because all edges shared identical time intervals, removing the need for temporal
�ltering. The outcomes clearly con�rm the anticipated trend: Label Propagation Algorithm (LPA)
methods outperform others in terms of execution speed, which aligns with their inherent propagation-
based mechanism that facilitates rapid convergence. However, while LPA o�ers a time-e�cient
solution, it often does so at the expense of result quality.

Conversely, WCC approaches, though comparatively slower, demonstrate superior performance
in terms of community detection accuracy. This trade-o� between speed and accuracy becomes
particularly evident in the YouTube dataset, where WCC-based algorithms consistently surpass
the other three methods in clustering e�ectiveness. These �ndings highlight the classic tension in
network analysis between computational e�ciency and detection precision, emphasizing that method
selection should be guided by the speci�c demands of the application � whether that be speed or
quality.

Experiments on the Orkut Synthetic Network

Before presenting the results, it is important to �rst provide a brief overview of the implementation.
What follows is a description of its main components.

1. Timeline and Graph Loading:The notion of discrete time in this implementation is based on
weeks, resulting in a total of 11× 52 = 572 time steps. The full Orkut edge list is loaded into
a graph structure.

2. Model Node Births: To ensure a realistic simulation, nodes are not assumed to exist from the
initial time step t = 0. We create a birth schedule for nodes that follows an S-curve: slow initial
growth, followed by exponential growth in Phase 1, and leveling o� in Phase 2. Each node's
birth time marks the moment it becomes eligible to form connections. While this information
could also de�ne a node's valid time interval, this detail is not required in our setting.
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3. Iterate and Activate Edges: Loop through the number of prede�ned time steps. In each time
step, a certain number of edges is activated from the static dataset, based on the edge creation
rules for the current phase. This does not involve creating new edges; rather, it determines
when the pre-existing edges from the dataset become active.

4. Assign Lifespans - Ties: Upon activation of an edge at time t, the lifespan function determines
its active duration, producing the interval [t, t + lifespan]. The lifespan parameter is drawn
according to the short-lived and stable tie distributions speci�ed in Phases 2 and 3.

By applying the lifecycle framework to the static Orkut graph, we generate a semi-realistic
temporal social network. We make two di�erent experiments on the Orkut dataset based on the
query time interval as shown in Table 5.

Table 5: Time-augmented Orkut experiment setups reporting the counts of active nodes and edges
for each query time interval.

Dataset Nodes Edges Query Interval

Orkut-Synthetic 1 2, 457, 994 21, 066, 416 [250− 300]
Orkut-Synthetic 2 2, 815, 802 47, 584, 407 [250− 400]

Runtime Evaluation Figures 7 and 8 compare processing times for two query intervals. In the
narrower interval [250,300], both t-iWCC (586.6s) and t-iLPA (591.2s) �nish fastest, with t-wLPA
close behind at 656.5s. t-wWCC requires 1533.1s, and Louvain takes 4862.3s. For the extended span
[250,400], t-iLPA leads at 1150.1s, followed by t-wLPA at 1443.9s. The incremental WCC variant
(t-iWCC) completes in 4490s and the weighted WCC (t-wWCC) in 5913.7s, while Louvain fails to
produce any measurable result within the given timeframe, as it encounters an Out Of Memory
(OOM) error during execution. Overall, t-iLPA consistently yields the quickest runtimes, WCC
methods grow in cost as the interval widens, and Louvain becomes computationally prohibitive on
larger interval.

This experiment clearly highlights the time e�ciency of the methods based on interval intersec-
tion. In particular, the t-iWCC approach, which searches for triangles by checking the intersection
of edge time intervals, bene�ts signi�cantly from edge �ltering. Many triangles are eliminated �
either because some of the respective edges do not exist in the query time interval or their time
intervals do not overlap. As a result, fewer triangles are formed, and during the iterative process
where triangle recalculations are required within each community, substantial time is saved. The
t-iLPA method exhibits a similar advantage. The number of pairwise interval intersections drops
sharply after �ltering, which directly contributes to reduced computational overhead. Overall, both
methods demonstrate strong time e�ciency due to a lower number of temporal relationships that
need to be evaluated.

On the other hand, after temporal �ltering, both methods based on the observation ratio assign a
weight score to each edge and must process all �ltered edges regardless of whether their weight is low
or high. Although all methods apply graph �ltering, t-iWCC achieves faster performance because
it forms fewer triangles. This reduces the need for repeated triangle recalculations within each
community during the iterative process, allowing it to converge signi�cantly faster than t-wWCC.

Experiments on Synthetic Datasets

Table 6 presents a summary of the two synthetic datasets along with their characteristics. We per-
formed extensive experiments using 15 di�erent query time intervals on these synthetic datasets,
and the average results from these experiments are reported below. The ground truth communities
were derived at the conclusion of each complete iteration. Speci�cally, each iteration involved the
synthetic dataset undergoing a full series of temporal changes, including edge insertions and dele-
tions. The ground truth communities were generated only at the �nal temporal change of the current
iteration. Consequently, we evaluated the entire iteration�including all temporal changes�by com-
paring it to the ground truth provided by the RDyn generator once the iteration was completed.
Therefore, the query time interval was selected to span from the start timestamp to the end times-
tamp of the current iteration, or to be close to these timestamps. We assume that the community
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Figure 7: Execution Time on Orkut for the
query time interval [250, 300]
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Figure 8: Execution Time on Orkut for the
query time interval [250, 400]
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structure remains relatively stable near the start and end timestamps, and that the edges that are
not valid within this query time interval do not signi�cantly a�ect the ground truth communities.

Table 6: Two synthetic datasets (SD1 and SD2) with the number of nodes, iterations, actions, and
edges.

Dataset Nodes Iterations Actions Edges

SD1 3000 500 15686 13404
SD2 5000 1000 251108 138349

Analysis of the SD1 Synthetic Network. Table 7 and Figure 9 illustrate how each algo-
rithm balances NMI performance against running time. Louvain yields a modest NMI of 0.323
in 66.3s, re�ecting its lower agreement and moderate computation. Label-Propagation variants
(t-iLPA and t-wLPA) achieve NMIs of 0.959 and 0.950, respectively, completing in just 3.4s and
3.5s�demonstrating very fast execution with high accuracy. WCC-based methods (t-wWCC and
t-iWCC) secure the top NMIs (0.964 and 0.963) in around 20s (20.4s and 20.6s), trading o� a small
increase in runtime for peak alignment. In summary, t-wWCC and t-iWCC deliver the best NMI
in a moderate timeframe, t-iLPA completes almost instantly with only a minor drop in NMI, and
Louvain ranks lowest on both measures in this synthetic setting.

Analysis of the SD2 Synthetic Network. Table 8 and Figure 10 reveal distinct patterns
in accuracy versus execution time. Louvain attains an NMI of 0.760 in 167.7s, indicating moderate
agreement with substantial processing. Label-Propagation approaches (t-iLPA and t-wLPA) reach
NMIs of 0.898 and 0.890, respectively, in under 4s (3.9s and 3.7s), highlighting rapid convergence
with high �delity. WCC-based techniques, (t-wWCC and t-iWCC) achieve the top alignment (0.910
and 0.920 NMI) in roughly 20s (20.4s and 18.6s), trading slightly longer runtimes for the best match.
Overall, t-wWCC and t-iWCC o�er peak correspondence in a moderate timeframe, label-propagation
methods deliver near-instant results with strong accuracy, and Louvain lags behind on both fronts.

Discussion of the Results of the Synthetic Datasets The results from both synthetic datasets
highlight clear trends in the trade-o� between accuracy and execution time across di�erent algo-
rithms. Louvain consistently performs the weakest, showing lower accuracy and requiring the most
processing time. Label Propagation variants (t-iLPA and t-wLPA) stand out for their exceptionally
fast execution while still maintaining high accuracy. WCC-based methods (t-wWCC and t-iWCC)
achieve the highest accuracy overall, with moderately longer runtimes, striking a strong balance
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Table 7: SD1 Network

Method NMI

Louvain 0.323
t-iLPA 0.959
t-wLPA 0.95
t-wWCC 0.964
t-iWCC 0.963

Figure 9: Execution Time on SD1
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Table 8: SD2 Network

Method NMI

Louvain 0.76
t-iLPA 0.898
t-wLPA 0.89
t-wWCC 0.91
t-iWCC 0.92

Figure 10: Execution Time on SD2
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between precision and e�ciency. Overall, WCC methods lead in performance, LPA methods are the
fastest, and Louvain trails in both speed and alignment.
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