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Abstract

The problem of anomaly detection on static networks has been broadly studied in various
research domains. Anomaly detection concerns the identification of objects or connections be-
tween objects that differ substantially from the rest. However, a plethora of real-world networks
are highly dynamic, in the sense that entities (nodes) as well as relations between them (edges)
constantly change. The time dimension affects critically the very definition of anomaly in these
cases, and thus care must be taken to properly incorporate it. Many solutions have been pro-
posed in dynamic/temporal networks under various assumptions concerning the modeling of
time as well as the emerging anomalies. The problem becomes quite harder when the notion of
time is introduced, since various unseen problems in the static case arise.

In the last few years, a few surveys have been conducted regarding anomaly detection in
time-evolving networks. In this survey, our objective is to give a comprehensive overview of the
current state of the art in anomaly detection in dynamic networks. We begin by providing an
overview of the different types of anomalies that can occur in dynamic networks, including node,
edge, community/subgraph and event/change point anomalies. Consequently, we classify tech-
niques and methods for anomaly detection in dynamic networks, including feature, community,
deep learning, probabilistic and tensor/matrix decomposition methods. Finally, we conclude by
outlining future research directions in anomaly detection in dynamic networks.
Keywords: Temporal/Dynamic Graphs, Anomaly Detection, Outlier Detection

1 Introduction

Anomaly detection (henceforward also referred as AD) is a broad field that deals with identifying
patterns or observations in data that deviate from what is considered normal or expected. This
process is used to identify unusual or unexpected behavior that can indicate a problem or an oppor-
tunity for improvement in various fields such as computer science, engineering, finance, and security.
AD can be applied to different types of data, including numerical, categorical, time-series, and net-
work data, and it can take many forms, including unusual patterns in data, abnormal behavior in
systems, or unexpected changes in patterns over time.

In general, a static network is represented as G = (V,E), where V is the set of vertices (entities)
and E is the set of edges (interactions/relations between entities). An edge can be directed, such
as the connection between two people where one sends an email to another or undirected, such
as the connection between two collaborating peers. Lastly, edges among nodes can be associated
with weights (e.g., frequency of interactions) or nodes can be associated to weights (e.g., specific
properties of nodes). In many cases, real-world networks are dynamic, in the sense that new edges or
nodes appear and existing edges or nodes disappear. As a result, the communities themselves change
because of the evolution of the network. The appearance of a new community, the disappearance of
an existing and the split of an existing into two or more, are examples of changes in the community
structure, which can indicate an anomaly behaviour.

In general, a temporal network can be represented either as a sequence of static graphs (snap-
shots) or as a network with time annotations on its nodes/edges that represent its time evolu-
tion. The former approach requires the specification of the size of the time window that defines
the time instances of snapshot construction. The latter representation is related to events, like
edge/node insertion or deletion or its existence interval. The time annotation may have different
aspects/interpretations depending on the application. The following three aspects have been used
in the literature [61]:
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1. Point Networks: every link among two vertices x and y, which has been created at certain
time t, can be represented as a triplet e = (x, y, t).

2. Time Interval Networks: the time-interval connection of two nodes is represented as a quadru-
plet e = (x, y, t,∆t). ∆t is the duration of the link between the vertices x and y.

3. Incremental Networks: edges/nodes can only be added and deletions are forbidden.

In what follows we provide a short description of the structure of this survey. In Section 2 we
discuss different models of time as well as frameworks for temporal networks. In the last few years,
many surveys in the field of AD in temporal networks have been published. These are discussed
briefly in Section 3. The main contribution of this paper is in Section 4, which can be summarized
as follows: 1) we provide an updated overview of the current state-of-the-art methods for AD in
temporal networks since the last years there are quite a few new related results, and 2) we further
classify the approaches regarding the types of anomalies and the techniques that have been used.
In section 5, we provide some useful, open-source libraries for anomaly detection. Furthermore,
commonly used datasets for experimentation related to the AD problem are presented in Section 6.
Finally, we conclude in Section 7.

2 Basic Notions on Temporal Graphs

In this section we discuss preliminary notions related to temporal graphs. We discern mainly the
following issues: a) A formalism for temporal graphs, b) The notion of time and c) The model of
computation.

2.1 Unified Frameworks

There is a plethora of results on temporal graphs related to concepts, formalisms as well as algo-
rithms. Research has been done on how to unify all these under a common framework.

Time-Varying Graphs (TVGs) [21] are one such notable effort to accomplish this unification.
Temporal systems can be described by a TVG G = (V,E, T , ρ, ζ) as follows:

V : A set of entities (nodes)

E : A set of relations between entities as well as an alphabet L accounting for a set of properties
that this relation could have; that is E ⊆ V × V × L.

T : All these relations are assumed to hold over a time lifespan T ⊆ T, where the temporal domain
T is assumed to be N for discrete systems or R for continuous systems.

ρ : is the presence function ρ : E × T → {0, 1}, which indicates whether a given edge is valid at
some specific time instance (a similar function can be defined for nodes).

ζ : is the latency function ζ : E×T → T, which indicates the time it takes to cross an edge given
the starting time of the traversal (a similar function can be defined for nodes).

In [21] it is shown how TVGs can cope with the notion of time in various network settings. For
example, the latency functions can be used to define journeys on such a temporal network. In a
journey we require a path from a node to another node such that all time constraints are satisfied.

Stream Graphs and Stream Links [57] is another more recent unified framework for reasoning
on temporal graphs. Note that streaming is not related to the notion of streaming as a model of
computation.

A simple undirected stream graph S = (T, V,W,E) is defined as follows:

V : set of nodes.

T : set of time instants (it can be discrete or continuous)
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W : a set of temporal nodes W ⊆ T × V

E : a set of links E ⊆ T × V ⊗ V 1

In case where there are no temporal nodes we get a stream link. We define by Tv and Te the set
of instances where the node v and the edge e are present in the graph. In [57] there is an extensive
discussion about how stream graphs can be used as a formalism to transfer various notions of static
graphs to temporal graphs.

2.2 The Notion of Time

The addition of the time dimension in graphs gives rise to temporal graphs. The notion of time may
have different aspects/interpretations depending on the application. The following aspects in order
of generality can be used:

1. Transaction Time: represents the time that an event takes place (i.e., the moment that an
edge is inserted or deleted from the graph). In the transaction time setting, updates can only
occur in an append-like manner (i.e. an update changes the most recent version).

2. Valid Time: it signifies the time period in which an object is valid [15, 16] (i.e. the time
interval that an object existed in the graph). Transaction time can be emulated in the valid
time setting by restricting updates to intervals that begin on the time moment of the update.
Valid time is the time period during which a fact is true in the real world.

3. Multiple Universe Valid Time: assumes that the history has a tree-like shape, instead of
a linear structure. This is reminiscent of the notion of full persistence in data structures [26],
in the sense that the history of the data structure is fully characterized by a tree structure.
Similarly, since history is not linear, we require its explicit representation by a history tree.
Instead of talking about time that implies a linear evolution we now talk about versions of
graphs. New version instances are created by making updates to existing versions of the history
tree. For example, let a node v of the history tree correspond to the graph of version v. An
update at version v gives a new instance that is represented by node u (with version u) that
is a child of v in the version tree. We refer the interested reader for a more detailed analysis
to [26]. The crucial point is that navigation in history requires the efficient support of nearest
common ancestor queries on the history tree. In this way, searching for a version v in a node is
equivalent to finding the version u that exists in this node and is the nearest ancestor among
all versions in the node of v. By employing an auxiliary structure for such a tree-like history
one can answer efficiently such nearest ancestor queries without further changes to the rest of
the structure. Apparently, a special case of this notion of time is the previously mentioned
valid time where the history tree degenerates to a single path. We could further generalize
this notion, e.g., by allowing merges of graphs of different versions.

3 Related Work

A very interesting analysis in AD, in both static and temporal networks, is discussed in [1]. Fo-
cusing on temporal networks, authors characterize the unusual and abrupt changes (anomalies) in
various ways. Such changes include node, linkage, community evolution and distance evolution
based anomalies. Moreover, latent embedding methods have been extensively discussed and several
applications for each of the aforementioned categories are stated. Similarly, in [52] authors catego-
rize the abnormalities based on whether they involve static or dynamic networks as well as whether
the networks are attributed or without attributes.Several methods have been investigated in order
to detect different kinds of anomalies, while benefits and cons are discussed along with different
methods for each anomaly category.

A rather outdated but important survey is presented in [37]. Three different categories of outlier
detection methods regarding temporal networks, are proposed: 1) Graph similarity-based, where
various similarity/distance metrics are utilized in order to detect anomalous network snapshots,

1⊗ corresponds to an unordered pair of elements.
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2) Eigenvector-based approaches, for the purpose of discovering anomalous localized regions, and
3) Community based-methods, where anomalous nodes are detected, by investigating community
transition trends in consecutive snapshots. One more comprehensive survey of AD methods for high
dimensional big data is discussed in [85]. Although it does not focus on network data, it presents
interesting parallel and distributed approaches proposed for big data management. Similarly, the
work in [24] gives an overview of deep learning techniques in outlier detection in time series data
and provides a list of recent real world applications.

A comprehensive analysis of outlier detection methods in temporal networks that also include a
classification of outlier types, is discussed in [78]. The authors identify four types of anomalies: 1)
Anomalous nodes, 2) Anomalous edges, 3) Anomalous subgraphs and 4) Network events/changes.
In order to detect the aforementioned types of anomalies, five methods (Community Detection,
Compression, Matrix/ Tensor Decomposition, Distance Measures and Probabilistic Methods) have
been proposed. The common methodology that is used, is a two stage strategy. Firstly, one of
the above methods is utilized in order to map the dynamic graph to a vector and then, an anomaly
detector is applied to identify the anomalies. Similarly, in [3] the dynamic AD methods are classified,
based on the ”graph summary” they use and the types of anomalies they detect. In addition, a
significant work in outlier detection in high dimensional data streams is presented in [81]. A recent
survey, based on deep learning AD methods, is proposed in [64], where an extensive analysis of
GNN (Graph Neural Networks) and graph representation techniques are discussed. Current status
and challenges in GNN architecture, for both static and dynamic networks, can be found in [53].
Moreover, in [30] a broad research on anomaly detection in multiple directions (like network traffic
anomalies, intrusion detection systems, detection methods and systems) is presented.

A very nice survey in graph/node embeddings is presented in [17]. More precisely four types
of embedding inputs and outputs are introduced. Moreover, five main embedding techniques (fac-
torization, deep learning, graph kernel, edge reconstruction and generative model), with advantages
and disadvantages for each one, are extensively described, and node/edge/graph related applications
are discussed. The aforementioned survey is very useful in our work, since most of the detection
methods we discuss in the next section utilizes graph embeddings in order to reduce dimensionality.
One more survey that describe methods for anomaly detection in social networks is presented in
[80]. A comprehensive analysis in event detection methods by tracking the change of community
structure is presented in [4]. Lastly, a general framework (SAFARI) for streaming anomaly detection
is proposed in [19]. The framework consist of four main components: 1) Data representation, i.e.,
mean and standard deviation and symbolic aggregate approximation; 2) Learning strategies, i.e.,
sliding window, landmark window, and uniform reservoir sampling; 3) Nonconformity measures,
i.e., nearest neighbors-based, density-based or clustering-based; 4) An anomaly score function. The
aforementioned paper is placed in this section because in each of the above components (as it is al-
ready described), existed strategies are combined and the type of the detected abnormality depends
on the chosen strategy. The experimental evaluation in real world datasets shows that there is not
a single method that works best in all cases.

4 Classification and Methods Description

In this section we classify anomaly detection methods in evolving networks. Based on the literature,
we can identify four different types of anomalies:

1. Node anomalies: These are anomalies that are associated with a specific node in the network,
such as a node that has a high degree of connectivity or a node that experiences a change in
its behavior with respect to various metrics.

2. Edge anomalies: Anomalies of this type occur in the connections between nodes. One
example is the sudden appearance and immediate disappearance of a new edge between two
nodes or a sudden change in the weight of an existing edge.

3. Community or subgraph anomalies: These are anomalies that occur in the formation or
structure of groups of nodes (communities) within the network; for instance, a shrunken or a
split community.
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4. Change point and event anomalies: Refers to a sudden change, instantaneous (change
point) or enduring (event), in the structure or properties of the network. This can include
changes in the number of nodes, edges, or communities, changes in the properties of individual
nodes or edges, or changes in the overall structure of the network.

Based on the surveys reviewed in Section 3 and on the most recent papers related to anomaly
detection, usually a a two-stage approach is adopted. First, the dynamic network is mapped to a
common graph representation in order to generate desired features. In the second stage, an existing
outlier detector for arithmetic data is applied and decides whether a certain type of anomaly (node,
edge, community or overall structure) exists or not. Thus, anomaly detectors act on the graph
representation, which is output from the first stage. Based on the preceding discussion, we identify
five different approaches to obtain a common graph representation and derive the generated features
from the result of these methods. In what follows, we present these approaches that in fact correspond
to the our classification:

1. Graph Feature-based methods

2. Decomposition and Compression-based methods

3. Machine/Deep learning-based methods

4. Community-based methods

5. Probabilistic Model-based methods

Table 1: Overview of the proposed temporal anomaly detection classification.

Temporal Anomaly Detection

Methods Classification Description References

Graph Feature Metrics to measure the struc-
tural features

[73, 36, 67, 72, 95, 88, 99,
50]

Decomposition and Compression Matrix/Tensor factorization and
compression techniques

[22, 48, 46, 71, 45, 41]

Machine/Deep learning Reinforcement Learning, GCN’s,
RNN’s and other Machine Learn-
ing (ML) based techniques

[31, 28, 18, 32, 87, 75, 62,
86, 43, 58, 102, 97, 77, 7,
101, 54, 83, 9, 92, 68]

Community based Track the evolution of the com-
munities

[69, 34, 5, 94, 39, 23, 65,
59, 103, 60, 35, 104, 55, 49,
70, 98, 33, 44]

Probabilistic Model Techniques based on statistical
models/characteristics

[40, 42, 12, 14, 13, 51, 100,
29, 93, 89, 90, 91]

In the next section, we describe in more detail each of the above classes and we mention some
of the most recent and interesting related research papers. Moreover, in the description of the
algorithms, we mention the anomaly type and various other characteristics.

4.1 Graph Feature-based Methods

Graph feature-based methods are used in graph analysis to extract relevant information from net-
works. This information is represented as a set of features (e.g., node centrality, clustering coefficient,
distance measures). Feature-based methods are used to transform network data into a more com-
pact and informative representation, making it easier to analyze and understand. The choice of
features can have a significant impact on the performance of algorithms; so it is important to select
appropriate features for a given problem.

A feature-based method that detects key events, is analyzed in [73], where a number of different
graph features are estimated (Betweeness, Closeness, Eigenvector centrality, PageRank, In-degree,
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Out-degree, etc). By using a vector with average values of these features, authors define the times-
tamps in which significant changes happen in the network. Compared to the NETSIMILE algorithm
[10], the presented approach aggregates metric findings utilizing a wider range of attributes and other
statistical values.

DynAnom method in [36], introduces a weighted push mechanism to calculate the PPVs (Per-
sonalized PageRank vectors), and use them in order to obtain node representations by applying
dimensionality reduction, utilizing hash functions [76]. Based on these representations, node and
graph level anomaly scores are calculated. A recent method (extended version of [66]) that focus
on detecting anomalous groups of nodes is presented in [67]. Given a multi-layer network, authors
propose a centrality-based anomaly detection approach using a multiobjective optimization tech-
nique. Finally, they utilize the ACE score function to calculate the deviations of nodes centrality,
and consequently to characterize them as anomalous.

In [72], a distribution-free framework for anomaly detection in dynamic networks is presented.
To begin with, the data representation of each network snapshot is given as a linear object. Then,
local and global topological graph summary statistics (e.g., number of nodes, edges, betweenness
centrality) of each snaphot are utilized to find the univariate characterization. Consequently, a
change point detection method, based on efficient scores, is adopted and by using the sieve bootstrap
method (estimating the distribution of a statistic of interest), authors approximate the asymptotic
distribution of the test statistic.

In [95], an anomalous event detection method in dynamic graphs, with high accuracy and speed,
is proposed. Authors classify the anomalies into two types, AnomalyS (presence of edge among two
nodes) and AnomalyW (number of appearances of each edge). By utilizing a modified PageRank
[96] metric, they define the node score functions ScoreS and ScoreW respectively. Subsequently,
they define the metrics AnomRankS and AnomRankW, by calculating the first (p′) and second (p′′)
derivative for each score function. As a consequence, the AnomRankS (similarly for AnomRankW) is
computed as a (n×2) matrix as = [p′s p

′′
s ] and is equal to ||as||1. Finally, ||a||1 = max(||as||1, ||aw||1)

is returned as the anomaly score.
The proposed method in [88], detects anomalous changes in evolving social graphs. The SeaDM

algorithm consists of two main components: ESCA (Eigenvector Spreading Centrality Algorithm)
and OEOA (Optimized Eigenvector Outlier Algorithm). The former, constructs the evolution state
of the network, while the latter detects the optimized observation vector of the evolution state. Fi-
nally, by combining these two components, the change state is evaluated and detected. An approach
called NetWalk that learns network representations incrementally in order to detect vertex/edge
anomalies in dynamic graphs, is described in [99]. By using random walks, authors construct a net-
work walk set, and consequently a novel clique embedding method is utilized. Finally, they deploy
the streaming k-means clustering method to detect if a newly arrived node (or edge) belongs to a
cluster or is an anomaly.

4.2 Decomposition and Compression-based Methods

Decomposition methods break down a complex data structure into smaller, simpler components.
These components constitute the generated features. Common examples of decomposition methods
include matrix decomposition, such as Singular Value Decomposition (SVD), eigendecomposition,
and tensor decomposition. Compression-based methods (Minimum Description Length - MDL prin-
ciple and compression techniques), aim to reduce the size of data by removing redundant information.
In this case, features are derived from the encoding cost of the graph and its substructure. Examples
of compression-based methods include principal component analysis (PCA) and the MDL principle.

A novel approach called F-FADE [22], detects anomalies of either a single type of interactions
(edges) or a batch of them with different types. By utilizing frequency factorization of the most
frequent appeared edges, they calculate the node embeddings and update them each time. Conse-
quently, for each arrived edge, an anomaly score is estimated based on the likelihood of the observed
frequencies.

[48] proposes a scalable change point detection method (LADdos) in dynamic networks. Authors
combine an already known anomaly detection method, LAD [47], with the network/spectral density
of states framework [25]. Thus, initially, LAD detects anomalies from low dimensional embeddings
(signature vector), using the singular values obtained from the SVD method applied on the Lapla-
cian matrix. Consequently, authors model the distribution of the obtained singular values utilizing
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efficient methods (e.g., the Kernel Polynomial Method), in order to scale LAD. The effectiveness of
the method is the same to LAD, but it is two orders of magnitude faster. A node anomaly detection
method that uses spectral factorization to create graph embeddings aiming at reducing dimension-
ality, is proposed in [46]. By using Procrustes analysis in each time-step, they calculate the profile
features of the last embedding and estimate the change scores for nodes between the current and
the last embedding.

In [71], they describe a change detection method, called CODEtect, to detect anomalies in node-
labeled multi-graph databases based on the MDL [8]. The gist of the method is to uncover important
network motifs that can encode the graph concisely, and then, the anomaly score can be derived from
its compression length. To achieve this, they present novel lossless encoding schemes and efficient
search algorithms. Experiments show that CODEtect outperforms GNN-based baseline methods.

A comparative study on multi-view dynamic graphs that uses tensors (with multiple slices for each
time instance) to represent network information, is presented in [45]. They apply seven different
embedding strategies combined with a moving window approach in order to estimate the profile
embedding and the change scores for each node. Among all these strategies, authors conclude that
tensor-based spectral embedding and spectral embedding based on generalized orthogonal Procrustes
Analysis [27], show the best results in detecting node-based anomalies.

An interesting approach in both community and anomaly detection in urban temporal networks,
is presented in [41]. Community detection is used to reduce data dimensionality and noise, and
at the same time to preserve the information of the topological structure. Subsequently, decompo-
sition techniques are employed to learn the network representation and further decrease the data
dimensionality. Lastly, utilizing Gaussian Mixture Models (GMM), they calculate the probabilistic
score for each point. Based on these scores, nodes are classified as anomalous or not. Experiments
exhibited that the presented method outperforms baseline approaches based on mobility and spatial
aggregation.

4.3 Machine/Deep Learning-based Methods

Deep learning methods such as Convolutional Neural Networks (CNNs) and Recurrent Neural Net-
works (RNNs) are also used for anomaly detection. They can be used in both supervised and
unsupervised modes. In supervised deep learning, the model is trained on labeled data and can be
used to classify new instances as normal or anomalous. In unsupervised deep learning, the model
is trained on unlabeled data and the reconstruction error is used as an anomaly score to identify
instances that deviate from the main trend. In this case, the NN-graph representation has a crucial
role in deriving the specific features.

[31] detect bots in Tweeter network, using a Multi-Agent method. A three layered architecture
is designed in which collector, classifier and referee agents are involved. Collectors gather, record
and send information to three classifiers. Then, classifiers (learning agents) extract the features and
by utilizing different ML algorithms classify the receiving data. Lastly, the referee is responsible
for counting the votes of the classifier agents. If the referee determines that a Twitter profile has
received a lot of votes, they will report the profile to Twitter (an anomaly) and monitor whether
the profile is banned.

A novel and recent method based on PCA (Principle Component Analysis) and machine learning
techniques, is discussed in [28]. The PCA-NN (Neural Network) algorithm propose an efficient way
to discover anomalous activities and communities in Facebook network. Using StrGNN (structural
Graph Neural Networks), an anomalous edge detection method based on the subgraph structural
changes related to the target nodes, is presented in [18]. The proposed approach consists of three
phases. Firstly, the d-hop enclosing subgraph of a target edge is extracted and node label annotation
on this subgraph is performed. Consequently, combining the GCN method (projection into embed-
ding space) with the graph pooling method (fixed size feature extraction), the importance score
for each node is calculated. Lastly, in order to obtain temporal information they utilize the GRU
model (Gated Recurrent Units) and use a context dependent negative sampling strategy. Experi-
mental results establish the effectiveness of the proposed algorithm, with no false negatives. One
more deep learning technique using Graph Auto-encoders, is described in [32]. Utilizing random
walks, authors extract the graph structures capturing the temporal information, as well. Then, by
using auto-encoders, the node embeddings are learned. In the last step, the k communities of the

7



embedded graph are detected and when the distance of a node from a community center is greater
than a threshold, the node is referred as anomalous.

Based on a dynamic deep learning architecture, authors in [87] propose a node anomaly detec-
tion method (DeepFriend), by training link features in online social networks. By introducing the
WalkPool function in the hidden layer, researchers achieve better graph performance, by finding
suitable pooling value in order to efficiently estimate the parameters in every layer. Experiments
show that the proposed approach has better performance and accuracy, when compared to Gradient
Boosting, Logistic Regression, and Support Vector machine learning approaches.

A walk-based embedding technique (Pikachu) in dynamic/streaming graphs that detect anoma-
lous edges is discussed in [75]. They emphasize on the temporal order of events in order to under-
stand and predict the network behaviour. To begin with, network is split in snapshots and then
each snapshot is traversed, in increasing time, using a temporal walk method. Then, the skip Gram
model and the GRU auto-encoder are utilized, in order to capture the short and long term temporal
dependency, respectively. Lastly, by finding the probability distribution for each node taking into
account its neighbours, the authors conclude that the smaller the probability the more likely an
edge is abnormal. Pikachu performs better than the other state of the art methods by considerably
reducing the false positive rate.

Isolation forest (IForest [62]) is an anomaly detection method in static networks that is based on
splitting a dataset in order to isolate observations. IForest is trained on a dataset by constructing a
series of isolated trees; each of these trees contains only a random subset of the data points. Each
isolated tree has to decide if an observation is an anomaly or not. An isolation Forest Algorithm
for stream data is described in [86], which utilizes sliding window semantics to address the problem
of streaming data. Each time, they consider the anomaly rate of every window to decide whether
to discard the current iForest detector. In [43], an ensemble-based online outlier detection method,
called PCB-iForest, is proposed. More precisely, two variants of existing static methods [38, 82] are
introduced, PCB− iForestEIF and PCB− iForestIBFS . For the former, authors adapt an already
existed static iForest-based method for streaming data, while for the latter, they modify a feature
scoring function to adapt it to a streaming scenario.

In [102], an edge anomaly detection method is presented that utilizes the GCN model (struc-
tural and content feature of nodes are considered). The state of the nodes over a short window is
calculated, and the output of the GCN model is received by GRU in order to find the latent state of
nodes at the next timestamp. Finally, the anomaly probabilities based on the latent state of nodes is
computed and consequently, the margin loss function is utilized in order to deal with the unlabeled
anomaly data. This method outperforms, significantly, other well-known competitors.

A deep learning method is presented in [97]. In this research work, the authors utilize an
adaptive model pool (existing deep anomaly detection methods) and look for abnormal data points
in a complex data stream. Concept-driven inference and concept drift-aware update are the two
main techniques used. While the former combines models to estimate the anomaly score, the latter,
based on the model pool contribution to the final anomaly score, updates the model pool if it is
assessed as inadequate.

A distributed anomaly detection method, which is based on a Graph Neural Network architecture,
is described in [77]. The authors propose a multi-agent system, considering a three layered IoT
infrastructure, strengthened by the GNN technology. Several experiments in real and synthetic
datasets are conducted and the proposed method seems to outperform all the existing state of the
art techniques. This method can be applied in scenarios concerning smart electricity grids, food
chains and internet of medical devices.

One more deep learning method is described in [7]. In this paper, authors perform random walks
on graph nodes to obtain the structural information and consequently feed them to an auto-encoder
in order to generate the node embeddings. Then, the anomaly score for each node/edge is estimated
based on its distance to tghe cluster centers. The more the node or edge is further from its closest
cluster, the more it is considered as abnormal. Finally, the reservoir sampling algorithm is utilized
to maintain the structure of the growing network.

[54] proposes a generic deep learning model that detects events in dynamic networks. The
proposed architecture is divided into two learning graph embedding stages, based on micro and
macro dynamics. For the former, a GCN model and the v-Att pooling operator is utilized in order
to capture dynamics at a node level. For the latter, the produced embedding is fed to a modified
RNN (LSTM). Consequently, using the t-Att pooling operator, dynamics at graph level are captured.
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Moreover, three different variants of the proposed model are discussed and experiments shows that
the presented model and its variants outperform the baselines.

A novel, change point detection method using siamese Graph Neural Networks (s-GNN) is pro-
posed in [83]. A pair of graph (snapshots) is fed to the s-GNN and the siamese encoder estimates the
two embeddings. Consequently, the two embeddings are processed by a similarity module in order
to learn the graph similarity function. Authors point out the prominence of choosing an appropriate
initialisation of the node features matrix, when the dynamic network is not attributed. Finally,
random and windowed scheme sampling mechanisms are designed for the training and validation set
respectively, for the purpose of satisfying the double objective (graph similarity function and change
point detection).

An edge anomaly detection method (AnoMulY) in multiplex networks that manage multiple
types of connections between nodes, is proposed in [9]. Each time, the GNN architecture is used in
order to learn node embeddings with the same relation type. Consequently, through the attention
mechanism, all information from different relation types are summarized in a weighted manner. Fi-
nally, in the last phase, the training process takes place by using the negative sampling approach.
Regarding the experiments, the aforementioned method shows significant results by detecting anoma-
lous behaviours in human brains, predicting diseases and disorders.

A multi-scale reconstruction method, called M-VGRAE, that detects anomalous nodes and edges
in stochastic dynamic networks is described in [92]. First, normal nodes and edges are processed
to obtain snapshots for training. In order to extract the multi scale spatial and temporal features,
they use GNN and RNN layers respectively. In the next step, the reconstruction probabilities are
estimated through the trained M-VGRAE and if the probability of a node or edge is lower than a
threshold, it is considered to be an anomaly. Experimental results in four real datasets show that
M-VGRAE outperforms the baseline methods. An unsupervised feature detection method to detect
bots (Retweet - Buster) in Tweeter network, is discussed in [68]. First, authors arrange the data as
a retweet time series and compress it in order to make it compact. Consequently, the unsupervised
feature extraction is taking place. By using deep learning techniques (LSTM encoder), they achieve
dimensionality reduction and then a density-based clustering algorithm (HDBSCAN [20]) is applied.
At the end of the HDBSCAN process, all the users that belong to huge clusters are labeled as bots.

4.4 Community-based Methods

Community-based anomaly detection methods are a type of graph-based anomaly detection that
use the structure of a network to identify abnormalities. These methods are based on the idea that
anomalies tend to be located in regions of the graph that have different topological characteristics
than the rest of the graph. As a consequence, all the data specific features are derived from the
community structure.

An event detection method based on the evolution of the community structure in temporal
networks, is presented in [69]. The authors assume that large events activate information diffusion,
which in turn affect community borders. By applying network aggregation in a certain time period,
researchers utilize the InfoMap algorithm to detect communities. Consequently, intra-community
and inter-community links are calculated in each time interval, and when the difference between
inter-community links and intra-community links is greater or equal to a threshold (mean and
standard deviation), then an event is detected. Experiments with the Enron and Boston Marathon
bombing networks, show the effectiveness of this method. Similarly, in [34], anomalous events in
graph snapshots are detected by utilizing the community boundary nodes.

An improved approach of [69], is discussed in [5]. The authors detect events by combining two
different approaches. First, like [69], researchers check communication trends among communities
calculating the inter-community and intra-community links. The second approach (community struc-
ture based) is divided into two stages: 1) Check the number of extracted communities in consecutive
time steps, examining several buckets in terms of community size and 2) track, in consecutive time
steps, the number of central nodes inspecting the ratio changes. Moreover, stages 1 and 2 can be
combined, since sometimes, the number of communities and central nodes are affected simultaneously
from events. Finally, for the initialization of the method, existed algorithms are used to detect the
initial communities and central nodes. Experiments in real datasets show that community structure
based methods are more scalable and faster than others. A relative recent approach that detects
abnormal hosts (nodes with high centrality degree), is described in [94]. In this method, authors
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focus on discovering collective abnormalities by considering community activities. This approach
consists of three steps: First, by utilizing Spark GraphX they create the graph model. Second, by
applying a well-known static algorithm, they detect all the host communities. Third, by matching
the communities in consecutive time steps, the event type for each community (merge, split, appear,
..etc) is identified and four feature types are estimated. Finally, three different anomaly types are
considered: Change in the distance of feature space utilizing the aforementioned four feature types,
change in the scale of community and change in the life-cycle of network evolution.

Utilizing co-evolution pattern mining, authors in [39] detect anomalous (target) nodes in multi-
typed information networks, i.e., heterogeneous bibliographic information network (HBIN). The
proposed algorithm consists of three steps. First, the co-evolution patterns are extracted using
relational and evolutional constraints on the dataset. Then, an existed multi-typed clustering method
is used in order to cluster the patterns. Finally, by estimating the similarity index among target
(author) and attribute (paper-count, co-author, and venue) objects, the anomaly score is calculated
and the anomalous nodes are identified.

A method that detects anomalous communities based on the community evolution in dynamic
graphs, is presented in [23]. To reduce the computational cost, they introduce the notion of graph
representatives and community representatives. Taking advantage of these representatives, in each
timestamp the algorithm identifies the predecessors and successors for each community, if any. Lastly,
exploiting the decision rules, six different types of community based anomalies are proposed i.e.
Grown, Shrunken, Merged, Split, Born and Vanished community. Experiments in both synthetic and
real datasets are conducted exhibitng the efficiency and the effectiveness of the method for detecting
anomalies. A method that detects community-based change points in snapshots, is analyzed in
[65]. In this work, three different network types are considered: 1) static, 2) semi-static and 3)
dynamic. In the first type, nodes are presented in each time slice whereas in semi-static, nodes
can be removed. In both cases, the partition method, independently of the community detection
algorithm, is constructed using the co-group network. Regarding the third type, authors use the
first two cases to calculate the parameters for an anomaly detection-based streaming method. The
experimental evaluation shows that this method is more efficient and less sensitive compared to
Generalized Louvain and GraphScope [84].

In [59], a combination of change point detection and community evolution events is proposed.
First, the network is divided into snapshots and in order to capture the network change, the change
detection range is extended to a time window instead of looking at only two consecutive snapshots.
Then, by utilizing matching community measures, the authors find the community evolution event
that occurred. Another anomaly detection algorithm, in dynamic attributed networks, is proposed
in [103]. There, a function that denotes the anomalous score is utilized. The authors use dynamic
graph clustering with a community detection model by ranking nodes based on 1) how close they
are to a dense community center and 2) the deviation from current and historical behavioral data,
in order to identify anomalies. In [60], authors utilize the sliding window technique in order to
generate multivariate subsequences and apply a modified fuzzy clustering algorithm to detect the
structure. Then, the multivariate subsequences, the optimal cluster centers and the partition matrix
are reconstructed. By calculating a confidence index, authors quantify a level of anomaly detected
in the series, and apply Particle Swarm Optimization for the problem of outlier discovery.

In addition, for the purpose of identifying anomalous events in graph streams, and by using a
novel definition of anomaly score based on the history of the actions of nodes, a community based
method is presented in [35]. In [104], a network of snapshots is constructed. The weight of each
edge is defined as the similarity score between the corresponding snapshots. Then, by detecting the
network communities, they check as to whether each community consists of similar snapshots and
whether two consecutive snapshots belong to different clusters. Based on these checks, a change
point anomaly is identified.

A novel method that detects changes in labeled and directed heterogeneous stream graphs is
presented in [55]. By using the graph substructures and GED (Graph Edit Distance), they con-
struct the network embedding. Consequently, cluster construction (using the k-Medoid algorithm)
is performed and the incoming graphs are compared to the clusters to spot potential anomalies with
respect to communities. One more recent research on the field of community and anomaly detection
is presented in [49]. For each snapshot, they use the Louvain algorithm and the LPA to detect
communities. Then, in order to discover anomalies the do the following: 1) they utilize a bipartite
graph to capture the community evolution between two consecutive time steps, and then, 2) from
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the constructed evolutionary paths, they detect possible community abnormalities. Other papers
with similar results can be found in [70, 98, 33, 44]

4.5 Probabilistic Model-based Methods

Probabilistic model-based anomaly detection methods are approaches that use probability theory,
scan statistics or distribution properties to model and to identify unusual data points. These methods
are based on the assumption that the data points that belong to the normal class follow a certain
probability distribution, while the data points that belong to the abnormal class do not.

In [40], they develop a probabilistic graph model aiming at discovering outbreaks in temporally
dependent networks. Two moving window-based monitoring strategies are developed to detect
changes in networks utilizing a random graph model. The first, is a multi-path dependent LRT, while
the second is the multivariate MEWMA control chart. Both strategies are evaluated in synthetic
and real datasets. The multi-path dependent LRT outperforms MEWMA with respect to efficiency
and effectiveness. A comparison is also conducted with the approach presented in [42]. The outcome
of this experiment shows that the proposed approach performs better.

Given a stream of edges over time, a recent approach, called MIDAS [12], that uses the Count-Min
Sketch (CMS) data structure and utilizes the Chi-squared statistic, identifies micro-cluster anomalies
and avoids false positive anomalous edges. Furthermore, an improved version of MIDAS is proposed,
MIDAS-F [14], that identifies future anomalies. Similarly to [12], authors in MStream [13] utilize the
Chi-squared statistic, but first, in order to address the problem of multi-feature edge streams, they
use a number of hash functions in two ways. They use hash functions that are applied to a single
feature (FeatureHash) as well as to all features of a record (RecordFeature) simultaneously. Finally,
they combine MStream with principal component analysis, information bottleneck or autoencoder
so that anomalies can be detected fast and efficient.

A statistical feature-based method (oddnet) to detect anomalous subgraphs in dynamic/temporal
networks, is presented in [51]. As a first step, authors map each graph to the feature space and then
in each feature time series the best ARIMA model is fitted. Consequently, the residuals of the
fitted ARIMA are considered, and robust PCA is used in order to reduce the dimensional space.
Finally, an existed anomaly detection algorithm (lookout) is used and abnormalities are discovered.
Experimental results both in synthetic and real datasets manifest the dominance of oddnet compared
to two other anomaly detection methods.

A nice method to detect changes in streams of attributed graphs is presented in [100]. To begin
with, stream of graphs are generated by a stochastic process. Then the generic graph is embedded
into a vector (dissimilarity representation), by calculating the dissimilarity among the current graph
and the prototype graphs. Consequently, as time goes by, a vector of embedded graph streams
is generated and each time a change detection process, based on the statistical hypothesis test, is
applied in order to infer possible anomalies (changes). Experimental results show that the method
is comparable to the state of the art graph stream approaches.

Both change point and localization detection is discussed in [29]. By assuming first a fixed
number of nodes, they use test statistics in order to examine different cases of change point detection.
Moreover, by utilizing the CUmulative SUM (CUSUM) statistic, they calculate the position of the
change. In addition, the framework is changed assuming that the number of nodes are not fixed.
In particular, by introducing the graphon model in combination with the CUSUM statistic, authors
detect changes in the network. Experiments are conducted in real and synthetic datasets for different
scenarios, e.g., stochastic block model. In [93], a novel statistical-based method is developed in order
to model dynamic social networks. They take into consideration the birth, death and lifetime for
both individual features and network entities. They also model the network dynamics, which enables
them to detect anomalous edges and nodes.

Utilizing the MCMC sampling method, authors in [89] estimate edge probabilities between nodes
in each snapshot. Then, by using distance measures, they compare the probability distribution
among consecutive snapshots and finally, when the score between two dissimilar snapshots is above
a threshold a change point is identified.

Utilizing the Degree Corrected Stochastic Block Model (DCSBM), the authors in [90] model and
monitor dynamic graphs that exhibit structural changes. More precisely, the goal of the proposed
framework is to detect any possible changes in the distribution of a dynamic graph sequence that is
generated from DCSBM. First, for the generated sequence of graphs, a statistic is estimated based
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on the topological characteristics of graph, e.g., connectivity of nodes. Thereafter, the mean and the
variance of this statistic is calculated, creating the tolerance region R(µ̂, σ̂2). Consequently, when a
new graph is inserted, the two proposed monitoring strategies, Shewhart and EWMA, detect sudden
large and small network changes respectively, by checking if the new statistics lies outside of the
limits of the tolerance region. Regarding the experiments, the proposed framework models a variety
of dynamic networks with structural changes, and detects relevant changes in a real dynamic system.

5 Anomaly Detection Libraries

An anomaly detection library is a collection of algorithms and tools for detecting anomalies in
data. Such libraries typically provide a set of pre-implemented algorithms for detecting anomalies
in various types of data, such as time series data, graph data, and image data. These libraries also
provide tools for data pre-processing, such as normalization and scaling, and visualization, making
it easier to understand and interpret the results of the anomaly detection algorithms. By using an
anomaly detection library, data scientists and researchers can save time and effort in developing
their own anomaly detection algorithms and can focus on analyzing and interpreting the results.
These libraries also provide a convenient and streamlined tool for working with data and performing
anomaly detection, making it easier to detect and understand anomalies in large and complex data
sets. Python and other libraries, followed by a small description, can be found below.

• Pygod [63] Pygod is a valuable resource for researchers and data scientists working with
graph data and outlier detection. It provides a convenient and streamlined tool for working
with graph data. It supports a wide range of methods for anomaly detection.

• Anomalib [2] The Anomalib library is a free and open source framework for training, deploy-
ing, and building deep-learning-based anomaly detection models. It includes a suite of tools
for comparing multiple anomaly detection algorithms on any dataset quickly and reproducibly.

• Anomalykits [74] AnomalyKits is a valuable resource for researchers and data scientists
working with time series data and anomaly detection. It provides a convenient and streamlined
tool for working with time series data and performing anomaly detection, and supports a wide
range of algorithms for anomaly detection.

• tegdet [11] TEGDET (An Extensible Python Library for Anomaly Detection Using Time-
Evolving Graphs) is a specialized library for outlier detection in dynamic networks. It is built
on top of popular machine learning and graph analysis libraries, such as NetworkX, scikit-learn,
and PyTorch, and provides various methods for outlier detection in time-evolving graphs.

6 Datasets

Datasets are commonly used in research, machine learning, and data analysis for training and
evaluating models, testing hypotheses, and exploring patterns and trends in the data. They can
be either public or private, depending on the source and the intended use of the data. Synthetic
generators and real datasets are two types that are used for different purposes in research and
development. In the next two subsections we mention some of the most significant repositories of
these two types.

6.1 Real Datasets

There is a plethora of real datasets that are used to experiment with proposed approaches. The
most of these datasets, followed by a small description, can be found below.

• SNAP (https://snap.stanford.edu/snap/) A large repository of networks of various types
among which one can find temporal networks as well. It also provides a Python API.

• SocioPatterns (http://www.sociopatterns.org/datasets/) It contains social networks
(people/animals), some of which have also temporal information.
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• ADRepository (https://github.com/GuansongPang/ADRepository-Anomaly-detection-datasets)
ADRepository is a collection of datasets, some of them suitable for anomaly detection in dy-
namic networks.

• Outlier Detection DataSets (ODDS) (http://odds.cs.stonybrook.edu/) This website
provides access to a collection of datasets for outlier detection and anomaly detection in various
domains, including dynamic networks.

6.2 Synthetic Generators

The RDyn synthetic generator for dynamic networks with communities is given in [79]. This is a
dynamic network generator suitable for modeling community dynamics. RDyn imposes power-law
distributions on the degree of nodes as well as on the community sizes and can also be parameterized
in order to plant communities that optimize totally different quality measures. The suggested
method, first off all generates the community size and degree distribution and utilizes both of them
to connect every node to a partition. Then it models network dynamics by repeatedly adding
and removing links. When RDyn recognizes a stable state (really high quality partition), it gives
an output as ground truth and generates community perturbations (splits and merges), changing
node-community connections of chosen communities.

Another synthetic generator for social graphs is described in [6]. The LDBC Social Network
Benchmark (LDBC SNB) has two components: a synthetic generator for social graphs as well as
a suite of benchmark queries. LDBC SNB is meant to be a believable look-alike of all the aspects
of a social network site. LDBC SNB includes the Interactive workload that consists of user-centric
transactional-like interactive queries, and also the Business Intelligence Workload, which incorpo-
rates analytic queries to reply to business essential queries. At first, a graph analytics workload
was conjointly enclosed within the roadmap of LDBC SNB, but this was finally delegated to the
Graphalytics benchmark project, that was adopted as a formal LDBC graph analytics benchmark.
LDBC SNB and Graphalytics joined, target a broad variety of systems of totally different nature
and characteristics. LDBC SNB and Graphalytics are intended to capture the essential options of
those scenarios while abstracting away details of specific business deployments.

Finally, in [56], the LFR Benchmark network is proposed. They utilize features of real networks
(e.g., heterogeneity), in order to generate graphs. The experimental results show that these features
contribute to a harder test of the existing methods.

7 Conclusion

The current survey provides a comprehensive overview of the current state-of-the-art in the field
of anomaly detection in dynamic networks. The increasing use of dynamic networks in various
domains, such as network security, transportation, and social networks, highlights the importance
of this problem and the need for effective and efficient anomaly detection methods. The survey
findings reveal that various techniques have been proposed to address this challenge, including
graph representation, deep learning, community and probabilistic methods.

The future of this field holds great promise, and it is anticipated that ongoing research and
advancements will lead to more effective and efficient methods for detecting anomalies in dynamic
networks. This will not only benefit various domains where dynamic networks are used but also
contribute to the overall improvement of the field. Further research in this area will play a crucial
role in addressing the challenges and in taking advantage of the opportunities in the field of anomaly
detection in dynamic networks.
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