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Abstract

We consider the problem of distributed deterministic broadcasting in radio networks of un-
known topology and size. The network is synchronous. If a node u can be reached from two
nodes which send messages in the same round, none of the messages is received by u. Such mes-
sages block each other and node u either hears the noise of interference of messages, enabling
it to detect a collision, or does not hear anything at all, depending on the model. We assume
that nodes know neither the topology nor the size of the network, nor even their immediate
neighborhood. The initial knowledge of every node is limited to its own label. Such networks
are called ad hoc multi-hop networks. We study the time of deterministic broadcasting under
this scenario.

For the model without collision detection, we develop a linear-time broadcasting algorithm
for symmetric graphs, which is optimal, and an algorithm for arbitrary n-node graphs, working
in time O(n''/%). Next we show that broadcasting with acknowledgement is not possible in this
model at all.

For the model with collision detection, we develop efficient algorithms for broadcasting and
for acknowledged broadcasting in strongly connected graphs.
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1 Introduction

A radio network is a collection of transmitter-receiver devices (referred to as nodes). Every node can
reach a given subset of other nodes, depending on the power of its transmitter and on topographic
characteristics of the surrounding region. A radio network can thus be conveniently modeled by its
reachability graph in which the existence of a directed edge (uv) means that node v can be reached
from u. In this case u is called a neighbor of v. If the power of all transmitters is the same, any

node u can reach v, if and only if, it can be reached by v, i.e., the reachability graph is symmetric.

The case of symmetric reachability graphs has received most attention in previous research. This
case can be equivalently modeled by undirected graphs assuming that communication along edges
is bidirectional. In the present paper we consider both symmetric and arbitrary directed graphs,
pointing out differences in communication efficiency in both cases. Hence we adopt the more general

model of directed graphs, considering symmetric graphs as a special case in this unified model.

Nodes send messages in synchronous rounds or time slots, measured by a global clock which indicates
the current round number. In every round every node acts either as a transmitter or as a receiver. A
node acting as a receiver in a given round gets a message, if and only if, exactly one of its neighbors
transmits in this round. The message received in this case is the one that was transmitted. If at
least two neighbors v and v’ of u transmit simultaneously in a given round, none of the messages

is received by u in this round. In this case we say that a conflict or a collision occurred at u.

One of the fundamental tasks in network communication is broadcasting. Its goal is to transmit
a message from one node of the network, called the source, to all other nodes. Remote nodes get
the source message via intermediate nodes, along directed paths in the network. (This is why such
networks are often called multi-hop.) It is assumed that there exists a directed path from the source

to any node. In the sequel we restrict attention to such graphs only.

In this paper we concentrate on one of the most important and widely studied performance param-
eters of a broadcasting scheme, which is the total time, i.e., the number of rounds it uses to inform
all the nodes of the network. There are also other measures of efficiency of broadcasting in radio

networks, such as bandwidth consumption [12], or the total number of transmissions [19].



1.1 Previous work

In most of the research on broadcasting in radio networks [1, 4, 11, 21, 27] the network is modeled as
an undirected graph, which corresponds to the assumption that the reachability graph is symmetric.
A lot of effort has been devoted to finding good upper and lower bounds on the broadcast time
in such radio networks, under the assumption that nodes have full knowledge of the network. In
[1] the authors proved the existence of a family of n-node networks of radius 2, for which any
broadcast requires time Q(log®n), while in [21] it was proved that broadcasting can be done in
time O(D +1log® n), for any n-node network of diameter D. In [32] the authors restricted attention
to communication graphs that can arise from actual geometric locations of nodes in the plane.
They proved that scheduling optimal broadcasting is NP-hard even when restricted to such graphs,
and gave an O(nlogn) algorithm to schedule an optimal broadcast when nodes are situated on a

line.

Fault-tolerant broadcasting in radio networks was investigated in [26, 29]. In [26] the authors
discussed broadcasting in the presence of permanent faults in radio networks arising from geometric
locations of nodes on the line and in the plane. [29] was devoted to the description of a broadcasting

protocol working in the presence of transient faults.

In all the above papers, the topology of the radio networks was known in advance, and broadcasting
algorithms were deterministic and centralized. (Clearly, the lower bound from [1], obtained under
the assumption that the topology is known, also holds when the topology is unknown.) On the
other hand, in [4] a randomized protocol was given for arbitrary radio networks where nodes have
no topological knowledge of the network, not even about neighbors. This randomized protocol
runs in expected time O(Dlogn + log®n). In [27] it was shown that for any randomized broadcast
protocol and parameters D and n, there exists an n-node network of diameter D requiring expected

time Q(D log(n/D)) to execute this protocol.

The above results leave unexplored the scenario of broadcasting protocols which are simultaneously
distributed and deterministic, and are to operate correctly in radio networks whose nodes have no
knowledge of the network, or even of their immediate neighborhood. Such networks are often called

ad hoc multi-hop networks. In [4] the authors established a lower bound 2(n) on deterministic



broadcasting time in such networks, even for the restricted class of symmetric networks. In fact,
they constructed a class of symmetric networks of bounded diameter, for which every deterministic
broadcasting algorithm uses time Q(n). (Later it was shown in [25] that deterministic broadcasting
time for this class of networks is the same as for the class of arbitrary symmetric networks and
is in fact equal to n — 1.) In [8] the lower bound Q(Dlogn) was established for symmetric n-
node networks of diameter D, under the additional assumption that only nodes that already got
the source message, can transmit. This result easily implies the same lower bound for the class
of arbitrary networks, without this extra assumption. More precisely, the symmetric network
constructed in [8] can be modified to give a non-symmetric network requiring broadcasting time
Q(Dlogn), even when nodes are allowed to communicate before receiving the source message.
(Such a network was constructed, and the lower bound proof was given in a preliminary version of

this paper [14]. At this time the authors were unaware of [8].)

To the best of our knowledge, the first paper to deal with deterministic broadcasting protocols
under the above scenario of ad hoc multi-hop networks was [9]. Using combinatorial tools involv-
ing polynomials over finite fields the authors constructed a broadcasting scheme working in time
O(Dﬁ% log? n), for arbitrary n-node networks with diameter D and maximum degree A. (While
the result was stated only for undirected graphs, it is clear that it holds for arbitrary directed
graphs, not just symmetric. In this case D is the eccentricity of the source, i.e., the longest dis-
tance from the source to any other node.) This result was further investigated, both theoretically
and using simulations, in [10, 7]. On the other hand, a protocol working in time O(DA log'®82 n)
was constructed in [6]. Finally, an O(DAlog®n) protocol, for any a > 2, was described in [17].
(The exponent a can be decreased to 2 if nodes know 7, and to 1 if nodes know n and A. The

protocol works for arbitrary directed graphs.)

While the above algorithms are efficient for small values of D and A, their execution time becomes
larger than quadratic in n, if these parameters are linear in n. More efficient broadcasting protocols
were constructed in [20]. However, radio networks considered there were quite restrictive: the
authors considered the situation when nodes are situated on a line, and every node can reach all
nodes within a certain distance. Deterministic broadcasting in networks of unknown topology for

models other than radio communication have been studied in [3, 23].



1.2 Models

In many applications, nodes of a radio network are mobile, and hence the topology of the network as
well as its size may change over time. Hence it is important to design algorithms that do not assume
any knowledge that nodes may have about the network, and which nevertheless work efficiently for

arbitrary networks.

In this paper we study execution time of broadcasting algorithms that are deterministic and dis-
tributed, and work in arbitrary ad hoc radio networks, i.e., radio networks of unknown topology
and size. Thus the initial situation is that of complete ignorance concerning the network: the a
priori knowledge of every node is limited to its own label. For simplicity we assume that labels
are distinct integers between 1 and n, for n-node networks, but all the arguments hold if labels are
distinct integers between 1 and Z = O(n). (The existence of distinct labels is necessary. If the
radio network is anonymous, it is clear that deterministic broadcasting cannot be done even in the
4-cycle.) We study the general case when networks can be arbitrary directed graphs, and also the

more restrictive scenario of symmetric graphs, as in [1, 21, 27].

If all the necessary information about the network is available to nodes, time of broadcasting can
be known in advance and thus all nodes can be aware of the termination of broadcasting as soon
as it is completed. A different situation occurs in our setting. Since even the size of the network
is unknown, broadcast can well be finished but no node need be aware of this fact. Consequently,
we study the following two communication tasks: In radio broadcasting (RB) the goal is simply
to communicate the source message to all nodes. In acknowledged radio broadcasting (ARB) the
goal is to achieve RB and inform the source about it. This may be essential, e.g., when the source
has several messages to disseminate, and none of the nodes should learn the next message until all

nodes get the previous one.

We assume that the algorithm starts in round 1 and the current round number is indicated by the
global clock. (A discussion of differences between this scenario and the situation when nodes have
local clocks that tick at the same rate but may start in different rounds, can be found in [24]). An
algorithm accomplishes RB in ¢ rounds, if all nodes know the source message after round ¢, and no

messages are sent after round ¢. An algorithm accomplishes ARB in ¢ rounds, if it accomplishes



RB in ¢ rounds, and if, after round ¢, the source knows that all nodes know the source message.
It should be noted that if ARB is accomplished after O(t) rounds then a more demanding goal of
additionally informing all nodes that RB is accomplished can also be achieved in O(t) rounds: the

source can simply broadcast the information done after learning it.

Since nodes are initially ignorant of the network, it is not surprising that efficiency of broadcasting
depends on how fast they can acquire some knowledge of it. Our algorithms are adaptive, i.e., a
node can schedule its future actions on the basis of its local history. A node can obviously gain
knowledge from previously obtained messages. There is, however, another potential way of learning
useful information. The availability of this method depends on what exactly happens during a
conflict, i.e., when u acts as a receiver and two or more neighbors of u transmit simultaneously.
As mentioned above, u does not get any of the messages in this case. However, two scenarios are
possible. Node u may either hear nothing (except for the background noise), or it may receive
interference noise different from any message received properly but also different from background
noise. These two scenarios are often referred to as the absence (resp. availability) of collision
detection (cf., e.g., [4]). Which of the two scenarios occurs in a particular situation may depend
on technological characteristics of the transmitter/receiver devices used by the nodes. A discussion
justifying both scenarios can be found in [22, 4]. We will see that efficiency and even feasibility of

a particular communication task are significantly influenced by the choice between these scenarios.

We briefly discuss how to relate these considerations to the OSI layers ([33]). Our algorithms are
mainly relevant to what is done at the Network Layer. No routing of packets is necessary which
makes implementation of the developed algorithms especially simple. Nodes just need to decide
whether to transmit or not at a given step. Transmissions of packets are handled by the Data
Link Layer. We do not consider the possibility of transmission failures, hence no dialog among
senders and receivers to schedule retransmissions is carried out at this layer. A collision with some
other packet is the only possible reason that a packet cannot be received. If such collisions can be
physically detected then this is managed by the Data Link Layer. It is the Network Layer which

reacts to collisions because it is solely responsible for scheduling of transmissions.



1.3 Overview of results

Model without collision detection.

Our main results are in this model. We first give an algorithm which performs radio broadcasting
for all symmetric graphs in time O(n), where n is the number of nodes in the graph. While it is
not difficult to design such an algorithm assuming that nodes know their neighborhood, it should
be recalled that we do not assume this knowledge and we do not even assume the knowledge of
any bound on network size. In coping with this total ignorance of the network, the main problem
becomes assuring that every node has learned its complete neighborhood. Since the lower bound

Q(n) from [4] holds for the same model, our algorithm is asymptotically optimal.

Our linear-time algorithm should be contrasted with the lower bound Q(Dlogn) from [8]. For
D € ©(n) this gives lower bound Q(nlogn). However, this lower bound is obtained assuming that
only nodes that already got the source message can transmit, while our algorithm makes heavy
use of preprocessing in which uninformed nodes transmit control messages. On the other hand, as
mentioned in Section 1.2, this lower bound can be modified to hold for general algorithms but then
the network requiring long broadcasting time is found in the class of arbitrary directed networks,

and not in the restricted class of symmetric networks for which our algorithm is designed.

For arbitrary directed graphs we give a broadcasting algorithm running in time O(n''/6). Tt is
based on a combinatorial idea using Vishkin’s deterministic sample [34]. It should be noted that
after publication of the preliminary version of this paper [14], a series of faster broadcasting al-
gorithms have been proposed, including one constructive algorithm with execution time O(n3/ 2)
[15], and three non-constructive algorithms based on probabilistic methods with execution times
O(n®/3log/® n) [18], O(n3/%y/logn) [31] and O(nlog?n) [16]. The algorithm from [15] used the
theory of finite fields, similarly as [9], while the above non-constructive algorithms used the concept

of a selective family that is introduced in this paper, see section 2.2.

All the above algorithms (including the O(n''/6) algorithm presented in this paper) should be
contrasted with algorithms cited in Section 1.1 whose efficiency depends on the eccentricity of the
source and on maximum degree of the graph. The previously mentioned algorithms were designed

in a layer-by-layer fashion, guaranteeing a given upper bound on time spent between informing



layer ¢ (the set of nodes at distance i from the source) and layer i + 1. As opposed to this strategy,
our algorithm (and its later improvements cited above) guarantees a certain rate of the number of
nodes learning the source message per time unit. Such algorithms give good time guarantees (in
terms of n) for any n-node network but these guarantees are not necessarily improved for networks
of small source eccentricity or small maximum degree. On the other hand, the other algorithms,
efficient for such networks, give poor performance guarantees for n-node networks in the worst case.
Thus the qualities and drawbacks of both groups of algorithms are, in a sense, orthogonal, and the

choice of a suitable algorithm should depend on the expected application.

Our last result in the model without collision detection is an impossibility result. We show that
no deterministic algorithm can perform acknowledged radio broadcasting in this model, even for

symmetric graphs.

Model with collision detection.

For the class of strongly connected graphs we show a radio broadcasting algorithm working in time
O(n-ecc), where ecc is the eccentricity of the source in the graph. We also observe how the collision
detection capability can be used to code messages. We show a simple scheme that broadcasts a
message of size [ in time O(l - ecc), hence it is an asymptotically optimal algorithm to broadcast

messages of size O(1), in arbitrary graphs.

The impact of collision detection is even stronger for acknowledged radio broadcasting. While this
is an impossible task without this capability, availability of it permits to perform ARB rather fast.
For symmetric graphs we show an algorithm working in time O(n) for n-node graphs. If the graph
is non-symmetric, in order to make ARB possible, it must be at least strongly connected. For such

graphs we show an algorithm for acknowledged radio broadcasting working in time O(n - ecc).

While we show an asymptotically optimal broadcasting algorithm for ad hoc symmetric networks
in the absence of collision detection, the main open problem yielded by our results is that of finding

such an algorithm for arbitrary ad hoc networks, with or without collision detection.

The paper is organized as follows. In section 2 we present our results assuming no collision detection

and in section 3 we show how the complexity of broadcasting changes when this capability is added.



2 The model without collision detection

In this section we consider broadcasting in the model without collision detection, similarly as, e.g.,
in [4]. Thus, if at least two neighbors of u transmit in a given round, the effect at u is identical as

if none of its neighbors transmitted.

2.1 Radio broadcasting in symmetric graphs

Algorithm EXPLORE-AND-EXPAND

The algorithm works for every symmetric graph in time O(n), where n is the number of nodes. In
every round, at most one node acts as a transmitter and all other nodes act as receivers, hence
collisions are avoided. The algorithm works in phases, numbered by consecutive positive integers.
Every phase starts in the round following the end of the previous phase. Phase k lasts 7 - 2F~!
rounds divided into 3 stages. Stage A consists of 257! rounds, stage B consists of 2¥ rounds, and
stage C consists of 2511 rounds. Let L be the set of nodes with labels 1,..., 2¥, and let G}, be the
connected component of the network containing the source and induced by Ly, if the label of the

source is at most 2¥. Otherwise, let G4, be the empty graph. The following invariant Inv will be

maintained after phase k, for any positive integer k.

e A spanning tree T} of Gy and an Eulerian cycle Cy on this tree are constructed.

Nodes on the cycle are labeled by consecutive positive integers and each node knows the

number(s) assigned to it in this enumeration. These numbers are called k-tags of the node.

Every node in Gy knows the labels of all its neighbors in G.

Every node in GG}, knows the source message.

Assume that the invariant is maintained after phase £ — 1 of Algorithm EXPLORE-AND-EXPAND.

We describe phase k& and show that the invariant is maintained after it as well.

Stage A. Rounds in stage A of phase k are numbered by integers 261 41,..., 25=1 42%=1_ In round



number j of stage A the node with label j acts as a transmitter and sends a message containing its

label.

Stage B. Rounds of this stage are numbered by integers 1,..., 2¥. A node in the cycle Cj_; is called
active in a given round of stage B if it has heard a message in stage A or in an earlier round of
stage B. An active node acts as a transmitter in every round of stage B whose number corresponds

to its k-tag. In such a round the node sends a contact message which is a fixed single-bit signal.

Stage C. If the source becomes active during stage B, it initiates stage C. At the beginning of this
stage every node v knows its neighborhood N, in Gi. In this stage a token initially situated in the
source explores G in a DFS manner, and constructs a spanning tree T} of this subgraph and an
Eulerian cycle Ci, on this tree. The token carries the source message and a counter, initially set to
1, which is incremented by one after each move. We use an idea similar to that from [2] in order

to limit the token’s moves only to edges of the spanning tree.

Every node v maintains a list ), containing the set of its neighbors in Gy, which were not yet visited
by the token. @, is initialized to N,. Whenever v gets the message visited from some neighbor

w, or whenever v gets the token from w, node v removes w from the list @, .
When v gets the token with counter ¢ then:

If Q, = 0 then

e v assigns itself k-tag ¢ + 1;
e v sends the message ( label(v), visited );

e v sends the token with counter ¢+ 1 to the node w from which it got it for the first time (by

sending a message ( token, c+1, label(w))) .

If Q, # 0 then

e v assigns itself k-tag ¢ + 1;
e v sends the message ( label(v), visited );

10



e v sends the token with counter ¢ + 1 to the node w with the smallest label in the list Q.

In both cases both messages are concatenated and are sent in a single round.

This concludes the description of stage C and of phase k£ of Algorithm EXPLORE-AND-EXPAND.

Lemma 2.1 After phase k of Algorithm EXPLORE-AND-EXPAND the invariant Inv is maintained,

for any positive integer k.

Proof: After stage A every node in Gy knows its neighborhood in Gy. Indeed, it knows its
neighborhood in Gi_; after phase k — 1, and learns about the remaining neighbors in Gy during

stage A of phase k.

If there are nodes in Gy outside of G_1, some node in the cycle Cj_1 is active in the beginning of
stage B. The length of this cycle is at most 2(2°~! — 1) hence at the end of stage B every node in
the cycle, in particular the source (if Gj, is not empty), is active. In stage C the moves of the token
form the eulerian cycle Cy of a spanning tree T}, of the subgraph Gj. Since all nodes of Gy, are

visited by the token, they all learn the source message. All nodes get their k-tags in the process. O

Theorem 2.1 Algorithm EXPLORE-AND-EXPAND performs radio broadcasting in time O(n), in

any n-node graph.
Proof: Let k be such that 281 < n < 2k Tt is enough to show that

1. After phase k no messages are sent;

2. After phase k all nodes of the network get the source message.

Indeed, (1) guarantees that the algorithm stops and its duration is at most

k
Y727t <728 < 14,
=1

11



while (2) guarantees that radio broadcasting is accomplished.

In order to prove (1) notice that G, = G, 41, for all r > k. Consider any phase r, with r > k. There
are no nodes sending messages in stage A. Hence no messages are sent in stage B. Consequently

the source does not become active in this stage and no messages are sent in stage C.

In order to prove (2) consider phase k (disregarding everything that happened previously). Since

G, is the entire network, (2) follows from Lemma 2.1. O

It should be noted that although Algorithm EXPLORE-AND-EXPAND accomplishes radio broacasting
after O(n) rounds, none of the nodes is aware that the process is finished, i.e., acknowledged radio
broadcasting is not achieved. This is not accidental: we will prove later that this task is impossible

to achieve in the absence of collision detection.

2.2 Radio broadcasting in arbitrary graphs

We start with a simple algorithm, working in time O(n?) for any n-node graph, and then present

a more subtle algorithm with complexity O(n'!/6).
Algorithm SIMPLE-SEQUENCING

The algorithm works in phases numbered by positive integers. Phase k consists of 2¥ segments,
each consisting of 2* rounds. Rounds in each segment are numbered by integers 1,...,2%. (This
number should not be confused with the global number of the round.) The first segment of phase
1 starts in round 1, every segment of a phase begins in the round following the end of the previous
segment, and phase k+ 1 begins in the round following the end of phase k. Hence every node knows
to which segment of which phase the current round belongs and what is the number of this round

in this segment.

Every node acts as a transmitter in exactly one round (after getting the source message), in all
other rounds it acts as a receiver. A node acting as a transmitter sends the source message. In
every round at most one node acts as a transmitter, hence collisions are avoided. The following

schedule is used. Consider a node with label 7 that got the source message in round r. The node

12



waits till the first round 7' > r whose number in its segment is i and acts as a transmitter in this

round.

Theorem 2.2 Algorithm SIMPLE-SEQUENCING performs radio broadcasting in time O(n?), in any

n-node graph.

Proof: Let k be such that 25~ < n < 2*. Since phase k lasts 4% rounds, it is enough to show that

1. After phase k no messages are sent;

2. After phase k all nodes of the network know the source message.

Assertion (2) follows from the fact that a node at distance d from the source gets the source message
in a round of the dth segment of the kth phase, at the latest. (This is easily proved by induction
on d.) Since d < n —1 < 2¥ — 1, it follows that every node will act as a transmitter in a round of

the last segment of phase k, at the latest. This implies assertion (1). O

Our next algorithm improves on the time complexity of Algorithm SIMPLE-SEQUENCING by using
two essential tools: one is the notion of k-selective families, and the other is that of deterministic
sample, due to Vishkin [34]. Using these tools we will show that radio broadcasting can be done in

time O(n!!/%), for arbitrary n-node graphs.

Let [a] = {1,2,...,a}. A family F of subsets of U is said to be k-selective for the set U iff for any
X CU, |X| <k, there is a set Y € F satisfying | X NY| = 1.

We will construct a small k,-selective family for the set [2™], with large k;,. The crucial tool is that
of a deterministic sample, originally introduced by Vishkin [34] and used successfully in parallel
string-matching. Intuitively speaking, a deterministic sample allows to identify succinctly a single
object from a given subset. Denote by P,(m) the family of all subsets of cardinality r of [m]. A

deterministic sample with parameters r, m is a member of the set

DetSamples(r,m) = {(D,a) : D € P,(m), a € {0,1}"}.

13



For A = (D,a) € DetSamples(r,m) define STRINGS(A) as the set of all binary strings of

length m whose sequence of bits on positions in D, read in increasing order of indices, equals a.

Lemma 2.2 /deterministic-sample lemma/, [34/

The family {STRINGS(A)} : A € DetSamples(r,m)} is 2"-selective for the set {0,1}™.
Proof: Let X be a set of at most 2" binary strings of length m for r > 1. A deterministic sample
(D, a) satisfying |[STRINGS(D,a) N X| = 1 is constructed by the following halving strategy.
Initially set X' = X, D =0, a = empty-string.

Then repeat the following 4 operations until | X'| = 1:

1. find the first ¢ € [m] such that two strings in X' differ on the position i;
2. take b € {0,1} which minimizes | X' N STRINGS({i},b)|;

3. D := DU{i}; @ := a-(b); (dot means concatenation)

4. X' := X'nSTRINGS({i},b).

If |D| < r then we add to D aribitrarily » — |D| extra positions and add to « the symbols corre-

sponding to these extra positions in the only string of X".

There are at most r iterations, since each time we halve the set X’. It follows from the construction

that |[STRINGS(D, ) N X| = 1. 0

Lemma 2.3 |DetSamples([m/6],m)| is O(25™/6).

Proof: We estimate the number of deterministic samples A = (D, a). There are 2Im/6] possible

strings « and ([m"/lm) possible subsets D. By the Stirling formula we have, for some constant c:

( m >< m” (68 - (20T
<c- ~ =c- (65 (— :
[m/6] (mym/6 . (m(1 — %))m(l—g) 6—1
Since 67 - (g)% < 223, we get ([m"/ls]) = 0(23™), which proves the lemma. |

14



Lemma 2.2 for = [m/6] and Lemma 2.3 yield the construction of a 2["/6]_selective family of size
O(25™/6) on the set [2™], for any integer mn, in view of the natural bijection between {0,1}™ and

[2™]. For any positive integer m, fix such a family F,, and let f,, = |F,| and k,,, = 2["/6],

During the execution of the broadcasting algorithm every node of the network is in one of the
following states: uninformed (a node has not received the source message yet), active (a node has
the source message and acts as a transmitter in rounds prescribed by the algorithm), and switched-
off (a node has the source message, but it remains silent till the end of the algorithm). A node that
is in state uninformed (active,switched-off) is simply called uninformed (active, switched-off). All
nodes (apart from the source that is initially active) are initially uninformed. When an uninformed
node gets the source message it becomes active. Some time after all neighbors of an active node
learn about the source message, the active node becomes switched-off. The exact time when an

active node becomes switched-off is defined by the following procedure.
Procedure m-SEGMENT

Let Fi,...,Fy, be an arbitrary enumeration of F,,. The procedure works in k,f;, + 2™ rounds
and consists of two parts: the head composed of k&, consecutive sequences, called windows, each of
fm rounds corresponding to the appropriate sets F;, followed by the tail composed of 2™ rounds.
In any round of the head, corresponding to set Fj, every active node with label [ € F;, acts as a
transmitter and sends the source message; all other nodes act as receivers. In the /th round of the
tail, the active node v with label [ acts as a transmitter, sends the source message and becomes

switched-off; all other nodes act as receivers.
Algorithm SELECTIVE-BROADCASTING

The algorithm works in consecutive phases numbered by non-negative integers. At the beginning of
phase 0 all nodes (except the source which is active) are uninformed. Phase m consists of [2™ /k,, |

consecutive calls of procedure m-SEGMENT described above.

A node v is called an m-node if there exists a directed path from the source s to v, whose all nodes,

including s and v, have labels at most 2.

15



Lemma 2.4 After phase m of Algorithm SELECTIVE-BROADCASTING all m-nodes are switched-off.

Proof: We prove the lemma by induction on m. When m = 0 the lemma is true, since either the
set of 0-nodes is empty (the source s has a label greater than 1) or the source s has label 1, and
it becomes switched-off just after the execution of the tail of procedure 0-SEGMENT. Assume the
lemma is true for all 0 < m' < m. By the inductive hypothesis, all (m — 1)-nodes are switched-off
at the beginning of phase m. Consider a fixed call S of procedure m-SEGMENT in phase m. We
show that the number of active m-nodes at the beginning of the tail of S is at least min(k,, z),
where z is the total number of m-nodes that are not switched-off yet. (This implies that after
[2™ [k, ]| calls of the procedure all m-nodes become switched-off.) Consider two cases. If at the
beginning of some window in S the number of active m-nodes is larger than k,,, all these nodes
will be also active at the beginning of the tail of S. Otherwise, we show that in each window the
number of active nodes increases, in view of k,,-selectivity of F,,. Indeed, fix a window, and let A
be the set of those active m-nodes at the beginning of this window that are adjacent to uninformed
m-nodes. Hence |A| < k. If A is empty then there are no uninformed m-nodes left. Assume
A # . Consequently, in some round ¢ of the window there is exactly one node z € A which acts as
a transmitter and sends the source message. Consider a node v which was an uninformed neighbor
of z at the beginning of the window. Three situations are possible: (1) v became active before
round ¢: in this case the number of active nodes increased, (2) v was uninformed before round ¢
and z is the only node transmitting in round ¢: then v becomes active in round ¢ and the number
of active nodes increased, (3) some other node y transmits in round ¢: this node must have become

active in some round of the window before round ¢, and hence the number of active nodes increased.

Hence in each window the number of active m-nodes increases, and consequently at the beginning
of the tail of S there are at least min(k,,, z) active m-nodes. As observed above, this concludes the

proof.

Theorem 2.3 Algorithm SELECTIVE-BROADCASTING performs radio broadcasting in time O(nll/ﬁ),

in any n-node graph.
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Proof: Let m* be such that 2™ ! < n < 2™". By Lemma 2.4 all nodes know the source message
after phase m* and no messages are sent after this phase. Phase m lasts (K., | Frn| +2™) - [2™ /K |
rounds. Since |F,,| = O(2°™/6), k,, = O(2™%) and O(n) = O(2™"), this implies that the total

time of execution of phases 0 to m* is O(n''/6). O

Similarly as in the case of Algorithm EXPLORE-AND-EXPAND for symmetric graphs, in the case
of Algorithms SIMPLE-SEQUENCING and SELECTIVE-BROADCASTING, none of the nodes is aware
that the process is finished, i.e., acknowledged radio broadcasting is not achieved. In what follows

we will show that ARB is in fact impossible to achieve without collision detection.

2.3 Infeasibility of acknowledged radio broadcasting

We conclude this section by proving that in the absence of collision detection acknowledged radio
broadcasting cannot be accomplished, even for symmetric graphs. In order to do so we need to
define precisely an ARB-protocol. We want to capture the intuition that the behavior of any node
in any given round depends only on its local history, this history consisting of the node’s label and
all messages previously received by it. Moreover, at the termination of an ARB-protocol, the source

must be convinced that all nodes got the source message, and this conviction must be correct.

We first define an input in round ¢. This is either a sequence (¢, (t1,m1), ..., (tx, mg)), Or a sequence
(t,o,(t1,m1), ..., (tx,mg)) where t; < --- < t < t are positive integers, o is an arbitrary finite
binary string and m,; are arbitrary messages (coded as finite binary strings). The intuitive meaning
of an input is the following. The input of a given node v # s in round ¢ is the entire information
v obtained from its neighbors before this round, during the execution of the protocol, together
with the number of the current round, read on the global clock. Integers ¢; are rounds preceding
t in which exactly one of v’s neighbors acted as a transmitter (in other rounds v could not hear
anything), and m; is the message transmitted by this unique neighbor in the respective round.
The input of the source (in any round) contains, moreover, the source message o. Hence the total

knowledge of a node in a given round consists of its input in this round, and of its label.

Let Z denote the set of all inputs and N the set of all positive integers. Let p, 7, 8, ¢ and w be
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special symbols whose meaning will be specified below. Let M be the set of couples (7,m) and let

K be the set of couples (¢, m), where m is an arbitrary finite binary string.
An ARB-protocol is a function

P:IxN = ({p}UM) x ({w} U{8} UK).

P(1,1) is the output of the protocol P in round ¢ at a node with label [, if the input of this
node in round ¢ is I. This output is a couple (Pi(I,1),P2(I,1)), where Pi(I,l) € {p} UM and
Po(1,l) € {w}U {6} UK. Pi(I,l) represents the decision of the node how to act: it is either p
(act as a receiver) or (7,m) (act as a transmitter and transmit message m). Ps(I,l) represents
the state of knowledge of the node. For any node, it is either § (I am yet uninformed), or (¢, m)
(T know the source message and I think it is m). Additionally, if s is the label of the source, the
value Py (I, s) can be w: if I is the input of the source in round ¢, then Py (I, s) = w means that the

source considers RB to be finished by round t.

The protocol P achieves ARB by round ¢, if the following two conditions are satisfied:

e Py(I,,s) = w, where s is the label of the source and I is the input of the source in round ¢.

e for any round #', if Po(Js,8) = w, where J; is the input of the source in round #', then
Pa(Jy,v) = (¢,0), where J, is the input of the node with label v in round #', for all labels v
of nodes other than the source, where o is the source message (included in the input of the

source).

The above formalism captures the property that ARB is accomplished by round ¢ if, in round ¢,
the source considers RB to be accomplished, and if, in any round, such a conviction of the source

implies that RB is indeed accomplished by this round.

The following result states the infeasibility of ARB, even in the class of symmetric graphs.

Theorem 2.4 For any ARB-protocol P there exists a symmetric graph on which P is not correct.
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Proof: Fix an ARB-protocol P and fix two distinct source messages ¢’ and o”. Let ¢’ (resp. t”)
be the first round in which P completes ARB on the 1-node graph consisting only of the source
s, if the source message is o’ (resp. ¢”). Let t = max (¢,t"). Thus ¢ is the time after which the
source realizes that it is the only node of the network, if the source message is o’ or ¢”. The idea

of the proof is to construct a labeled graph G with at least two nodes, for which

e some nodes do not get the source message after ¢ rounds;

e the input of the source during the first ¢ rounds is the same as in the 1-node graph consisting

of the source, i.e., the source does not get any messages in the first ¢ rounds,

assuming that the source message is o’ or o”.

Then, the protocol P working on the graph G will induce the source to falsely conclude that ARB

is accomplished after ¢ rounds.

The graph G has 2% + 4t + 2 nodes and is defined as follows. The set of nodes is V = {a,b} U
X, where X has size 22 + 4¢ and contains the source s. The set of directed edges is E =
{(a,2), (z,a),(b,z),(z,b) : = € X}, ie., the graph is symmetric. Choose any node s € X as
the source. Labeling will be defined below and depends on the protocol P. Intuitively, we want to
label nodes in such a way that a and b, the only neighbors of s, either both act as transmitters or
both act as receivers in the first ¢ rounds of protocol execution. This is the reason for constructing
a graph with so many nodes (we find the appropriate labels for a and b by a halving strategy) and
it is the main difficulty of the proof. This difficulty is aggravated by the fact that nodes a and b
have to behave identically in spite of the possibility that nodes in X, including the source, may

spontaneously send some messages that may be received by nodes a and b, in these early rounds.

Assign label 1 to s. Let L denote the set of integers {2, ...,2% + 4t + 2}, let T* denote the set of
integers {1,...,t}, and let € denote the empty sequence. For any round ¢ € T, let I; denote the
input I(7,€) (of nodes other than the source), and let J; , denote the input I(4,0,€) (of the source),
where o is a source message. Hence I; (resp. J;, ) are inputs in round 4 corresponding to the
situation when a node other than the source (resp. the source, given source message o) did not get

any messages until round 1.
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Let T' be the set of those rounds r < ¢ for which P;(J,,,1) € M, i.e., those rounds in which
the source acts as a transmitter if it has not received any message yet, and if the source message
is o/. Let T] be the set of those rounds r € T" for which there exists a label ¢, € L such that
Pi(I,,c.) € M. Le., T} is the set of those rounds in which the source and some other node whose

label is in L act as transmitters if they have not received any message yet, and if the source message

iso’. Let A" ={c.:r e T}

Let T4 be the set of those rounds r € T* \ T” for which there exists a unique label d,. € L such that
Pi(I,,d.) € M. Le., Ty is the set of those rounds in which a unique node acts as a transmitter if

it has not received any message before, and if the source message is o’. Let B’ = {d : r € T4 }.

Finally, let T4 be the set of those rounds r € T* \ T' for which there exist at least two labels
Zr,yr € L such that Py(I,,z,) € M and Pi(I,,y,) € M. Le., Ty is the set of those rounds outside
of T" in which at least two nodes with labels in L act as transmitters if they have not received any

message before. Let C' = {z,,y, : € T5}.

The set Y/ = A’ U B’ U C' has size at most 2t. Assign labels from Y’ to arbitrarily chosen nodes
from X \ {s}. Assume that the source message is o’. This assignment implies that, regardless of
how other labels from the set L are assigned to other nodes from X, the only rounds in which nodes

a and b can get a message by round ¢ are the rounds from the set 7"\ T] U Tj.

Next, define sets T", T, Ty, Ty, A", B", C", and Y", similarly as T", T}, Ty, T3, A’, B, C', and
Y, with the exception that source message o’ is replaced by source message o”. Again Y” has size
at most 2¢. Assign labels from Y to arbitrarily chosen, yet unlabeled nodes from X \ {s}. Assume
that the source message is 0. This assignment implies that, regardless of how other labels from
the set L are assigned to other nodes from X, the only rounds in which nodes a and b can get a

message by round ¢ are the rounds from the set 7" \ 77 U Ty'.

Let r be any round in 7'\ T} and let Pi(J;,,1) = (r,m). Let u be any round in T3 and let

Pi(1y,d.,) = (r,m!,). Hence, if the source message is o', the only messages that nodes a and b can

get by round ¢ are messages m,., for r € T\ T7, and m;,, for u € T;. More precisely, let r1,...,7; be

an increasing ordering of rounds in 7"\ T{ UTy . For any round p <t let j(p)’ be the largest index
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7 such that r;- < p. Hence, if the source message is ¢’, the inputs of nodes a and b in round p are

identical and equal to '), = (p, (r’l,m;,l), vy (r;.(p),,m;;(p)’)).

Wiodefinda. detrbgsing setjoenon of dats Ly = L\ Y'\ Y.
2t 1 1. Suppose that L;,_l is already defined. Consider the following sets

Hy={leL,_,:P(lh1)=p},
Hy ={l € L, :Pi(T},,1) € M}.

e set of those labels in L‘fo,l which cause a node to act as a receiver
iven input I‘; in round p, if the source message is ¢’/. Let H be the set

[, and Hy. We define L;, = H. Tt follows that L} has size at least 2¢ + 1.

sages m,', and input T') similarly as r{, m!,, and T, but assuming that
nstead of ¢'. Define a decreasing sequence of sets LY, for i = 0,...,¢, by
;. Sets Lj, for i > 0, are defined similarly as L;, replacing input I}, by

source message is o”. It follows that L} has size at least 2.

bels in LY. We assign those labels to nodes a and b, respectively, and we

ining labels in Lj to yet unlabeled nodes in the set X.

l9, nodes a and b either both act as receivers or both act as transmitters
ardless of whether the source message is ¢’ or o”. It follows that in any
1e source is J; ., if the source message is o', and it is J; ,», if the source
put of any other node in X is I;, in both cases. However, since for the 1-
plished by round ¢, it means that Pa(J; 7, 1) = Po(Ji47,1) = w. Suppose
he graph G. By definition this implies that Py (I, 1) = (é,0") = (¢,0"),

L X \ {s}. This implies ¢/ = ¢”, contradiction. 0
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3 The model with collision detection

In this section we show how our results change when collision detection is available. Clearly, all
RB algorithms described in the previous section remain valid in the present setting. However, we
will present a new RB algorithm working more efficiently for a large class of graphs, and another
very simple algorithm which enables to broadcast short messages in arbitrary graphs very fast.
We will also show that (as opposed to the scenario without collision detection) acknowledged
radio broadcasting is now possible for all strongly connected graphs, and can in fact be performed

efficiently.

We will use the following terminology. A node v acting as a receiver in a given round hears signal
u if at least one of its neighbors acts as a transmitter in this round, i.e., if v hears any message or
if there is a conflict between its neighbors in this round. Otherwise (if none of its neighbors acts
as a transmitter in this round), v hears nothing (background noise). A contact message is a fixed

one-bit signal.

A graph is strongly connected if there exists a directed path between any pair of nodes.

3.1 Radio broadcasting in strongly connected graphs

We first show an algorithm accomplishing RB in time O(n - ecc) in any strongly connected n-node

graph for which ecc is the eccentricity of the source.
Algorithm BOUND-AND-BROADCAST

The algorithm works in two stages. The aim of the first stage is that all nodes find an upper bound

on n within a factor of 2. In the second stage the actual broadcasting is performed.

Stage 1 is divided into phases numbered by consecutive positive integers. The kth phase consists
of 2¥ + 1 rounds. The first phase starts in round 1, and each phase starts in the round following
the end of the previous phase. Rounds of the kth phase are numbered by consecutive integers
1,...,2F + 1. A node is said to be active after the jth phase, j > 1, if it acted as a transmitter in

some round of this phase. All nodes are active in the first phase. We will show (cf. Lemma 3.1)
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that after each phase either all nodes are active or all are not active. In the first round of the
kth phase all active nodes whose labels are larger than 2% act as transmitters, sending a contact
message, and all others act as receivers. In every round 7 > 1 of the kth phase all active nodes
that heard signal y in round 7 — 1 of this phase and have not heard it in any previous round of
this phase, act as transmitters, sending a contact message, and all others act as receivers. The
first phase after which all nodes are not active, is the last phase of the first stage. Every node can
identify this phase as the first phase after which it is not active. Suppose that the number of this

phase is ky. We will prove (cf. Lemma 3.2) that 2k0—1 < n < 2ko,

Stage 2 starts in the round following the end of Stage 1. It is divided into phases consisting
of 2%0 rounds, numbered by consecutive positive integers. In each phase rounds are numbered by
consecutive integers 1,...,250. In each round, at most one node acts as a transmitter, thus collision is
avoided. Every node acts as a transmitter in exactly one round, after receiving the source message.
Let [ denote the label of the source. In all rounds 7 < I of the first phase all nodes act as receivers.
In round [, of the first phase the source acts as a transmitter sending the source message. Every
other node with label [ that got the source message in phase j waits till the first round whose
number in its phase is [ (this can happen in phase j or in phase j + 1 at the latest) and acts as a

transmitter, sending the source message.

This completes the description of Algorithm BOUND-AND-BROADCAST. In order to prove its cor-

rectness and analyze its efficiency, we need the following lemmas.

Lemma 3.1 If n > 2% then all nodes are active after the kth phase of Stage 1 of Algorithm

BOUND-AND-BROADCAST. Otherwise, all nodes are not active after the kth phase of Stage 1.

Proof: Suppose the lemma is true for all phases k' < k of Stage 1. If all nodes were not active
after some phase k' < k then all of them are not active after the kth phase. Suppose that all nodes

were active in all phases k' < k.

If n > 2F then in the first round of phase k all nodes whose labels are larger than 2 act as a
transmitter. For every node v with label I < 2* there exists a node w with label I’ > 2* such that

there is a directed path of length at most 2* from w to v. Hence node v is guaranteed to hear signal
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p in round 2% of the kth phase at the latest, and hence it acts as a transmitter in the kth phase.

Consequently, all nodes act as transmitters in this phase.

If n < 2% then in the first round of phase k no node acts as a transmitter, and consequently no

node hears signal p or acts as a transmitter in this phase. O

Lemma 3.2 Let kg be the first phase of Stage 1 after which all nodes are not active. Then 2F0~1 <

n < 2ko,

Proof: In view of Lemma 3.1, we have 250~1 < n_ since all nodes were active after phase ky — 1.

If n > 2% all nodes would be active after phase k. O

Theorem 3.1 Algorithm BOUND-AND-BROADCAST performs radio broadcasting in any strongly
connected graph. It works in time O(n - ecc) in any strongly connected n-node graph for which ecc

is the eccentricity of the source.

Proof: Let ky be the first phase of Stage 1 after which all nodes are not active. By Lemma 3.2,

Stage 1 lasts at most
ko
> o2t < 2kt < ap
i=1
rounds. Every phase of Stage 2 lasts 2¥0 < 2n rounds. Hence, in order to prove the theorem, it is

enough to show that:

1. after phase ecc of Stage 2 all nodes got the source message;

2. no messages are sent after phase ecc + 1 of Stage 2.
Both 1. and 2. follow from the fact that if (s,v1,...,v4 = v) is a directed path of length d < ecc

from the source to a node v then node v; hears the source message in phase at most 7, and hence

it acts as a transmitter in phase at most 7 + 1. O
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It should be noted that although Algorithm BOUND-AND-BROADCAST accomplishes radio broad-
casting in time O(n - ecc), no node is aware of this, i.e., acknowledged radio broadcasting is not
accomplished. However, we will show later that a refinement of this algorithm achieves ARB also

in time O(n - ecc).

3.2 Radio broadcasting in arbitrary graphs

When collision detection is available, this feature can be used to code messages. Any node that
acts as a receiver in a given round can distinguish between hearing signal p and hearing nothing
(background noise), which can thus serve as bits for the encoding. This observation yields the

following simple scheme working for arbitrary graphs.
Algorithm ENCODED-BROADCAST

The algorithm works as follows. Suppose that o is the source message and (a1, ...,a,) is a binary
representation of o. The algorithm proceeds in phases. The first phase consists of one round, and
each other phase contains 27 +4 rounds. The second phase starts in round 2, and every other phase
starts in the round following the end of the previous phase. In each phase some nodes are active and
all others are passive. Passive nodes act as receivers, while nodes active in a given phase transmit
the source message during this phase, as described below. In the first phase only the source is
active, it acts as a transmitter and sends the message o. In each subsequent phase k, those nodes
that heard signal p in at least one round of phase k£ — 1 and have not heard it in any phase before
k — 1, become active, and all others are passive. We will maintain the invariant that all active
nodes know o. A node active in a given phase divides it into two-round segments by, b1, ..., by, byp41.
In both rounds of segments bg and b1 every active node acts as a transmitter and sends a contact
message. Consider a segment b;, for 0 < 7 < r+ 1. If a; = 0, active nodes act as a receiver in both
rounds of segment b;. If a; = 1, active nodes act as receivers in the first round of segment b;, and
act as transmitters in the second round of this segment, sending a contact message. After phase
k, all nodes that become active in phase k + 1 determine the limits of phase k as the sequence of
rounds between two pairs of consecutive rounds in which they heard signal y. They divide this

sequence of rounds into two-round segments, and reconstruct the message o = (a1, ..., a,) using the
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rule:

a; = 0, if nothing was heard in both rounds of segment b;; a; = 1, if nothing was heard in the first

round of segment b;, and signal y was heard in the second round of this segment.

Theorem 3.2 Algorithm ENCODED-BROADCAST performs radio broadcasting of source message o
in an arbitrary graph, in time O(|o| - ecc), where ecc is the eccentricity of the source and |o| is the

number of bits in the message o.

Proof: Nodes at distance ¢ from the source are active in phase i+ 1 and passive in all other phases.

They decode message o after phase 7 + 1. O

3.3 Acknowledged radio broadcasting in symmetric graphs

As opposed to the scenario without collision detection, acknowledged radio broadcasting is feasible
in our present setting. We first show that for symmetric graphs it can in fact be done in time O(n).
We show how to modify our Algorithm EXPLORE-AND-EXPAND in order to accomplish ARB, when

collision detection is available.
Algorithm EXPLORE-EXPAND-CHECK

The algorithm is a modification of Algorithm EXPLORE-AND-EXPAND. As before, it works in
phases, each of them divided into stages A, B, and C. Stage A of phase k has one round more
than previously, added at the very end of this stage. In this round, all nodes with labels larger
than 2% act as transmitters, sending a contact message, and all nodes with labels at most 2% act as
receivers. Every node with label at most 2% that heard signal y in this additional round, is called

warned.

Stage B proceeds exactly as in Algorithm EXPLORE-AND-EXPAND. Stage C is modified as follows.
When a node that is warned sends the token to a neighbor, it appends a warning message to the
token, and the neighbor getting the token becomes warned. If, at the end of phase k, the source is

not warned, it knows that RB has been completed.
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Theorem 3.3 Algorithm EXPLORE-EXPAND-CHECK performs acknowledged radio broadcasting in

time O(n), in any n-node symmetric graph.

Proof: We show how to modify the proof of Theorem 2.1. It is enough to prove that if 26! < n <
2% then then the source is not warned at the end of phase k. Since there are no nodes with labels
larger than 2*, no node acts as a transmitter in the additional round of stage A of phase k. Hence

no node is warned in stage C, and in particular, the source is not warned at the end of phase k. O

3.4 Acknowledged radio broadcasting in strongly connected graphs

We now show how to modify Algorithm BOUND-AND-BROADCAST in order to accomplish acknowl-
edged radio broadcasting in time O(n - ecc) in any strongly connected n-node graph for which ecc is
the eccentricity of the source. Note that strong connectedness is a necessary condition for feasibility
of ARB. Indeed, there must exist a directed path from the source to any other node, for RB to be
possible, and there must exist a directed path from any node to the source, in order to inform the

source that the node got the message.
Algorithm BOUND-BROADCAST-CHECK

The algorithm is a refinement of Algorithm BOUND-AND-BROADCAST. We first give a high-level
overview of the algorithm, pointing out the modifications with respect to Algorithm BOUND-AND-
BROADCAST. First nodes learn an upper bound on n within a factor of 2, as before. Then each node
learns its distance from the source. In the remaining part of the algorithm broadcasting phases of
Algorithm BOUND-AND-BROADCAST are interleaved with acknowledgement phases in which nodes
at increasing distances from the source send a contact message which is then propagated. The
protocol finishes in the first phase in which no node sends an acknowledgement message. At this

point all nodes can also detect that broadcasting is terminated.

We now give a more detailed description of the algorithm. It works in three stages. Stage 1 is
identical as in Algorithm BOUND-AND-BROADCAST. Similarly as before, after its completion all
nodes know an upper bound on n within a factor of 2. Let ky have the same meaning as before.

By Lemma 3.2 we have 2k0—1 < pn < 2ko,
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Stage 2 lasts 2¥° rounds, numbered 1,..., 2¥0. Round 1 of Stage 2 follows the last round of Stage 1,
so all nodes can identify it. Every node acts as a transmitter in at most one round of this stage,
and sends a contact message in this round. In round 1 only the source acts as a transmitter. In
round ¢ > 1 those nodes which received signal p in round ¢ — 1 for the first time, act as transmitters.

We will show (cf. Lemma 3.3) that every node knows its distance from the source after stage 2.

The aim of Stage 3 is to broadcast the source message to all nodes, and simultaneously learn an
upper bound on the eccentricity ecc of the source. This will make possible the termination of the
algorithm after O(n - ecc) rounds, and informing the source (and in fact all nodes) that RB has
been accomplished. Stage 3 starts in the round following the end of stage 2 and is divided into
phases numbered by consecutive positive integers. Each phase consists of part 1 and part 2. Each
of these parts lasts 2%0 rounds, numbered 1,..., 2%, separately for each part. The first round of part
2 follows the last round of part 1, for any phase. The first round of part 1 of the kth phase follows

the last round of part 2 of the (k — 1)th phase.

Part 1 of each phase of Stage 3 is devoted to broadcasting the source message. This is done similarly
as in Stage 2 of Algorithm BOUND-AND-BROADCAST. In each round, at most one node acts as a
transmitter, thus collision is avoided. Every node acts as a transmitter in exactly one round, after
receiving the source message. Let [; denote the label of the source. In all rounds 7 < I, of the first
part of the first phase, all nodes act as receivers. In round I of the first part of the first phase the
source acts as a transmitter, sending the source message. Every other node with label [ that got
the source message in round r of the first part of phase 7 waits till round [ of the first part of phase
7, if r < I, and till round [ of the first part of phase j + 1, if » > [, and acts as a transmitter in this

round, sending the source message.

Part 2 of each phase of Stage 3 is devoted to finding an upper bound on the eccentricity ecc of the
source. This is done similarly as finding an upper bound on n in Stage 1. The difference is that
instead of using labels of nodes we use their distances from the source, learned in Stage 2, and that
now phases have equal length. A node is said to be active after the jth phase of Stage 3, j > 1, if it
acted as a transmitter in some round of part 2 of this phase. All nodes are active in the first phase

of Stage 3. Similarly as in Algorithm BOUND-AND-BROADCAST, after each phase either all nodes
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are active or all are not active. In the first round of part 2 of the kth phase all active nodes whose
distances from the source are larger than k act as transmitters, sending a contact message, and all
others act as receivers. In every round ¢ > 1 of part 2 of the kth phase all active nodes that heard
signal p in round 7 — 1 of part 2 of this phase and did not hear it in any previous round of part 2
of this phase, act as transmitters, sending a contact message, and all others act as receivers. The
first phase after which all nodes are not active terminates Stage 3 and also the entire algorithm.

Every node can identify this phase as the first phase after which it is not active.

This completes the description of Algorithm BOUND-BROADCAST-CHECK. We will show that upon
its completion, RB is accomplished and every node of the network is aware of it. In particular,
ARB is accomplished as well. In order to prove correctness and analyze the efficiency of Algorithm

BouND-BROADCAST-CHECK we need the following lemmas.

Lemma 3.3 After Stage 2 of Algorithm BOUND-BROADCAST-CHECK every node knows its dis-

tance from the source.

Proof: Every node that acts as a transmitter in round d + 1 of Stage 2 knows that its distance

from the source is d. Now the lemma follows from ecc < n < 2ko. O

Lemma 3.4 After phase k of Stage 8 all nodes at distance at most k from the source know the

source message.

Proof: Straightforward, by induction on k. O

Lemma 3.5 Let p be the first phase of Stage 8 of Algorithm BOUND-BROADCAST-CHECK after
which all nodes are not active. Then
1. p = ecc, where ecc is the eccentricity of the source;

2. After phase p all nodes of the network know the source message.

Proof: 1. Since all nodes were active after phase p — 1, we have p — 1 < ecc. If p < ecc, all nodes

would be active after phase p.
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2. follows from 1. and from Lemma 3.4. O

Theorem 3.4 Algorithm BOUND-BROADCAST-CHECK performs acknowledged radio broadcasting
in any strongly connected graph. It works in time O(n-ecc) in any strongly connected n-node graph

for which ecc is the eccentricity of the source.

Proof: Every node can identify the first phase of Stage 3 after which all nodes are not active (phase
p) as the first phase after which it is not active. This phase finishes the algorithm. By Lemma
3.5 all nodes know that RB is accomplished upon completion of the algorithm. In particular, the
source has this knowledge, and hence ARB is accomplished. It remains to compute execution time

of the algorithm. By Lemma 3.2, Stage 1 lasts at most

ko
> o2t < 2kt < ap
=1

rounds. Stage 2 lasts 250 < 2n rounds. Stage 3 lasts 2p2%0 = ecc - 2F0+! < 4n - ecc rounds. Hence

the total execution time of Algorithm BOUND-BROADCAST-CHECK is O(n - ecc). O
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