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Distributed Quality-of-Service
Routing in Ad Hoc Networks

Shigang Chen and Klara Nahrstedt,Member, IEEE

Abstract—In an ad hoc network, all communication is done
over wireless media, typically by radio through the air, without
the help of wired base stations. Since direct communication is
allowed only between adjacent nodes, distant nodes communicate
over multiple hops. The quality-of-service (QoS) routing in an
ad hoc network is difficult because the network topology may
change constantly, and the available state information for routing
is inherently imprecise. In this paper, we propose a distributed
QoS routing scheme that selects a network path with sufficient
resources to satisfy a certain delay (or bandwidth) requirement
in a dynamic multihop mobile environment. The proposed al-
gorithms work with imprecise state information. Multiple paths
are searched in parallel to find the most qualified one. Fault-
tolerance techniques are brought in for the maintenance of the
routing paths when the nodes move, join, or leave the network.
Our algorithms consider not only the QoS requirement, but also
the cost optimality of the routing path to improve the overall
network performance. Extensive simulations show that high call-
admission ratio and low-cost paths are achieved with modest
routing overhead. The algorithms can tolerate a high degree of
information imprecision.

Index Terms—Ad hoc quality-of-service (QoS) routing, impre-
cise state information, ticket-based probing.

I. INTRODUCTION

A N ad hoc network consists of a set of mobile nodes
(hosts) that are equipped with wireless transmitters and

receivers which allow them to communicate without the help
of wired base stations. Since each transmitter has a limited
effective range, distant nodes communicate through multihop
paths with other nodes in the middle as routers. There are
numerous applications for this type of network. A group of
moving soldiers in a battlefield communicates and coordinates
with each other. A group of islands and ships communicates
with the help of floating balloons and passing airplanes. A
group of people with portable computers share their data in a
conference room without laying cables between them.

Much work has been done on routing in ad hoc networks:
the destination-sequenced distance vector (DSDV) protocol
[1], the wireless routing protocol [2], Gafni–Bertsekas algo-
rithms [3], the lightweight mobile routing protocol [4], the
temporally-ordered routing algorithms [5], the dynamic source
routing protocol [6], the associativity-based routing protocol
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[7], the spine-based routing algorithms [8], and the zone-
routing protocol [9], etc. Emphasis has been on providing the
shortest-path routing and achieving a high degree of avail-
ability in a dynamic environment where the network topology
changes quickly. However, all the previous routing solutions
only deal with the best-effort data traffic. Connections with
quality-of-service (QoS) requirements, such as voice channels
with delay and bandwidth constraints, are not supported.

The provision of QoS relies on resource reservation. Hence,
the data packets of a QoS connection1 are likely to flow along
the same network path on which the required resources are
reserved. The goal of QoS routing is twofold: a) selecting
network paths that have sufficient resources to meet the QoS
requirements of all admitted connections and b) achieving
global efficiency in resource utilization.

QoS routing has been receiving increasingly intensive at-
tention in the wireline network domain [10]. The recent work
can be divided into three broad categories: source routing,
distributed routing, and hierarchical routing. In source routing
[11]–[13], each node maintains an image of the global network
state, which is based on a routing path that is centrally
computed at the source node. The global network state is
typically updated periodically by a link-state algorithm [14].
In distributed routing [15]–[18], the path is computed by a
distributed computation during which control messages are
exchanged among the nodes, and the state information kept
at each node is collectively used in order to find a path. In hi-
erarchical routing [19], nodes are clustered into groups, which
are recursively clustered into higher-level groups, creating a
multilevel hierarchy. In every level of the hierarchy, source or
distributed routing algorithms are used.

The QoS routing algorithms for wireline networks cannot
be applied directly to ad hoc networks. First, the performance
of most wireline routing algorithms relies on the availability
of precise state information. However, the dynamic nature
of an ad hoc network makes the available state information
inherently imprecise. Though some recent algorithms [13],
[20] were proposed to work with imprecise information (e.g.,
the probability distribution of link delay), they require the
precise information about the network topology, which is not
available in an ad hoc network. Second, nodes may join, leave,
and rejoin an ad hoc network at any time and any location;

1A connection (call) is a transport-layer concept. It means: 1) the logical
association between the end users and 2) the correct, ordered delivery of data
[5]. A QoS connection is a connection that has an end-to-end performance
requirement such as a delay or bandwidth constraint. A connection is im-
plemented at the network layer by a network path (routing channel) through
which data packets are delivered.
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existing links may disappear, and new links may be formed as
the nodes move. Hence, the established paths can be broken
at any time, which raises new problems of maintaining and
dynamically reestablishing the routing paths in the course of
data transmission.

It is difficult to provide QoS in an ad hoc network due to
its dynamic nature. The overhead of QoS routing in an ad hoc
network is likely to be higher than that in a wireline network
because the available state information is less precise, and the
topology changes in an unpredicted way. If the topology of an
ad hoc network changes too fast, the provision of the QoS can
be even impossible. However, QoS is feasible in many other
cases where the network topology changes less frequently. For
example, in a conference room, most portable computers may
be stationary most of the time, while some computers move,
join, or leave the room. In this paper, we shall only study the
type of ad hoc networks whose topologies are not changing
that fast to make the QoS routing meaningless. Since we do
not make any specific assumptions ensuring reliable routing
paths in ad hoc networks, we want to emphasize that this paper
only supports soft QoS without hard guarantees. The soft QoS
means that there may exist transient time periods when the
required QoS is not guaranteed due to path breaking or net-
work partition. However, the required QoS should be ensured
when the established routing path(s) remain unbroken. Many
multimedia applications accept soft QoS and use adaptation
techniques to reduce the level of QoS disruption [21]–[23].
For instance, the QoS disruption caused by rerouting in an
ad hoc network can be mitigated by using the rate-adaptive,
layer-based encoded voice/video compression schemes [24].

We propose a distributed QoS routing scheme for ad hoc
networks. Two routing problems are studied. They are delay-
constrained least-cost routing and bandwidth-constrained least-
cost routing. The first one is NP-complete [25]. The second one
is solvable in polynomial time, given precise state information.
A path that satisfies the delay (or bandwidth) constraint is
called a feasible path. We designed routing algorithms for
these problems. The algorithms have the following distinct
properties.

1) The algorithms can tolerate the imprecision of the avail-
able state information. Good routing performance in
terms of success ratio, message overhead, and average
path cost is achieved even when the degree of infor-
mation imprecision is high. Note that the problem of
information imprecision exists only for QoS routing; all
best-effort routing algorithms, such as DSR [6] and ABR
[7], do not consider this problem because they do not
need QoS state in the first place.

2) Multipath parallel routing is used to increase the prob-
ability of finding a feasible path. In contrast to the
flooding-based path discovery algorithms used in [6]
and [7], we search only a small number of paths, which
limits the routing overhead. In order to maximize the
chance of finding a feasible path, the state information
at the intermediate nodes is collectively utilized to make
intelligent hop-by-hop path selection.

3) The algorithms consider not only the QoS requirements,
but also the optimality of the routing path. Low-cost

paths are given preference in order to improve the
overall network performance.

4) In order to reduce the level of QoS disruption, fault-
tolerance techniques are brought in for the maintenance
of the established paths. Different levels of redundancy
provide tradeoff between the reliability and the over-
head. The dynamic path repairing algorithm repairs
the path at the breaking point, shifts the traffic to a
neighbor node, and reconfigures the path around the
breaking point without rerouting the connection along a
completely new path. Rerouting is needed in two cases.
One case is when the primary path and all secondary
paths are broken. The other case is when the cost of
the path grows large and hence it becomes beneficial to
route the traffic to another path with a lower cost.

The rest of the paper is organized as follows. The system
models are given in Section II. The idea of ticket-based
probing is briefly described in Section III. Delay-constrained
routing and bandwidth-constrained routing are studied in
Sections IV and V, respectively. Dynamic path maintenance is
discussed in Section VI. The simulation results are presented
in Section VII. The related work is studied in Section VIII.
Finally, Section IX concludes the paper.

II. SYSTEM MODELS

A. Ad Hoc Network Model

A network is modeled as a set of nodes that are inter-
connected by a set of full-duplex directed communication
links. and are changing over time when nodes move,
join, and leave. Each node has a unique identifier and has
at least one transmitter and one receiver. Assume that the
effective transmission distance of every node is equal. Two
nodes are neighbors and have a link between them if they
are in the transmission range of each other. We assume there
exists a neighbor discovering protocol. Each node periodically
transmits a BEACON packet identifying itself [7], [26], so
that any node knows the set of its neighbors. Neighboring
nodes share the same wireless media, and each message is
transmitted by a local broadcast. We assume the existence of a
MAC protocol, which resolves the media contention, supports
resource reservation, and ensures that, among the neighbors
in the local broadcast range, only the intended receiver keeps
the message, and the other neighbors discard the message.
An example of such a MAC protocol, one which supports
bandwidth reservation, was proposed by Gerand and Tsai [27].

B. Stationary and Transient Links

The links between the stationary or slowly moving nodes
are likely to exist continuously. Such links are called stationary
links. The links between the fast moving nodes are likely to
exist only for a short period of time. Such links are called
transient links. A routing path should use stationary links
whenever possible in order to reduce the probability of a path
breaking when the network topology changes [7].

Given the unpredictable nature of an ad hoc network, it
is impractical to determine exactly which links are stationary
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and which are transient. However, various approximation ap-
proaches exist. One simple approach is based on an empirical
observation that moving nodes are more likely to move at
the next moment, and stationary nodes are more likely to
be stationary at the next moment. An immediate implication
is that the links that are just formed are more likely to be
broken than the links that have already existed for some time.
Therefore, whenever a new link is formed, it is set as a
transient link. After the link remains unbroken for a time
period, it is changed to be a stationary link. This approach
is similar to the one proposed in [7]. Let be is a
stationary link, . A node in is called a stationary
neighbor2 of , and a node in is called a transient
neighbor.

C. QoS State Metrics

A node is assumed to keep the up-to-date local state
about all outgoing links.3 The state information of link
includes: 1) delay , the channel delay of the link, in-
cluding the radio propagation delay, the queuing delay, and
the protocol-processing time; 2) bandwidth , the residual
(unused) bandwidth of the link; and 3) cost , which can be
simply one as a hop count or a function of the link utilization.
In order to make a preference of stationary links over transient
links, the cost of a transient link should be set much higher
than that of a stationary link. The delay, bandwidth, and cost
of a path are defined as follows:

delay delay delay

bandwidth bandwidth bandwidth

cost cost cost

D. Routing Problems

Given a source node, a destination node, and a delay
requirement , the problem of delay-constrained routing is to
find a feasible path from to such that delay .

When there are multiple feasible paths, we want to select the
one with the least cost. Finding the delay-constrained least-cost
path is an NP-complete problem [25].

Another problem is bandwidth-constrained routing, i.e.,
finding a path such that bandwidth , where
is the bandwidth requirement. When there are multiple such
paths, the one with the least cost is selected.

Finding a feasible path is actually the first part of the
problem. The second part is to maintain the path when the
network topology changes [28].

E. Imprecise State Model

The following end-to-end state information is required to
be maintained at every nodefor every possible destination.
The information is updated periodically by a distance-vector

2It should be noted that stationary neighbors (links) are only relatively
stationary by definition.

3We assume every node has the precise information about its local state.
The problem of information imprecision only exists for the global state.

protocol for mobile computers. Readers are referred to [1] for
a detailed description of such a protocol.4

1) Delay: keeps the minimum end-to-end delay from
to , i.e., the delay of the least-delay path.

2) Bandwidth: keeps the maximum end-to-end band-
width from to , i.e., the bandwidth of the largest-
bandwidth path.

3) Cost: keeps the least end-to-end cost fromto ,
i.e., the cost of the least-cost path.

The previous information is inherently imprecise in an ad
hoc network because the network state and topology may
change at any time.

The imprecision model proposed by Guerin and Orda [13]
for wireline networks is based on probability distribution
functions. For instance, every node maintains, for every link,
the probability of link having a delay of units. This
model is not suitable for an ad hoc network where links may
be short-lived [7] and do not give enough time for collecting
the probability distribution. In contrast, we propose a simple
imprecision model that does not rely on the topology and
can be easily implemented. Two additional state variables are
required.

a) Delay variation: keeps the estimated maximum
change of before the next update. That is, based
on the recent state history, the actual minimum end-
to-end delay from to is expected to be between

and in the next update
period.

b) Bandwidth variation: keeps the estimated maxi-
mum change of before the next update. The actual
maximum bandwidth from to is expected to be
between and in the next
period.

For the purpose of simplicity, we do not apply the imprecise
model to . The cost metric ( ) is used for optimiza-
tion, in contrast to the delay and bandwidth metrics used in
QoS constraints. Since a strict cost bound requirement does not
exist, a certain degree of imprecision for is tolerable.

In the following, we describe a possible way to calculate
. can be computed similarly. is up-

dated periodically together with . Consider an arbitrary
update of and . Let and be
the values of before and after the update, respectively.
Similarly, let and be the values of
before and after the update, respectively. is provided
by a distance-vector protocol. is calculated as
follows:

The previous formula is similar to the one used by transmission
control protocol (TCP) to estimate the round-trip delay. The
factor ( ) determines how fast the history information
( ) is forgotten, and determines how fast

converges to .

4Because our algorithms can tolerate high degree of information impreci-
sion, a relatively low updating frequency is allowed, which leads to better
scalability.
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By the previous formula, it is still possible for the actual
delay to be out of the range .
One way to make such probability sufficiently small is to
enlarge . Hence, we shall modify the formula and
introduce another factor ( )

converges to at a speed
determined by .

It should also be noted that our imprecision model and
routing algorithms do not intend to cover every possible
situation, which is impractical in an ad hoc network. Our
objective is to improve the average performance, and the
proposed algorithms based on the previous model may fail
in finding a feasible path in the extreme cases where the state
and the topology change very rapidly.

III. A N OVERVIEW

We propose a multipath5 distributed routing scheme, called
ticket-based probing.6 Our design is based on the following
observations.

• The QoS routing is done on a per-connection basis.
Hence, the routing overhead is one of the major concerns.
We shall not use any flooding path-discovery approaches,
which may send routing messages to the entire network.
Instead, we want to localize the routing activity in a
portion of the network between the sourceand the
destination . More specifically, we want to search only
a small number of paths from to , instead of making
an expensive exhaustive search.

• There are numerous paths from to . We shall not
randomly pick several paths to search. Instead, we want
to make an intelligent hop-by-hop path selection to guide
the search along the best candidate paths.

The basic idea of ticket-based probing is outlined below.
A ticket is the permission to search one path. The source

node issues a number of tickets based on the available state
information. One guideline is that more tickets are issued
for the connections with tighter requirements. Probes (routing
messages) are sent from the source toward the destination to
search for a low-cost path that satisfies the QoS requirement.
Each probe is required to carry at least one ticket. At an
intermediate node, a probe with more than one ticket is allowed
to be split into multiple ones, each searching a different
downstream subpath. The maximum number of probes at any
time is bounded by the total number of tickets. Since each
probe searches a path, the maximum number of paths searched
is also bounded by the number of tickets. See Fig. 1 for an
example.

Upon receipt of a probe, an intermediate node decides, based
on its state: 1) whether the received probe should be split and

5Search multiple paths for a feasible one.
6A preliminary version of the ticket-based probing algorithm for wire-

line networks was published inProc. IEEE 7th Int. Conf. on Computer,
Communications and Networks (IC3N’98).

Fig. 1. Two probes,p1 and p2, are sent froms. The number in the
parentheses following a probe is the number of tickets carried in the probe.
At node j; p2 is split into p3 and p4, each of which has one ticket. There
are at most three probes at any time. Three paths are searched, and they are
s ! i ! t, s ! j ! t, ands ! j ! k ! t.

2) to which neighbor nodes the probe(s) should be forwarded.
The goal is to collectively utilize the state information at the
intermediate nodes to guide the limited tickets (the probes
carrying them) along the best paths to the destination, so
that the probability of finding a low-cost feasible path is
maximized. A number of advantageous properties of the ticket-
based probing are outlined below.

1) The routing overhead is controlled by the number of
tickets, which allows the dynamic tradeoff between the
overhead and the routing performance. Issuing more
tickets means searching more paths, which results in a
better chance of finding a feasible path at the cost of
higher overhead.

2) The proposed scheme is designed to work with imprecise
state information. The level of imprecision (information
uncertainty) has a direct impact on the number of tickets
issued. Multipath parallel search increases the chance
of finding a feasible path and thus helps to tolerate
information imprecision.

3) A distributed routing process is used to avoid any cen-
tralized path computation that could be very expensive
for QoS routing in large networks. It is not necessary
for any node to maintain the topology information. The
most current topology is used during the hop-by-hop
path selection process.

4) The information at the intermediate nodes, both local
and end-to-end states, are collectively used to direct
the probes along the low-cost feasible paths toward the
destination. This approach not only increases the chance
of success but also improves the ability to tolerate the
information imprecision because the intermediate nodes
may gradually correct a wrong decision made by the
source. Stationary links are used whenever possible,
which makes the routing path more stable.

Our ticket-based probing approach is proposed as a gen-
eral QoS routing scheme, which can handle different QoS
constraints. Delay-constrained routing and the bandwidth-
constrained routing are the most studied QoS routing problems
[12], [13], [29], [30]. In the sequel, we shall use them as
examples to explain the operation details.
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IV. DELAY-CONSTRAINED ROUTING

Based on the idea of ticket-based probing, we propose a
heuristic algorithm for the NP-complete, delay-constrained,
least-cost routing problem. When a connection request arrives
at the source node, a certain number of tickets are
generated, and probes are sent toward the destination. Each
probe carries one or more tickets. Since no new tickets are
allowed to be created by the intermediate nodes, the total
number of tickets is always , and the number of probes is
at most at any time. When a node receives a probewith

tickets, it makes at most copies of , distributes
the received tickets among the new probes, and then forwards
them along to selected outgoing links toward. Each probe
accumulates the delay of the path it has traversed so far. A
probe can proceed only when the accumulated delay does not
violate the delay requirement. Hence, any probe arriving at
the destination detects a feasible path, which is the one it has
traversed.

There are two problems: 1) how to determine and 2)
how to distribute the tickets in a received probe among the new
probes. We will solve these problems based on the following
two basic guidelines.

1) We want to assign different numbers of tickets to differ-
ent connections based on their “needs.” For a connection
whose delay requirement is large and can be easily
satisfied, one ticket is issued to search a single path; for
a connection whose delay requirement is smaller, more
tickets are issued to increase the chance of finding a
feasible path; for a connection whose delay requirement
is too small to be satisfied, no tickets are issued, and the
connection is immediately rejected.

2) When a node forwards the received tickets to its
neighbors, the tickets are distributed unevenly among
the neighbors, depending on their chances of leading
to reliable low-cost feasible paths. A neighbor having
a smaller end-to-end delay to the destination should
receive more tickets than a neighbor having a larger
delay; a neighbor having a smaller end-to-end cost to the
destination should receive more tickets than a neighbor
having a larger cost; a neighbor having a stationary link
to should be given preference over a neighbor having
a transient link to . Note that some neighbors may not
receive any tickets becausemay have only a few or
just one ticket to forward.

A. Determining the Number of Tickets

1) Yellow Tickets and Green Tickets:The tickets are
colored either yellow or green. The two types of tickets have
different purposes.

1) The purpose of yellow tickets is to maximize the proba-
bility of finding a feasible path. Hence, yellow tickets (or
more precisely, the probes carrying them) prefer paths
with smaller delays, so that the chance of satisfying a
given delay requirement is higher.

2) The purpose of green tickets is to maximize the prob-
ability of finding a low-cost path. Green tickets prefer
the paths with smaller costs, which may, however, have

Fig. 2. Curves ofY0 andG0 with respect toD.

larger delays and hence have less chance to satisfy the
delay requirement .

The overall strategy is to use the more aggressive green
tickets to find a low-cost feasible path with relatively low
success probability and to use the yellow tickets as a backup to
guarantee a high success probability of finding a feasible path.

, where is the number of yellow tickets, and
is the number of green tickets. We show how to determine
and in the following section.

2) Number of Yellow Tickets: is determined based on
the delay requirement . If is very large and can be surely
satisfied, a single yellow ticket will be sufficient to find a
feasible path. If is too small to be possibly satisfied, no
yellow ticket is necessary, and the connection is rejected.
Otherwise, more than one yellow ticket is issued to search
multiple paths for a feasible one. Based on the previous
guideline, we choose a linear ticket curve in Fig. 2 (upper
curve) for simplicity and efficient computation. The curve is
explained in the following and the three system parameters
are defined in Table I.

Let and be the source and the destination, respectively.
is a function of , , and .

1) If , then . Because is
equal to or greater than the largest possible end-to-end
delay ( ),7 a single yellow ticket will be
sufficient to find a feasible path.

2) If , then
,

where is a system parameter specifying the maximum
allowable number of yellow tickets. It shows that more
yellow tickets are assigned for smaller.

3) If , then . Because
is even less than the best expected end-to-end delay
( ), such a tight delay requirement will

7By our imprecise state model, the actual end-to-end delay is expected to
be in [Ds(t)��Ds(t); Ds(t)+�Ds(t)]. The probability for the delay to
be out of the range is assumed to be negligibly small.
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TABLE I
SYSTEM PARAMETERS

not be satisfied. The connection request is rejected.
Two actions may be taken after a connection request
is rejected: 1) the QoS negotiation process is activated
for a relaxed delay bound and 2) the QoS routing is
repeated after certain time.

3) Number of Green Tickets: is also determined based
on the delay requirement. The linear curve of is given in
Fig. 2 (lower curve), which is explained in the following list.

1) If , then , where
is a system parameter. specifies a threshold value,

, beyond which is considered to
be sufficiently large. When is sufficiently large, only
one green ticket is assigned. The reason for the threshold
to be instead of
is that green tickets prefer the least-cost paths whose
delay may be larger than , which is
the largest delay of the least-delay path. It is generally
an engineering issue to determine the most appropriate
value for . worked very well in our
simulation.

2) If , then

, where is the maximum allowable
number of green tickets. It shows that asdecreases,

increases.
3) If , then

. As approaches
to , the delay requirement becomes
increasingly harder to satisfy. Hence, the emphasis of
routing shifts from minimizing the cost to maximizing
the probability of finding a feasible path. is decreased
in order to reduce the overhead and allowto be larger.

4) If , then . The connection
request is rejected.

Theoretically, (or ) can be , which makes ticket-
based probing a flooding scheme. In practice, a small value
( ) for (or ) should be sufficient according to our
simulation.

B. Forwarding the Received Tickets

1) Candidate Neighbors:If , the connection
request is rejected. Otherwise, probes carrying the tickets are
sent from to . A probe proceeds only when the path has a
delay of no more than . Hence, once a probe reaches, it
detects a delay-constrained path.

Each probe accumulates the delay of the path it has traversed
so far. More specifically, a data field, denoted as delay,
is defined in a probe . Initially, delay ; whenever

proceeds for another link , delay delay
delay .

Suppose a node receives a probe with yellow
tickets and green tickets. Supposeis the sender of the
probe . The set of candidate neighbors, to whichwill
forward the received tickets, is determined as follows.

We first consider only the stationary neighbors () of .
Let delay delay

. There is no need to send any ticket to
because the best expected delay fromto

, which is , plus delay and delay
violate the delay requirement.

is the set of neighbors to which the tickets should
be forwarded. If , we take the transient neighbors
into consideration and redefine to be delay
delay . If is
still empty, we invalidate all received tickets and discard them.

If , then for every , makes a copy
of , denoted as . Let have yellow tickets and

green tickets, such that and
. We will show how to calculate

and shortly.
In order to compute , node must maintain the values

of and for every neighbor node. That can
be easily realized in a distance-vector protocol by keeping the
neighbors’ distance vectors, which include and .
Recall that node receives its neighbors’ distance vectors
periodically in order to calculate its own distance vector. This
approach works well for medium size networks. For instance,
when the number of nodes is at most 100, and the maximum
degree of a node is at most ten, it takes no more than 8
kB to store all necessary information if and
take 4 bytes each. A typical ad hoc network, such as one in
a conference room, has a small or medium size. For large
networks, the memory consumption can be very large. A
possible solution for large networks is to inquire and

from on demand and cache the values locally. In this
paper, we would like to consider only medium size networks
because the QoS provision is increasingly difficult in large
ad hoc networks since long routing paths tend to break more
often. Hence, we shall rely on the distance-vector protocol to
provide and for every neighbor node. The
same thing is true for , , and .

2) Distributing Yellow Tickets: is de-
termined based on an intuitive observation: a probe sent toward
the direction with a smaller delay should have more yellow
tickets

delay

delay

calculated by the previous formula may not be an
integer. Larger ’s have the priority to be rounded to

, and smaller ’s will be rounded to so
that .

3) Distributing Green Tickets:Recall that the purpose of
green tickets is to find a low-cost feasible path. A probe sent
toward the direction with a smaller cost should have more
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green tickets. Hence,

cost

cost

Larger ’s have the priority to be rounded to .
Finally, if , then is sent to ,

carrying yellow tickets and green tickets. If
, then is dropped.

In the previous scheme, tickets may cycle around loops.
Three possible approaches to avoid cycling infinitely are: 1)
at most one probe is allowed to be sent to every outgoing
link8; 2) the number of hops a probe can traverse is bounded,
i.e., over-aged probes will be discarded; or 3) probes record
their paths to detect possible loops, and the probes with loops
in their paths will be discarded. Each of the previous three
approaches prevents infinite cycling. We choose the first one
in this paper, particularly in the simulation.

We have discussed two types of tickets. The distribution of
yellow tickets is solely based on delay, and the distribution
of green tickets is solely based on cost. Another type of
tickets may be introduced, whose distribution is based on the
combination of delay and cost. We omit the discussion of this
type of tickets in this paper.

Our ticket-based probing algorithm reduces to the traditional
shortest-path routing algorithm when the imprecise model is
not used. Suppose . Our algorithm
reduces to the following approach: if , then the
source node issues a single yellow ticket, which traverses the
least-delay path to the destination, and in addition, one or
more of the green tickets is issued, trying to find a feasible
path with a lower cost.

C. Termination and Path Selection

The routing process is terminated when all probes have
either reached the destination or been dropped by the inter-
mediate nodes. In order to detect the termination, we require
the intermediate nodes to send the invalidated tickets9 to the
destination instead of discarding them. Therefore, all tickets
will arrive at eventually. The routing process is terminated
after receives all tickets.10 Time out is used to
handle the problem of message (ticket) losses that may result
from network partition, buffer overflow, or channel errors. If
only invalidated tickets are received,sends a message to

to inform the rejection of the request; otherwise, at least
one feasible path is found. Because probes are transmitted in
parallel in the network, it takes a message a round trip to find
a feasible path or reject a connection.

Whenever receives a probe with a valid ticket, a feasible
path is found, which is the one the probe has traversed.
There are two ways to record the path: one is to record the

8An intermediate nodei must record to which outgoing links probes have
been sent. When a new probe is received,R

p
i is calculated asfjjdelay(p) +

delay(i; j) +Dj(t)��Dj(t) � D; j 2 V s
i � fkg. A probe has not been

sent fromi to j before.g.
9The tickets in a received probe are invalidated ifRp

i (t) = ; (see
Section IV-B1).

10The number(Y0 +G0) is included in the probes sent tot.

TABLE II
DATA STRUCTURE

path in the probe itself, and the other is to record the path
at the intermediate nodes on a hop-by-hop basis. The first
approach requires larger size probes and thus consumes more
communication bandwidth and more memory space to store
the probes when they are waiting in the queues. The second
approach, however, requires memory space at the intermediate
nodes to store the path. In this paper, we choose the first
approach for its simplicity.

A probe accumulates the cost of the path it traverses. If
multiple probes with valid tickets arrive at the destination, the
path with the least cost is selected as the primary path, and the
other paths are the secondary paths, which will be used when
the primary path is broken due to the mobility of intermediate
nodes.

After the primary path is selected, a confirmation message
is sent back along the path to the source and reserves resources
along the way. However, since the topology of the network and
the resource availability of every node are constantly changing,
the path may be broken or an intermediate node may not have
sufficient resources at the time when the confirmation message
is received. In either case, the message is turned back to the
destination, and a secondary path is chosen as the primary path.
Both the source and the destination use time out to prevent
themselves from waiting indefinitely in case of message losses.

D. Data Structure

The data structure of a probeis shown in Table II. The
last six fields, , path, , , delay , and cost , are
modified as the probe traverses. Tickets are logical tokens, and
only the number of tickets is important: there can be at most

new probes descending from, among which
probes with yellow tickets choose paths based on delay, probes
with green tickets choose paths based on cost, and probes with
both yellow and green tickets choose paths based on both delay
and cost.

E. Rerouting

In an ad hoc network, there are a number of situations
where rerouting is desired. First, the network topology may
change as new nodes join in the network and existing nodes
move or leave the network. Rerouting helps to tolerate the
network dynamics by adapting the routing paths periodically
according to the changing topology. More importantly, when
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a routing path is broken, rerouting can be used to reestablish
the connection along a new path. Second, the routes of the
connections are typically selected based on the network re-
source availability at the times when the requests arrive. Long
paths are often assigned when resource contention occurs.
However, as the network topology changes and connections
are established or torn down upon completion, the network
state changes locally and globally, which makes the routes of
the remaining connections less optimal [31]. Routes with light
(heavy) traffic at the beginning may become congested (lightly
loaded) later. Shorter paths for some connections may become
available. Rerouting helps to balance the network traffic on the
fly and improves the resource efficiency, which is especially
important in an ad hoc network where resources are scarce.

Rerouting can be done periodically and/or upon triggering
when a broken path is detected. It should not be done too
frequently in order to avoid excessive overhead and the
oscillation of shifting the traffic from one part of the network
to another. However, it should also be noted that, compared
to the contiguous traffic of a typical voice connection, the
rerouting overhead is relatively small as long as it is not done
too frequently.

F. Soft States

Routing and rerouting can be used in conjunction with
RSVP [32], which is a resource reservation protocol. RSVP
is based on soft states, i.e., the resource reservation must be
refreshed periodically. Soft states are deleted if not refreshed
within a time-out period. This is important in an ad hoc
network due to the following reason. As the network topology
changes dynamically, routing paths may be broken into pieces,
and the network may even be partitioned, which causes the
information kept at nodes to become obsolete. Using soft states
helps to delete the obsolete information and release the unused
resources automatically.

Every node in the network maintains a connection table,
which has an entry for every connection passing the node,
containing the incoming link and the outgoing link used by
the connection. Hence, it takes a lookup of the connection
table to decide to which outgoing link that an incoming
packet of a connection should be forwarded. In addition, a
connection table entry stores the source node, the destination
node, the resource reservation, and other information about the
connection. Every entry is a soft state that will be deleted if
not refreshed.

A refreshing message is sent from the destination back along
the routing path to the source periodically [32]. When an
intermediate node receives the message, it resets the timer of
the corresponding soft state and forwards the message to the
upstream node. Note that refreshing messages always follow
the most recent routing path established by the last rerouting.
Therefore, the soft states at the nodes of the previous paths
will eventually be deleted.

G. Local Multicast

In an ad hoc network, each message is transmitted by a
local broadcast over the shared media (air). Such a transmis-

Fig. 3. Curves ofY0 andG0 with respect toB.

sion mechanism makes the local multicast possible. A local
multicast message allows more than one neighbor to be the
receiver. This property can be used to reduce the number of
probes sent by a node. Instead of sending a probe to every
neighbor satisfying , a local multicast
message is constructed, which combines the information in
all ’s. Hence, only a single message is needed, from which
the intended receivers extract the tickets belonging to them
and other information. Although the number of messages is
reduced, the message length increases,11 and more CPU time
is required to process the messages.

V. BANDWIDTH-CONSTRAINED ROUTING

The bandwidth-constrained routing algorithm is briefly de-
scribed in this section. It shares the same computational
structure with the delay-constrained routing algorithm. The
differences are the metric-dependent ticket curves and ticket
distribution formulas.

A. Determining the Number of Tickets

Consider a connection request whose source, destination,
and bandwidth requirement are, , and , respectively. Let
the number of yellow tickets be and the number of green
tickets be . Fig. 3 shows the linear curves of and .

The number of yellow tickets, , is determined as follows.

1) If , then .
2) If , then

.
3) If , then .

The number of green tickets, , is determined as follows.

1) If , then , where
.

11When TDMA is used and each message takes a time slot regardless of
the message length, as long as it fits in a time slot, local multicast will still
save bandwidth.
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2) If , then

.
3) If , then

.
4) If , then .

If , then sends itself a probe with yellow
tickets and green tickets to activate the routing process.

B. Forwarding the Received Tickets

Suppose a node receives a probe with yellow
tickets and green tickets. Let be the sender of. Define

bandwidth
.

If , then redefine bandwidth
. If is still

empty, then invalidate all tickets and send them tofor the
purpose of termination detection.

If , then for every , makes a copy of
, denoted as . Let have yellow tickets and

green tickets. is determined based on the observation
that a probe sent toward the direction with a larger residual
bandwidth should have more yellow tickets.

bandwidth

bandwidth

Larger ’s have the priority to be rounded to .
is determined based on the observation that a probe

sent toward the direction with a smaller cost should have more
green tickets.

cost

cost

Larger ’s have the priority to be rounded to .
If , then is sent to , carrying

yellow tickets and green tickets. If ,
then is dropped.

VI. DYNAMIC PATH MAINTENANCE

The required QoS is ensured during the time when an
established path remains unbroken. The QoS provision, how-
ever, is disrupted during the rerouting time. We want to be
restrictive on the type of networks studied in this paper.
Our routing algorithm works well when the average life time
of an established path is much longer (such as an order
of magnitude longer) than the average rerouting time. In
such a case, the required QoS is ensured in most of the
connection’s lifetime. There are numerous examples of such
mobile networks. For instance, a group of soldiers stays in
their bunkers and communicates with each other; a group of
warships moves into a formation in which the relative positions

of the ships are maintained. In this paper, we shall only
consider the type of networks whose topologies are relatively
stable because our routing-rerouting architecture does not
support ad hoc networks with violently changing topologies.

In this section, we propose solutions for the problems of
detecting and reconstructing the broken paths. In addition, we
use path redundancy to tolerate the topology dynamics and use
path repairing to repair the broken path at the breaking point.

A. Detection of Broken Paths

Let , , and be the source, the destination, and the
established routing path, respectively. Each nodeon except

has a preceding node, denoted as . Similarly, each node
on except has a successive node, denoted as.
In an ad hoc network, can be broken in any of the

following cases:

a) the source moves too far from such that link
is broken;

b) an intermediate nodemoves too far from or
such that either link or link is broken;

c) the destination moves too far from such that link
is broken; and

d) any node on leaves the network.

A single approach is proposed for all the above cases: if a
node using the neighbor discovering protocol finds
that is no longer its neighbor,detects that is broken at
link . One possible implementation is for each node
to maintain a link table for every outgoing link, storing the set
of connections using that link. Whenfinds that a neighbor
node no longer exists, i.e., link has been broken, it
concludes that every connection in the corresponding link table
has a broken path.

B. Rerouting

Rerouting is commonly used to deal with the problem
of path breaking in ad hoc networks [6]. When a node
detects a broken path, it looks up in the connection table
to find the source node of the connection and then sends

a path-breaking message. Whenreceives the message, it
activates the ticket-based routing algorithm and reroutes the
connection to another feasible path. Meanwhile, a resource-
releasing message is sent along the original path to release
the reserved resources. Since the path has been broken, some
intermediate nodes will not receive the resource-releasing
message. However, that will not cause the resources to be
held indefinitely because resource reservation is part of the
soft state that will be deleted automatically if not refreshed
(see Section IV-F).

In the process of rerouting, data packets are transmitted as
best-effort traffic, which means the required QoS is not guar-
anteed during this period of time. Although the rerouting takes
only a message round trip time to reestablish the connection
along a new feasible path, we want to reduce the jitter in the
QoS provision as much as possible. The common approach
to tolerate the fault condition (broken paths) is to introduce
redundancy [5].
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C. Path Redundancy

We consider a broken path as a fault and use thepath
redundancyfor fault-tolerance. There is a tradeoff between
the overhead of redundancy and the performance of QoS
provision. We propose a multilevel redundancy scheme to meet
the diversity of user requirements.

1) First-Level Redundancy:For the most critical connec-
tions, the highest level of redundancy is used. The idea is
to establish multiple routing paths for the same connection.
Every data packet is sent along each path independently. If
the destination receives the same packet from more than one
path, it keeps the first copy and discards the rest. The required
QoS is guaranteed as long as any of the paths remain unbroken.

Recall that our ticket-based routing algorithms may detect
multiple feasible paths in a single run. Increasing the number
of tickets will improve the chance of finding multiple fea-
sible paths. The number of routing paths actually established
depends on the redundancy requirement and the overhead con-
cern. Disjointed paths are preferred because multiple paths will
be broken when a shared link is broken. Multiple consecutive
runs of the routing algorithm help to establish the disjointed
routing paths; the successive runs use only the links that are not
on the paths established by the previous runs. Three additional
numbers are maintained at the source node for a connection:

minimum required number of unbroken paths for
providing the nondisrupted QoS12;
maximum allowed number of unbroken paths, de-
pending on the overhead concern;
the actual number of current unbroken paths.

Each time a broken path is detected, is decreased by
one. As long as , no further action is taken. If

, the routing algorithm is activated to find more
feasible paths in order to bring back to or as close
as possible if not enough feasible paths are found.

2) Second-Level Redundancy:For the ordinary connec-
tions that allow certain degree of QoS disruption, the second
level redundancy is used. It is similar to the first level
redundancy, except that, among the multiple established
paths, one is selected as the primary path, and the others are
secondary paths. Data packets are sent only along the primary
path. Although resources are reserved on the secondary paths
as well, they are not used. The resources held on the secondary
path will not be wasted because they will be used by the best-
effort traffic in a work-conserving system [33]. When the
primary path is detected broken, the source node selects one
from the secondary paths to be the new primary path. When

becomes less than , the routing algorithm is activated
to find more secondary paths.

3) Third-Level Redundancy:The ordinary connections
may also use the third level redundancy, which has the lowest
overhead. It is similar to the second level redundancy except
that no resource is reserved on the secondary paths. When the
primary path is broken, control messages are sent along the
secondary paths to check the current resource availability. If
some of the secondary paths remain feasible, one is selected

12The nondisrupted QoS is available only in a relative sense. In general,
the absolute nondisrupted QoS is impractical in ad hoc networks.

(a) (b) (c)

Fig. 4. The transmission range of nodek is shown by the circle. (a) A
segment of the routing path isk ! i ! j. (b) Node i moves out of the
transmission range ofk. (c) The traffic is dynamically shifted to another path
segmentk ! i0 ! j without rerouting the connections to a completely new
path.

as the new primary path, and the resources are reserved. If
none of them is feasible, rerouting is activated.

D. Path Repairing

Dynamic path-repairing repairs the routing path at the
breaking point, shifts the data traffic to a neighbor node,
and reconfigures the path around the breaking point without
rerouting the connection along a completely new path [7].
Fig. 4 gives an example. The routing path is broken after
moves out of the transmission range of. Instead of sending
a path-breaking message to the source,tries to repair the
path by broadcasting a repair-requesting message to the current
neighbors asking if any of them are able to take over the job
of . Upon receipt of the message, the neighbors that have
links to reply their resource availabilities to. Based on the
received information, finds that has sufficient resources
for that role. It adds link to the routing path and then
sends a path-repairing message to. Upon receipt of the path-
repairing message, reserves the required resources and adds
link to the routing path.

In order to do path repairing, the connection table at
must be extended to store the successive node’s successive
node, denoted as , which is in Fig. 4. The repair-
requesting message sent byto its neighbors contains .
Every neighbor sends back a reply message, including at
least a Boolean field telling whether it has a link to .
If it does, the message also contains bandwidth
(or delay ), in addition to other information such as
cost .

In the case of bandwidth-constrained routing, when
receives a reply message from a neighbor node,

it checks whether both bandwidth and
bandwidth are satisfied, where is the
bandwidth requirement. If so, sends a path-repairing
message to in order to reestablish the broken routing path
through . If multiple neighbors satisfy the requirement,
the one which minimizes cost cost is
selected. If none of the neighbors satisfies the requirement, a
path-breaking message is sent to the source for rerouting.



1498 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 8, AUGUST 1999

In the case of delay-constrained routing, selects the
neighbor that minimizes delay delay . Af-
ter the broken path is reestablished through, a validation
process is initiated to check whether the new path violates the
delay requirement. A path-validation message is sent to the
destination. After receiving the message, the destination turns
it around. Starting from there, the message travels back along
the routing path to the source node and accumulates the end-
to-end delay along the way. After the source node receives the
message, it checks whether the end-to-end delay violates the
requirement. If so, either rerouting or QoS negotiation with
the user application is activated.

VII. SIMULATION AND RESULTS

Extensive simulations were done to evaluate the proposed
ticket-based probing algorithms. The results about the delay-
constrained routing algorithm is presented in this section.
Three performance metrics, success ratio, average message
overhead, and average path cost, are defined as follows:

success ratio
number of connections accepted

total number of connection requests

avg. msg. overhead
total number of messages sent

total number of connection requests

avg. path cost
total cost of all established paths

number of established paths

Sending a probe over a link is counted as one message. Hence,
for a probe that has traversed a path ofhops, messages are
counted.

The network topology used in our simulation is randomly
generated. Forty nodes are placed randomly within a 15
15 m area. The transmission range of a node is bounded
by a circle with a radius of 3 m. A link is added between
two nodes that are in the transmission range of each other.
The average degree of a node is 3.4. The source node, the
destination node, and the delay requirement () of each
connection request are randomly generated.is uniformly
distributed in the range of [30, 160 ms]. The cost of each
link is uniformly distributed in [0, 200]. Each link is
associated with two delay values: delay-old and delay-
new . Delay-old is the last delay value advertised
by the link to the network. Note that , is
calculated based on the delay-old values of all links. Delay-
new is the actual delay of the link at the time of routing.
Delay-old is uniformly distributed in [0, 50 ms], while
delay-new is uniformly distributed in delay-
old delay-old , where is a simulation
parameter, called the imprecision rate, specifying the largest
percentage difference of delay-new from delay-old

delay-new delay-old
delay-old

Three algorithms are simulated: the flooding algorithm, the
ticket-based probing algorithm (TBP), and the shortest-path
algorithm (SP).

TABLE III
SYSTEM PARAMETERS FOR TBP

The flooding algorithm is equivalent to TBP with infinite
yellow tickets and zero green tickets. It floods routing mes-
sages from the source to the destination. Each routing message
accumulates the delay of the path it has traversed, and the mes-
sage proceeds only if the accumulated delay does not exceed
the delay bound. As shown by Shin and Chou [18], when
certain scheduling policies are used and the routing messages
are set to the appropriate priority, the routing messages travel
at speeds according to the link delays. Hence, the message
traveling along the least-delay path arrives first. With this
assumption, an intermediate node needs only to propagate the
first received message and discard all successively received
ones. There will be at most one message sent along every link.
The algorithm finds a feasible path whenever one exists and
hence is the optimal algorithm in terms of success ratio. The
flooding algorithm does not have an efficient mechanism for
the termination detection. It selects the routing path when the
destination receives the first routing message. The advantage
of the flooding algorithm is that it does not need to maintain
any global state. The disadvantage is that too many routing
messages are sent.

The system parameters of the TBP algorithm are shown in
Table III. The values in the table are obtained by extensive
simulation runs. See Section IV for an explanation about each
parameter.

The SP algorithm maintains a state vector at each node
by a distance-vector protocol. The vector has an entry for

every possible destination, containing two elements,
and . is the delay of the least-delay path from
to , and is the next hop on the least-delay path.
and may be imprecise since they are calculated based
on the last advertised delay values (delay-old) of all links.
When a request arrives atwith , the algorithm
sends out one routing message along the least-delay path to
check the current resource availability for possible connection
establishment.

In Sections VII-A–C, we do not consider the node mo-
bility and the path maintenance. The focus is on evaluating
the ticket-based probing algorithm itself. In Section VII-D,
the node mobility is taken into account, and the algorithm
is evaluated together with the path maintenance techniques
proposed in Section VI.

A. Success Ratio

Figs. 5–8 compare the success ratios of the three algorithms.
Each point in the figures is taken by running 5000 inde-
pendently generated random connection requests. The success
ratio is a function of both the average delay requirement
and the imprecision rate. The former is represented by the

axis, and the latter is shown by different figures. In each
figure, as becomes larger, it is easier to satisfy, and thus the
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Fig. 5. Success ratio (imprecision rate: 5%).

Fig. 6. Success ratio (imprecision rate: 10%).

success ratio is higher. As expected, the flooding algorithm
has the best success ratio. The success ratio of TBP is close
to that of the flooding algorithm, even when the imprecision
rate is as high as 50%. This is because TBP searches multiple
paths, and the number of paths searched is adjusted according
to how difficult it will be to find a feasible path. In addition,
the state information of intermediate nodes is collectively used
to direct the probes along the most appropriate paths toward
the destination. In contrast, the SP algorithm performs much
worse when the imprecision rate is high.

Figs. 9 and 10 show the success ratios of TBP and SP
relative to that of the flooding algorithm. For an imprecision
rate of 10%, TBP performs as well as the flooding algorithm,
while SP is up to 7% worse than the flooding algorithm. For
an imprecision rate of 50%, TBP is up to 9% worse than the
flooding algorithm, while SP is up to 51% worse than the
flooding algorithm.

Fig. 7. Success ratio (imprecision rate: 25%).

Fig. 8. Success ratio (imprecision rate: 50%).

B. Message Overhead

Figs. 11–14 compare the average message overhead of the
three algorithms. The flooding algorithm has a prohibitively
high message overhead. SP has the lowest overhead. TBP has a
modest overhead that is higher than that of SP but much lower
than that of the flooding algorithm. The message overhead of
TBP increases as the imprecision rate increases.

C. Average Path Cost

Figs. 15–18 compare the average path cost of the three
algorithms. TBP has a lower average path cost than the
flooding algorithm and SP. This is because TBP uses both
the delay metric and the cost metric to make the routing
decision, while the other two algorithms use only the delay
metric. Recall that the green tickets are designed to find the
low-cost feasible paths.
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Fig. 9. Relative success ratio (imprecision rate: 10%).

Fig. 10. Relative success ratio (imprecision rate: 50%).

There is one exception in Fig. 18, that the average path
cost of TBP is higher than that of SP when is relatively
low. That can be explained as follows: TBP has a much
higher success ratio than SP when the imprecision rate is 50%.
Those connections, which TBP is able to establish but SP is
not, tend to have relatively long routing paths, as observed
in the simulation. They also tend to have higher cost, which
brings the average path cost up. A fairer comparison is made
in Figs. 19 and 20, where only the connections that can be
established by SP are considered. The average path cost of
TBP is lower than that of SP.

D. Mobility Test

The goal of this test is to evaluate how the node mobility
affects the QoS provision. Our mobility model is similar to the
one used in [6]. Every node stays at its current location for a
period, which is called the station time, and then it moves to

Fig. 11. Messages overhead (imprecision rate: 5%).

Fig. 12. Messages overhead (imprecision rate: 10%).

a new location that is randomly selected. Each node continues
this behavior, alternately staying and moving to a new location.
The velocity of moving is randomly taken between 0.1–1
m/s.13 The time it takes for the node to move to the new
location is called the moving time. The mobility ratio of a
connection is defined as follows:

mobility ratio
total moving time

total station time total moving time

By altering the station time, we can change the mobility ratio.
When a new connection arrives, it is routed along a feasible

path, on which the required resources are reserved. The time
during which the path remains unbroken is called the QoS
time. Note that the QoS requirement is ensured during this
period of time. However, when the path is broken, it must

13Recall that all nodes are placed within a 15� 15 m2 area, and every
node has a transmission distance of 3 m.
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Fig. 13. Messages overhead (imprecision rate: 25%).

Fig. 14. Messages overhead (imprecision rate: 50%).

be reestablished. The time it takes to reestablish a new
feasible path is called the best-effort time, during which the
data packets of are sent as best-effort traffic. We define a
performance metric, the QoS ratio, to measure the percentage
of a connection’s lifetime during which the required QoS is
ensured

QoS ratio
total QoS time

total QoS time total best-effort time

We study how the mobility ratio affects the QoS ratio.
Before we present the result, we shall briefly discuss some

implementation decisions made in our simulation. After a
routing path is broken, we first try to repair it (see Section VI-
D). If the broken path cannot be repaired, we try to reroute
it along a new feasible path. If the rerouting fails, we keep
increasing the delay requirement by 20 ms each time until
a feasible path is found. Hence, we assume the applications

Fig. 15. Cost per established path (imprecision rate: 5%).

Fig. 16. Cost per established path (imprecision rate: 10%).

under simulation have the ability to adapt to a looser QoS
requirement.14 We did not use path redundancy in the simula-
tion. Five thousand connection requests are simulated for every
mobility ratio. Each connection lasts for 5 min. We assume the
control messages (e.g., probes) have a priority lower than the
QoS traffic but higher than the best-effort traffic [18]. Note
that delay-new is the link delay for QoS traffic. The link
delay for control messages should be larger. Because we did
not implement a specific MAC protocol in the simulation, the
delay of a control message over a link, including the queuing
delay at the sending node, is randomly generated from [50
200 ms]. The relatively large delay for control messages is a
conservative choice because it will increase the rerouting time.

14The QoS adaptation is important in an ad hoc network because all feasible
paths may be broken in the middle of data transmission due to the mobility
of the intermediate nodes.
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Fig. 17. Cost per established path (imprecision rate: 25%).

Fig. 18. Cost per established path (imprecision rate: 50%).

Fig. 21 shows the QoS ratio with respect to the mobility
ratio. The result shows that our routing algorithm only supports
soft QoS.15 The QoS ratio is high when the mobility ratio is
low. For a mobility ratio less than 10%, the QoS ratio is above
95%. The QoS ratio decreases as the mobility ratio increases.
For a mobility ratio more than 35%, the QoS ratio is below
80%. Hence, our routing algorithm should not be used in the
networks with frequent node movements and fast changing
topologies.

VIII. R ELATED WORK

Much work has been done in two important research areas:
QoS routing and ad hoc routing. Most existing QoS routing
algorithms were proposed for the wireline networks, and most

15The guaranteed QoS has a QoS ratio of 100%.

Fig. 19. Comparing average cost by using the same set of established paths
(imprecision rate: 25%).

Fig. 20. Comparing average cost by using the same set of established paths
(imprecision rate: 50%).

ad hoc routing algorithms support only best-effort routing. The
ad hoc QoS routing is a relatively new problem. In this section,
we discuss the related work and compare our algorithm with
the existing ones.

The problem of QoS routing in wireline networks has been
attracting much attention in both academia and industry [34].
Many published algorithms [12], [17], [30], [35] assume the
availability of precise global state at every node, which is
based on a feasible path that is computed locally at the
source node or by a distributed computation [10]. Such an
assumption is not true in a dynamic network environment [13],
especially if we try to apply these algorithms in a mobile ad
hoc network. Guerin and Orda proposed a routing algorithm
based on imprecise state information [13]. Their imprecision
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Fig. 21. QoS ratio with respect to mobility ratio.

model is based on the probability distribution functions. For
instance, for every link, every node maintains the probability

of link having a delay of units, where ranges from
zero to the maximum possible value. Such an imprecision
model, however, is not suitable for an ad hoc network. It is
very difficult to maintain the link-state probability distribution
in an ad hoc network, considering that a link may be broken
before any meaningful probabilistic data has been gathered.
Some recent publications [16], [18], [36] avoid the imprecise
state problem by relying only on the up-to-date local state
maintained at every node. These algorithms use flooding to
collectively utilize the local states to find a feasible path.
However, the overhead of flooding is inhabitatively high for
the algorithms to be used in the bandwidth-scarce wireless
networks, considering that the QoS routing is typically done
on a per-connection basis.

Many multipath routing algorithms were proposed for the
best-effort data traffic in wireless ad hoc networks [4]–[7],
[9]. Most of these algorithms use flooding to discover routing
paths.16 The found path(s) are cached at the source node [6] or
at the intermediate nodes [4], [5], [7]. All data traffic from the
source to the destination shares these paths. When the paths
are broken, various path maintenance algorithms are used to
repair the broken paths [5], [7] or reestablish a new one [6].

Our TBP inherits many novel approaches from the previous
work. For example, TBP separates route discovery from route
maintenance [28], uses stationary links [7], uses probe mes-
sages to discover routes hop-by-hop [6], [7], lets the receiver
make the path selection [7], avoids the expensive rerouting by
path repairing [7], [37], and reduces the chance of service-
disruption by path redundancy [4], [5], etc. On the other hand,

16In [9], each node maintains the information about its local neighborhood,
called a zone. The routing overhead is reduced by replacing the hop-by-hop
flooding with the much coarse bordercasting [9], in which routing messages
travel zone-by-zone.

Fig. 22. TBP does the multipath QoS routing without flooding.

TBP is significantly different from the previous work, which
is explained in the following.

First, TBP is designed to support QoS traffic. It finds QoS-
constrained paths based on network connectivity and QoS state
information. The previous algorithms are designed to support
best-effort traffic. They find nonconstrained paths based only
on network connectivity. Hence, TBP needs to address the
imprecise state problem, which is important for QoS routing,
while the previous work does not have this problem.

Second, TBP is executed for every connection request. Such
a strategy is inherited from the QoS routing algorithms in
wireline networks [13], [17], [19], [30]. The purpose is to
increase the success ratio and avoid the traffic concentration.
On the other hand, most previous ad hoc routing algorithms
cache one or multiple routing paths,17 which are shared by
all data packets from the source to the destination.18 Such a
routing approach works well for best-effort traffic, but is not
sufficient for QoS traffic. The reason is that the cached path(s)
may not have the resources required by a QoS connection. At
the same time, there are numerous other paths connecting the
source to the destination that may have the required resources.

Third, TBP does multipath QoS routing without flooding,
whereas most previous algorithms are flooding-based. The
advantage is illustrated in Fig. 22. Letand be the source and
the destination, respectively. Supposeissues three tickets.
TBP sends a small number of messages searching three
paths. Fig. 22 shows an example where the searched paths
are , , and

. On the other hand, a flooding path-
discovery algorithm such as DSR [6] or ABR [7] will generate
a large number of routing messages that may reach every
node in the network, including those remote, less relevant
nodes. The design philosophy of TBP is twofold: reducing the
overhead by avoiding flooding and meanwhile preventing any
significant performance degradation by intelligent hop-by-hop
path selection.

17It is too expensive for the algorithms such as DSR [6] and ABR [7] to
execute on a per-connection basis because their path-discovery mechanisms
use flooding.

18When the paths are broken, all traffic will be swifted to one or multiple
reestablished paths.
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Chen and Gerla proposed a bandwidth-constrained routing
algorithm for ad hoc networks [38]. The algorithm is similar
to SP used in our simulation (see Section VII). Both the
Chen–Gerla algorithm and TBP use a distance-vector protocol
to collect the end-to-end QoS information. However, there are
two important differences. First, the Chen–Gerla algorithm
does not consider the problem of information imprecision
while TBP does. Second, the Chen–Gerla algorithm considers
only the shortest path recorded by the distance vector while
TBP does multipath routing. We have shown in Section VII
that TBP outperforms SP in a dynamic network where the
available state information is inherently imprecise.

Sivakumaret al. recently proposed a core-extraction dis-
tributed routing algorithm (CEDAR) [37] for QoS routing in
ad hoc networks. The idea is to maintain a self-organizing
routing infrastructure, called the “core,” which serves as the
spline of the network. Each node in the core covers its-
neighborhood. All nodes in the core must cover the entire
network. In the first step, the algorithm broadcasts a message
along the core to find where the destination is. It also finds a
path within the core connecting the source to the destination.
In the second step, with the searching direction set by, the
algorithm tries to find a bandwidth-constrained path among the
nodes in the -neighborhood of . CEDAR avoids flooding
by the help of . However, it needs to “flood” within the core
to find , which still makes the routing a “global” operation.
Due to the dynamic nature of an ad hoc network, the core may
be broken at transient time periods during which the routing
cannot be effectively done. Furthermore, searching for a QoS-
constrained path is directed by the core. The tree structure of
the core may not lead to the discovery of the shortest feasible
path that often takes a shortcut between tree branches. On
the contrary, TBP does not depend on any backbone structure
(core) embedded in the network; its routing process does not
involve any “global” operation, and it tries to optimize the
routing path.

IX. CONCLUSION

In this paper, we proposed a ticket-based distributed QoS
routing scheme for ad hoc networks. The existing single-
path routing algorithms have low overhead but do not have
the flexibility of dealing with imprecise state information
[38]. On the other hand, the flooding algorithms can handle
information imprecision but have prohibitively high overhead.
Our ticket-based probing scheme achieves a balance between
the single-path routing algorithms and the flooding algorithms.
It does multipath routing without flooding. The basic idea is to
achieve a near-optimal performance with modest overhead by
using a limited number of tickets and making intelligent hop-
by-hop path selection. Simulations showed that the proposed
routing scheme has a high success ratio and finds low-cost
feasible paths with an overhead significantly lower than that
of a flooding algorithm.

Various approaches were proposed to detect and reestab-
lish broken paths. While rerouting was used as the primary
approach to deal with the path-breaking problem, other ap-
proaches were proposed to reduce the jitter in the QoS

provision. In particular, multiple levels of path redundancy
were used to tolerate the topology dynamics, and the dynamic
path repairing was used to repair the broken paths at the
breaking point.
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